Skip to main content
Erschienen in: Mechanics of Composite Materials 3/2023

01.07.2023

Generalization of a Nonlinear Maxwell-Type Viscoelastoplastic Model and Simulation of Creep and Recovery Curves

verfasst von: A. V. Khokhlov

Erschienen in: Mechanics of Composite Materials | Ausgabe 3/2023

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A generalization of the physically nonlinear Maxwell-type constitutive equation with two material functions for non-aging rheonomic materials, whose general properties and area of application have been studied analytically in previous articles, was suggested. To extend the set of basic rheological phenomena simulated, a third strain component expressed as the Boltzmann–Volterra linear integral operator governed by an arbitrary creep function was added. For generality and convenience of managing the constitutive equation and its fitting to various materials and lists of effects simulated, a weight factor (degree of nonlinearity) was introduced into the constitutive relation, which enabled to combine the primary physically nonlinear Maxwell-type model with the linear viscoelasticity equation in arbitrary proportion to construct a hybrid model and to regulate the prominence of different phenomena described by the two constitutive equations. A general expression for creep and recovery curves produced by the constitutive equation proposed was derived and analyzed. The general properties of creep and recovery curves were studied assuming three material functions are arbitrary. New properties were established, which enabled the generalized model to adjust the form of creep and recovery curves and to simulate additional effects (in comparison with the primary Maxwell-type model) observed in creep and recovery tests of various materials at different stress levels.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
4.
Zurück zum Zitat A. V. Khokhlov, “Long-term strength curves generated by the nonlinear Maxwell-type model for viscoelastoplastic materials and the linear damage rule under step loading,” J. Samara State Tech. Univ., Ser. Phys. & Math. Sci., 20, No. 3, 524-543 (2016). doi: https://doi.org/10.14498/vsgtu1512 A. V. Khokhlov, “Long-term strength curves generated by the nonlinear Maxwell-type model for viscoelastoplastic materials and the linear damage rule under step loading,” J. Samara State Tech. Univ., Ser. Phys. & Math. Sci., 20, No. 3, 524-543 (2016). doi: https://​doi.​org/​10.​14498/​vsgtu1512
5.
Zurück zum Zitat A. V. Khokhlov, “The nonlinear Maxwell-type model for viscoelastoplastic materials: simulation of temperature influence on creep, relaxation and strain-stress curves,” J. Samara State Tech. Univ., Ser. Phys. & Math. Sci., 21, No. 1, 160-179 (2017). doi:https://doi.org/10.14498/vsgtu1524 A. V. Khokhlov, “The nonlinear Maxwell-type model for viscoelastoplastic materials: simulation of temperature influence on creep, relaxation and strain-stress curves,” J. Samara State Tech. Univ., Ser. Phys. & Math. Sci., 21, No. 1, 160-179 (2017). doi:https://​doi.​org/​10.​14498/​vsgtu1524
7.
Zurück zum Zitat A. V. Khokhlov, “Applicability indicators and identification techniques for a nonlinear Maxwell-type elasto-viscoplastic model using multi-step creep curves,” Vestn. Mosk. Gos. Tekh. Univ. im. N. E. Baumana, Estestv. Nauki [Herald of the Bauman Moscow State Tech. Univ., Nat. Sci.] No. 6, 92-112 (2018). doi: https://doi.org/10.18698/1812-3368-2018-6-92-112 A. V. Khokhlov, “Applicability indicators and identification techniques for a nonlinear Maxwell-type elasto-viscoplastic model using multi-step creep curves,” Vestn. Mosk. Gos. Tekh. Univ. im. N. E. Baumana, Estestv. Nauki [Herald of the Bauman Moscow State Tech. Univ., Nat. Sci.] No. 6, 92-112 (2018). doi: https://​doi.​org/​10.​18698/​1812-3368-2018-6-92-112
9.
Zurück zum Zitat A. V. Khokhlov, “Possibility to describe the alternating and nonmonotonic time dependence of Poisson’s ratio during creep using a nonlinear Maxwell-type viscoelastoplasticity model,” Russ. Metallurgy (Metally), No.10, 956-963 (2019). doi:https://doi.org/10.1134/S0036029519100136 A. V. Khokhlov, “Possibility to describe the alternating and nonmonotonic time dependence of Poisson’s ratio during creep using a nonlinear Maxwell-type viscoelastoplasticity model,” Russ. Metallurgy (Metally), No.10, 956-963 (2019). doi:https://​doi.​org/​10.​1134/​S003602951910013​6
11.
