Skip to main content
Top
Published in: Journal of Materials Engineering and Performance 11/2020

28-10-2020

Experimental Studies on Laser Additive Manufacturing of Inconel-625 Structures Using Powder Bed Fusion at 100 µm Layer Thickness

Authors: S. K. Nayak, S. K. Mishra, A. N. Jinoop, C. P. Paul, K. S. Bindra

Published in: Journal of Materials Engineering and Performance | Issue 11/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This paper reports process development and material characterization studies of Inconel-625 (IN625) using laser powder bed fusion (LPBF)-based additive manufacturing at higher layer thickness (100 µm). Conventionally, layer thickness up to 50 µm is used in LPBF due to process instability issues at higher layer thickness. However, successful development of LPBF with higher layer thickness will yield higher build rate. Therefore, systematic parametric investigations are carried out by varying laser power (P), scan speed (v) and hatch spacing (h) from 150 to 450 W, 0.02 to 0.08 m/s and 0.150 to 0.350 mm, respectively, with 100 µm layer thickness. The obtained results are compiled as a function of combined parameter—laser energy density (LED). Samples with relative area density > 99% are achieved for LED of 150, 240 and 360 J/mm3. Geometrical studies show that the deviation from nominal length and range of height of the sample decreases and increases with an increase in LED, respectively. X-ray diffraction shows the presence of face-centered cubic γ-phase at all the conditions with fine crystallites. The microstructure is a mix of cellular and dendritic with the primary arm width increasing with LED. Micro-hardness studies show that the hardness decreases slightly with an increase in LED, while automated ball indentation tests indicate the increase in energy storage capability with increase in LED. The micro-hardness, yield strength and ultimate tensile strength of LPBF built IN625 structure at 100 µm are found to be higher than that of the conventional and laser directed energy deposited IN625 structures and similar to that of the LPBF built IN625 structures at lower layer thickness. The study provides insight into LPBF of IN625 at 100 µm layer thickness and paves way for fabricating components at higher layer thickness with favorable mechanical properties.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference W.E. Frazier, Metal Additive Manufacturing: A Review, J. Mater. Eng. Perform., 2014, 23(6), p 1917–1928CrossRef W.E. Frazier, Metal Additive Manufacturing: A Review, J. Mater. Eng. Perform., 2014, 23(6), p 1917–1928CrossRef
2.
go back to reference B.P. Conner, G.P. Manogharan, A.N. Martof, L.M. Rodomsky, C.M. Rodomsky, D.C. Jordan, and J.W. Limperos, Making Sense of 3-D Printing: Creating a Map of Additive Manufacturing Products and Services, Addit. Manuf., 2014, 1-4, p 64–76 B.P. Conner, G.P. Manogharan, A.N. Martof, L.M. Rodomsky, C.M. Rodomsky, D.C. Jordan, and J.W. Limperos, Making Sense of 3-D Printing: Creating a Map of Additive Manufacturing Products and Services, Addit. Manuf., 2014, 1-4, p 64–76
3.
go back to reference C. Pleass and S. Jothi, Influence of Powder Characteristics and Additive Manufacturing Process Parameters on the Microstructure and Mechanical Behaviour of Inconel 625 Fabricated by Selective Laser Melting, Addit. Manuf., 2018, 24, p 419–431 C. Pleass and S. Jothi, Influence of Powder Characteristics and Additive Manufacturing Process Parameters on the Microstructure and Mechanical Behaviour of Inconel 625 Fabricated by Selective Laser Melting, Addit. Manuf., 2018, 24, p 419–431
4.
go back to reference C. P. Paul, A. N. Jinoop, and K. S. Bindra, Metal Additive Manufacturing Using Lasers, Additive Manufacturing: Applications and Innovations, First (Boca Raton, FL), CRC Press/Taylor & Francis Group, 2018, p 38–88 C. P. Paul, A. N. Jinoop, and K. S. Bindra, Metal Additive Manufacturing Using Lasers, Additive Manufacturing: Applications and Innovations, First (Boca Raton, FL), CRC Press/Taylor & Francis Group, 2018, p 38–88
5.