Zurück zum Zitat Yu. N. Rabotnov, Creep of Structural Elements [in Russian], M., Nauka (1966). Yu. N. Rabotnov, Creep of Structural Elements [in Russian], M., Nauka (1966).
12.
Zurück zum Zitat I. I. Bugakov, Creep of Polymeric Materials [in Russian], M., Nauka (1973). I. I. Bugakov, Creep of Polymeric Materials [in Russian], M., Nauka (1973).
13.
Zurück zum Zitat N. N. Malinin, Calculations for the Creep of Elements of Machine-Building Structures [in Russian], M., Mashinostroenie (1981). N. N. Malinin, Calculations for the Creep of Elements of Machine-Building Structures [in Russian], M., Mashinostroenie (1981).
14.
Zurück zum Zitat D. A. Gokhfeld and O. S. Sadakov, Plasticity and Creep of Structural Elements Under Repeated Loading [in Russian], M., Mashinostroenie (1984). D. A. Gokhfeld and O. S. Sadakov, Plasticity and Creep of Structural Elements Under Repeated Loading [in Russian], M., Mashinostroenie (1984).
15.
Zurück zum Zitat A. F. Nikitenko, Creep and Long-Term Strength of Metallic Materials [in Russian], Novosibirsk, NGASU (1997). A. F. Nikitenko, Creep and Long-Term Strength of Metallic Materials [in Russian], Novosibirsk, NGASU (1997).
16.
Zurück zum Zitat J. Betten, Creep Mechanics, Berlin, Heidelberg, Springer-Verlag (2008). J. Betten, Creep Mechanics, Berlin, Heidelberg, Springer-Verlag (2008).
17.
Zurück zum Zitat A. M. Lokoshchenko, Creep and Long-Term Strength of Metals [in Russian], M., Fizmatlit (2016). A. M. Lokoshchenko, Creep and Long-Term Strength of Metals [in Russian], M., Fizmatlit (2016).
18.
19.
Zurück zum Zitat J. S. Bergstrom, Mechanics of Solid Polymers. Theory and Computational Modeling, Elsevier, William Andrew (2015). J. S. Bergstrom, Mechanics of Solid Polymers. Theory and Computational Modeling, Elsevier, William Andrew (2015).
20.
Zurück zum Zitat G. V. Vinogradov and A. Ya. Malkin, Rheology of Polymers [in Russian], M., Khimiya (1977). G. V. Vinogradov and A. Ya. Malkin, Rheology of Polymers [in Russian], M., Khimiya (1977).
21.
Zurück zum Zitat R. G. Larson, Constitutive Equations for Polymer Melts and Solutions, Butterworth, Boston (1988). R. G. Larson, Constitutive Equations for Polymer Melts and Solutions, Butterworth, Boston (1988).
22.
Zurück zum Zitat R. K. Gupta, Polymer and Composite Rheology, N.Y., Marcel Dekker (2000).CrossRef R. K. Gupta, Polymer and Composite Rheology, N.Y., Marcel Dekker (2000).CrossRef
23.
Zurück zum Zitat A. Y. Malkin and A. I. Isayev, Rheology: Conceptions, Methods, Applications (2nd Ed.), Toronto, Chem. Tec. Publishing (2012). A. Y. Malkin and A. I. Isayev, Rheology: Conceptions, Methods, Applications (2nd Ed.), Toronto, Chem. Tec. Publishing (2012).
24.
Zurück zum Zitat H. F. Brinson and L. C. Brinson, Polymer Engineering Science and Viscoelasticity, Springer Science and Business Media (2008). H. F. Brinson and L. C. Brinson, Polymer Engineering Science and Viscoelasticity, Springer Science and Business Media (2008).
25.
Zurück zum Zitat A. E. Kalinnikov and A. V. Vakhrushev, “On the creep of materials with different resistance to tension and compression at variable stresses,” Mech. Compos. Mater., No. 3, 400-405 (1982). A. E. Kalinnikov and A. V. Vakhrushev, “On the creep of materials with different resistance to tension and compression at variable stresses,” Mech. Compos. Mater., No. 3, 400-405 (1982).
26.
Zurück zum Zitat A. Fatemi and L. Yang, “Cumulative fatigue damage and life prediction theories: A survey of the state of the art for homogeneous materials,” Int. J. Fatigue, 20, No. 1, 9-34 (1998).CrossRef A. Fatemi and L. Yang, “Cumulative fatigue damage and life prediction theories: A survey of the state of the art for homogeneous materials,” Int. J. Fatigue, 20, No. 1, 9-34 (1998).CrossRef
27.
Zurück zum Zitat A. Launay, M. H. Maitournam, Y. Marco, I. Raoult, and F. Szmytka, “Cyclic behavior of short glass fiber reinforced polyamide: Experimental study and constitutive equations,” Int. J. Plasticity, 27, 1267-1293 (2011).CrossRef A. Launay, M. H. Maitournam, Y. Marco, I. Raoult, and F. Szmytka, “Cyclic behavior of short glass fiber reinforced polyamide: Experimental study and constitutive equations,” Int. J. Plasticity, 27, 1267-1293 (2011).CrossRef
28.
Zurück zum Zitat M. K. Darabi, R. K. A. Al-Rub, E. A. Masad, C.-W. Huang, and D. N. Little, “A modified viscoplastic model to predict the permanent strain of asphaltic materials under cyclic-compression loading at high temperatures,” Int. J. Plasticity, 35, 100-134 (2012).CrossRef M. K. Darabi, R. K. A. Al-Rub, E. A. Masad, C.-W. Huang, and D. N. Little, “A modified viscoplastic model to predict the permanent strain of asphaltic materials under cyclic-compression loading at high temperatures,” Int. J. Plasticity, 35, 100-134 (2012).CrossRef
29.
Zurück zum Zitat H. Takagi, M. Dao, and M. Fujiwara, “Prediction of the constitutive equation for uniaxial creep of a power-law material through instrumented microindentation testing and modeling,” Materials Transactions, 55, No. 2, 275-284 (2014).CrossRef H. Takagi, M. Dao, and M. Fujiwara, “Prediction of the constitutive equation for uniaxial creep of a power-law material through instrumented microindentation testing and modeling,” Materials Transactions, 55, No. 2, 275-284 (2014).CrossRef
30.
Zurück zum Zitat N. Q. Chinh and P. Szommer, “Mathematical description of indentation creep and its application for the determination of strain rate sensitivity,” Mater. Sci. and Eng., A, 611, 333-336 (2014). N. Q. Chinh and P. Szommer, “Mathematical description of indentation creep and its application for the determination of strain rate sensitivity,” Mater. Sci. and Eng., A, 611, 333-336 (2014).
31.
Zurück zum Zitat D. S. Petukhov and I. E. Keller, “Dual problems of plane creeping flows of a power-law incompressible medium,” Vestn. Samara Gos. Tekhn. Univ. Ser. Fiz.-Mat. Nauki, 20, No. 3, 496-507 (2016). D. S. Petukhov and I. E. Keller, “Dual problems of plane creeping flows of a power-law incompressible medium,” Vestn. Samara Gos. Tekhn. Univ. Ser. Fiz.-Mat. Nauki, 20, No. 3, 496-507 (2016).
32.
Zurück zum Zitat O. A. Kaibyshev, Superplasticity of Industrial Alloys [in Russian], M., Metallurgia (1984). O. A. Kaibyshev, Superplasticity of Industrial Alloys [in Russian], M., Metallurgia (1984).
33.
Zurück zum Zitat T. G. Nieh, J. Wadsworth, and O. D. Sherby, Superplasticity in Metals and Ceramics, Cambridge Univ. Press (1997).CrossRef T. G. Nieh, J. Wadsworth, and O. D. Sherby, Superplasticity in Metals and Ceramics, Cambridge Univ. Press (1997).CrossRef
34.
Zurück zum Zitat K. A. Padmanabhan, R. A. Vasin, and F. U. Enikeev, Superplastic Flow: Phenomenology and Mechanics, Berlin, Heidelberg, Springer-Verlag (2001).CrossRef K. A. Padmanabhan, R. A. Vasin, and F. U. Enikeev, Superplastic Flow: Phenomenology and Mechanics, Berlin, Heidelberg, Springer-Verlag (2001).CrossRef
35.