go back to reference S.M. Yusuf, M. Hoegden, and N. Gao, Effect of Sample Orientation on the Microstructure and Microhardness of Additively Manufactured AlSi10Mg Processed by High-Pressure Torsion, Int. J. Adv. Manuf. Technol., 2020, 106(9–10), p 4321–4337CrossRef S.M. Yusuf, M. Hoegden, and N. Gao, Effect of Sample Orientation on the Microstructure and Microhardness of Additively Manufactured AlSi10Mg Processed by High-Pressure Torsion, Int. J. Adv. Manuf. Technol., 2020, 106(9–10), p 4321–4337CrossRef
7.
go back to reference M. Brandt, Laser Additive Manufacturing: Materials, Design, Technologies, and Applications, 1st ed., Woodhead Publishing, Cambridge, 2016 M. Brandt, Laser Additive Manufacturing: Materials, Design, Technologies, and Applications, 1st ed., Woodhead Publishing, Cambridge, 2016
8.
go back to reference B. Cheng, L. Loeber, H. Willeck, U. Hartel, and C. Tuffile, Computational Investigation of Melt Pool Process Dynamics and Pore Formation in Laser Powder Bed Fusion, J. Mater. Eng. Perform., 2019, 28(11), p 6565–6578CrossRef B. Cheng, L. Loeber, H. Willeck, U. Hartel, and C. Tuffile, Computational Investigation of Melt Pool Process Dynamics and Pore Formation in Laser Powder Bed Fusion, J. Mater. Eng. Perform., 2019, 28(11), p 6565–6578CrossRef
10.
go back to reference A.N. Jinoop, C.P. Paul, and K.S. Bindra, Laser-Assisted Directed Energy Deposition of Nickel Super Alloys A Review, Proc. Inst. Mech. Eng. Part J. Mater. Des. Appl., 2019, 233(11), p 2376–2400 A.N. Jinoop, C.P. Paul, and K.S. Bindra, Laser-Assisted Directed Energy Deposition of Nickel Super Alloys A Review, Proc. Inst. Mech. Eng. Part J. Mater. Des. Appl., 2019, 233(11), p 2376–2400
11.
go back to reference F. Schmeiser, E. Krohmer, N. Schell, E. Uhlmann, and W. Reimers, Experimental Observation of Stress Formation during Selective Laser Melting Using in Situ x-ray Diffraction, Addit. Manuf., 2020, 32, p 101028 F. Schmeiser, E. Krohmer, N. Schell, E. Uhlmann, and W. Reimers, Experimental Observation of Stress Formation during Selective Laser Melting Using in Situ x-ray Diffraction, Addit. Manuf., 2020, 32, p 101028
12.
go back to reference J.R. Poulin, A. Kreitcberg, P. Terriault, and V. Brailovski, Long Fatigue Crack Propagation Behavior of Laser Powder Bed-Fused Inconel 625 with Intentionally-Seeded Porosity, Int. J. Fatigue, 2019, 127, p 144–156CrossRef J.R. Poulin, A. Kreitcberg, P. Terriault, and V. Brailovski, Long Fatigue Crack Propagation Behavior of Laser Powder Bed-Fused Inconel 625 with Intentionally-Seeded Porosity, Int. J. Fatigue, 2019, 127, p 144–156CrossRef
13.
go back to reference M.A. Balbaa, M.A. Elbestawi, and J. McIsaac, An Experimental Investigation of Surface Integrity in Selective Laser Melting of Inconel 625, Int. J. Adv. Manuf. Technol., 2019, 104(9–12), p 3511–3529CrossRef M.A. Balbaa, M.A. Elbestawi, and J. McIsaac, An Experimental Investigation of Surface Integrity in Selective Laser Melting of Inconel 625, Int. J. Adv. Manuf. Technol., 2019, 104(9–12), p 3511–3529CrossRef
14.
go back to reference S. Li, Q. Wei, Y. Shi, Z. Zhu, and D. Zhang, Microstructure Characteristics of Inconel 625 Superalloy Manufactured by Selective Laser Melting, J. Mater. Sci. Technol., 2015, 31(9), p 946–952CrossRef S. Li, Q. Wei, Y. Shi, Z. Zhu, and D. Zhang, Microstructure Characteristics of Inconel 625 Superalloy Manufactured by Selective Laser Melting, J. Mater. Sci. Technol., 2015, 31(9), p 946–952CrossRef
15.