Zurück zum Zitat V. M. Segal, I. J. Beyerlein, C. N., Tome, V. N. Chuvil’deev, and V. I. Kopylov, Fundamentals and Engineering of Severe Plastic Deformation, N.Y., Nova Science Pub. Inc. (2010). V. M. Segal, I. J. Beyerlein, C. N., Tome, V. N. Chuvil’deev, and V. I. Kopylov, Fundamentals and Engineering of Severe Plastic Deformation, N.Y., Nova Science Pub. Inc. (2010).
36.
Zurück zum Zitat A. P. Zhilayev and A. I. Pshenichnyuk, Superplasticity and Grain Boundaries in Ultrafine-Grained Materials, Cambridge Intern. Sci. Publ. (2010). A. P. Zhilayev and A. I. Pshenichnyuk, Superplasticity and Grain Boundaries in Ultrafine-Grained Materials, Cambridge Intern. Sci. Publ. (2010).
37.
Zurück zum Zitat Y. Cao, “Determination of the creep exponent of a power-law creep solid using indentation tests,” Mech. Time Dependent Mater., 11, 159-172 (2007).CrossRef Y. Cao, “Determination of the creep exponent of a power-law creep solid using indentation tests,” Mech. Time Dependent Mater., 11, 159-172 (2007).CrossRef
38.
Zurück zum Zitat M. Megahed, A. R. S. Ponter, and C. J. Morrison, “An experimental and theoretical investigation into the creep properties of a simple structure of 316 stainless steel,” Int. J. Mech. Sci., 26, No. 3, 149-164 (1984).CrossRef M. Megahed, A. R. S. Ponter, and C. J. Morrison, “An experimental and theoretical investigation into the creep properties of a simple structure of 316 stainless steel,” Int. J. Mech. Sci., 26, No. 3, 149-164 (1984).CrossRef
39.
Zurück zum Zitat F. U. Enikeev, “Experimental evaluation of the velocity sensitivity of a superplastic material with a highly inhomogeneous stress-strain state,” Zavodskaya Lab., Mater. Diagn., 73, No. 10, 44-50 (2007). F. U. Enikeev, “Experimental evaluation of the velocity sensitivity of a superplastic material with a highly inhomogeneous stress-strain state,” Zavodskaya Lab., Mater. Diagn., 73, No. 10, 44-50 (2007).
40.
Zurück zum Zitat A. V. Mikhaylovskaya, A. A. Kishchik, A. D. Kotov, et al., “Precipitation behavior and high strain rate superplasticity in a novel fine-grained aluminum based alloy,” Mater. Sci. Eng. A, 760, 37-46 (2019).CrossRef A. V. Mikhaylovskaya, A. A. Kishchik, A. D. Kotov, et al., “Precipitation behavior and high strain rate superplasticity in a novel fine-grained aluminum based alloy,” Mater. Sci. Eng. A, 760, 37-46 (2019).CrossRef
41.
Zurück zum Zitat M. E. Eglit, A. E. Yakubenko, and Yu.S. Zaiko, “Mathematical modeling of slope flows taking into account the non-Newtonian properties of a moving medium,” Trudy V. A. Steklov Matemat. Inst. RAS, 300, 229-239 (2018). M. E. Eglit, A. E. Yakubenko, and Yu.S. Zaiko, “Mathematical modeling of slope flows taking into account the non-Newtonian properties of a moving medium,” Trudy V. A. Steklov Matemat. Inst. RAS, 300, 229-239 (2018).
42.
Zurück zum Zitat V. P. Radchenko and D. V. Shapievsky, “Mathematical model of creep of a micro-inhomogeneous nonlinear elastic material,” PMTF, 49, No. 3, 157-163 (2008). V. P. Radchenko and D. V. Shapievsky, “Mathematical model of creep of a micro-inhomogeneous nonlinear elastic material,” PMTF, 49, No. 3, 157-163 (2008).
43.
Zurück zum Zitat K. Naumenko, H. Altenbach, and Y. Gorash, “creep analysis with a stress range dependent constitutive model.,” Arch. Appl. Mech., 79, 619-630 (2009).CrossRef K. Naumenko, H. Altenbach, and Y. Gorash, “creep analysis with a stress range dependent constitutive model.,” Arch. Appl. Mech., 79, 619-630 (2009).CrossRef
44.