go back to reference X.Y. Fang, H.Q. Li, M. Wang, C. Li, and Y.B. Guo, Characterization of Texture and Grain Boundary Character Distributions of Selective Laser Melted Inconel 625 Alloy, Mater. Charact., 2018, 143, p 182–190CrossRef X.Y. Fang, H.Q. Li, M. Wang, C. Li, and Y.B. Guo, Characterization of Texture and Grain Boundary Character Distributions of Selective Laser Melted Inconel 625 Alloy, Mater. Charact., 2018, 143, p 182–190CrossRef
16.
go back to reference G. Marchese, M. Lorusso, S. Parizia, E. Bassini, J.-W. Lee, F. Calignano, D. Manfredi, M. Terner, H.-U. Hong, D. Ugues, M. Lombardi, and S. Biamino, Influence of Heat Treatments on Microstructure Evolution and Mechanical Properties of Inconel 625 Processed by Laser Powder Bed Fusion, Mater. Sci. Eng., A, 2018, 729, p 64–75CrossRef G. Marchese, M. Lorusso, S. Parizia, E. Bassini, J.-W. Lee, F. Calignano, D. Manfredi, M. Terner, H.-U. Hong, D. Ugues, M. Lombardi, and S. Biamino, Influence of Heat Treatments on Microstructure Evolution and Mechanical Properties of Inconel 625 Processed by Laser Powder Bed Fusion, Mater. Sci. Eng., A, 2018, 729, p 64–75CrossRef
17.
go back to reference S.K. Nayak, S.K. Mishra, C.P. Paul, A.N. Jinoop, and K.S. Bindra, Effect of Energy Density on Laser Powder Bed Fusion Built Single Tracks and Thin Wall Structures with 100 Μm Preplaced Powder Layer Thickness, Opt. Laser Technol., 2020, 125, p 106016CrossRef S.K. Nayak, S.K. Mishra, C.P. Paul, A.N. Jinoop, and K.S. Bindra, Effect of Energy Density on Laser Powder Bed Fusion Built Single Tracks and Thin Wall Structures with 100 Μm Preplaced Powder Layer Thickness, Opt. Laser Technol., 2020, 125, p 106016CrossRef
20.
go back to reference D.C. Montgomery, Introduction to Factorial Designs, Design and Analysis of Experiments, 5th ed. (Arizona State University), John Wiley & Sons, Inc., 2001, p 170–211 D.C. Montgomery, Introduction to Factorial Designs, Design and Analysis of Experiments, 5th ed. (Arizona State University), John Wiley & Sons, Inc., 2001, p 170–211
21.
go back to reference L.E. Criales, Y.M. Arısoy, B. Lane, S. Moylan, A. Donmez, and T. Özel, Predictive Modeling and Optimization of Multi-Track Processing for Laser Powder Bed Fusion of Nickel Alloy 625, Addit. Manuf., 2017, 13, p 14–36 L.E. Criales, Y.M. Arısoy, B. Lane, S. Moylan, A. Donmez, and T. Özel, Predictive Modeling and Optimization of Multi-Track Processing for Laser Powder Bed Fusion of Nickel Alloy 625, Addit. Manuf., 2017, 13, p 14–36
22.
go back to reference J. Gubicza, Practical Applications of X-Ray Line Profile Analysis, X-ray Line Profile Analysis in Materials Science (Eötvös Loránd University, Hungary), IGI Global, n.d., p 271–307. J. Gubicza, Practical Applications of X-Ray Line Profile Analysis, X-ray Line Profile Analysis in Materials Science (Eötvös Loránd University, Hungary), IGI Global, n.d., p 271–307.
23.
go back to reference S. Shiva, I. Palani, C.P. Paul, and B. Singh, Laser Annealing of Laser Additive-Manufactured Ni-Ti Structures: An Experimental-Numerical Investigation, Proc. Inst. Mech. Eng. Part B. J. Eng. Manuf., 2018, 232(6), p 1054–1067CrossRef S. Shiva, I. Palani, C.P. Paul, and B. Singh, Laser Annealing of Laser Additive-Manufactured Ni-Ti Structures: An Experimental-Numerical Investigation, Proc. Inst. Mech. Eng. Part B. J. Eng. Manuf., 2018, 232(6), p 1054–1067CrossRef
24.