Zurück zum Zitat L. Y. Lu, G. L. Lin, and M. H. Shih, “An experimental study on a generalized Maxwell model for nonlinear viscoelastic dampers used in seismic isolation.,” Eng. Struct., 34, No. 1, 111-123 (2012).CrossRef L. Y. Lu, G. L. Lin, and M. H. Shih, “An experimental study on a generalized Maxwell model for nonlinear viscoelastic dampers used in seismic isolation.,” Eng. Struct., 34, No. 1, 111-123 (2012).CrossRef
47.
Zurück zum Zitat V. A. Gorodtsov and A. I. Leonov, “On kinematics, nonequilibrium thermodynamics and rheological relations in the nonlinear theory of viscoelasticity,” PMM, 32, No. 1, 70-94 (1968). V. A. Gorodtsov and A. I. Leonov, “On kinematics, nonequilibrium thermodynamics and rheological relations in the nonlinear theory of viscoelasticity,” PMM, 32, No. 1, 70-94 (1968).
48.
Zurück zum Zitat A. I. Leonov, E. Ch. Lipkina, E. D. Paskhin, and A. N. Prokunin, “Theoretical and experimental investigations of shearing in elastic polymer liquids,” Rheol. Acta, 15, No. 7/8, 411-426 (1976).CrossRef A. I. Leonov, E. Ch. Lipkina, E. D. Paskhin, and A. N. Prokunin, “Theoretical and experimental investigations of shearing in elastic polymer liquids,” Rheol. Acta, 15, No. 7/8, 411-426 (1976).CrossRef
49.
Zurück zum Zitat V. A. Palmov, “Rheological models in nonlinear mechanics of deformable bodies,” Adv. in Mech., 3, No. 3, 75-115 (1980). V. A. Palmov, “Rheological models in nonlinear mechanics of deformable bodies,” Adv. in Mech., 3, No. 3, 75-115 (1980).
50.
Zurück zum Zitat A. N. Prokunin, “On nonlinear constitutive relations of Maxwellian type for describing the motion of polymer liquids,” PMM, 48, No. 6, 957-965 (1984). A. N. Prokunin, “On nonlinear constitutive relations of Maxwellian type for describing the motion of polymer liquids,” PMM, 48, No. 6, 957-965 (1984).
51.
Zurück zum Zitat A. I. Leonov and A. N. Prokunin, Nonlinear Phenomena in Flows of Viscoelastic Polymer Fluids, London, Chapman and Hall (1994).CrossRef A. I. Leonov and A. N. Prokunin, Nonlinear Phenomena in Flows of Viscoelastic Polymer Fluids, London, Chapman and Hall (1994).CrossRef
52.
Zurück zum Zitat A. I. Leonov, “Constitutive equations for viscoelastic liquids: Formulation, analysis and comparison with data,” Rheology Series, 8, 519-575 (1999).CrossRef A. I. Leonov, “Constitutive equations for viscoelastic liquids: Formulation, analysis and comparison with data,” Rheology Series, 8, 519-575 (1999).CrossRef
53.
Zurück zum Zitat A. V. Khokhlov, “Analysis of creep curves produced by the linear viscoelasticity theory under cyclic stepwise loadings,” J. Samara State Tech. Univ., Ser. Phys. Math. Sci., 21. No. 2, 326-361 (2017). doi:https://doi.org/10.14498/vsgtu1533 A. V. Khokhlov, “Analysis of creep curves produced by the linear viscoelasticity theory under cyclic stepwise loadings,” J. Samara State Tech. Univ., Ser. Phys. Math. Sci., 21. No. 2, 326-361 (2017). doi:https://​doi.​org/​10.​14498/​vsgtu1533
Metadaten
Titel
Generalization of a Nonlinear Maxwell-Type Viscoelastoplastic Model and Simulation of Creep and Recovery Curves
verfasst von
A. V. Khokhlov
Publikationsdatum
01.07.2023
Verlag
Springer US
Erschienen in
Mechanics of Composite Materials / Ausgabe 3/2023
Print ISSN: 0191-5665
Elektronische ISSN: 1573-8922
DOI
https://doi.org/10.1007/s11029-023-10107-9

Weitere Artikel der Ausgabe 3/2023

Mechanics of Composite Materials 3/2023 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.