go back to reference B. Venugopal, B. Nandan, A. Ayyachamy, V. Balaji, S. Amirthapandian, B.K. Panigrahi, and T. Paramasivam, Influence of Manganese Ions in the Band Gap of Tin Oxide Nanoparticles: Structure, Microstructure and Optical Studies, RSC Adv., 2014, 4(12), p 6141CrossRef B. Venugopal, B. Nandan, A. Ayyachamy, V. Balaji, S. Amirthapandian, B.K. Panigrahi, and T. Paramasivam, Influence of Manganese Ions in the Band Gap of Tin Oxide Nanoparticles: Structure, Microstructure and Optical Studies, RSC Adv., 2014, 4(12), p 6141CrossRef
25.
go back to reference F. Feyissa, D. Ravi-Kumar, and P.N. Rao, Characterization of Microstructure, Mechanical Properties and Formability of Cryorolled AA5083 Alloy Sheets, J. Mater. Eng. Perform., 2018, 27(4), p 1614–1627CrossRef F. Feyissa, D. Ravi-Kumar, and P.N. Rao, Characterization of Microstructure, Mechanical Properties and Formability of Cryorolled AA5083 Alloy Sheets, J. Mater. Eng. Perform., 2018, 27(4), p 1614–1627CrossRef
26.
go back to reference Y. Gao and M. Zhou, Superior Mechanical Behavior and Fretting Wear Resistance of 3D-Printed Inconel 625 Superalloy, Appl. Sci., 2018, 8(12), p 2439CrossRef Y. Gao and M. Zhou, Superior Mechanical Behavior and Fretting Wear Resistance of 3D-Printed Inconel 625 Superalloy, Appl. Sci., 2018, 8(12), p 2439CrossRef
27.
go back to reference M. Iebba, A. Astarita, D. Mistretta, I. Colonna, M. Liberini, F. Scherillo, C. Pirozzi, R. Borrelli, S. Franchitti, and A. Squillace, Influence of Powder Characteristics on Formation of Porosity in Additive Manufacturing of Ti-6Al-4 V Components, J. Mater. Eng. Perform., 2017, 26(8), p 4138–4147CrossRef M. Iebba, A. Astarita, D. Mistretta, I. Colonna, M. Liberini, F. Scherillo, C. Pirozzi, R. Borrelli, S. Franchitti, and A. Squillace, Influence of Powder Characteristics on Formation of Porosity in Additive Manufacturing of Ti-6Al-4 V Components, J. Mater. Eng. Perform., 2017, 26(8), p 4138–4147CrossRef
28.
go back to reference Y.S. Lee and D.F. Farson, Surface Tension-Powered Build Dimension Control in Laser Additive Manufacturing Process, Int. J. Adv. Manuf. Technol., 2016, 85(5-8), p 1035–1044CrossRef Y.S. Lee and D.F. Farson, Surface Tension-Powered Build Dimension Control in Laser Additive Manufacturing Process, Int. J. Adv. Manuf. Technol., 2016, 85(5-8), p 1035–1044CrossRef
29.
go back to reference W.E. King, A.T. Anderson, R.M. Ferencz, N.E. Hodge, C. Kamath, S.A. Khairallah, and A.M. Rubenchik, Laser Powder Bed Fusion Additive Manufacturing of Metals; Physics, Computational, and Materials Challenges, Appl. Phys. Rev., 2015, 2(4), p 041304CrossRef W.E. King, A.T. Anderson, R.M. Ferencz, N.E. Hodge, C. Kamath, S.A. Khairallah, and A.M. Rubenchik, Laser Powder Bed Fusion Additive Manufacturing of Metals; Physics, Computational, and Materials Challenges, Appl. Phys. Rev., 2015, 2(4), p 041304CrossRef
30.
go back to reference J.D. Roehling, W.L. Smith, T.T. Roehling, B. Vrancken, G.M. Guss, J.T. McKeown, M.R. Hill, and M.J. Matthews, Reducing Residual Stress by Selective Large-Area Diode Surface Heating during Laser Powder Bed Fusion Additive Manufacturing, Addit. Manuf., 2019, 28, p 228–235 J.D. Roehling, W.L. Smith, T.T. Roehling, B. Vrancken, G.M. Guss, J.T. McKeown, M.R. Hill, and M.J. Matthews, Reducing Residual Stress by Selective Large-Area Diode Surface Heating during Laser Powder Bed Fusion Additive Manufacturing, Addit. Manuf., 2019, 28, p 228–235
33.
go back to reference H. Hack, R. Link, E. Knudsen, B. Baker, and S. Olig, Mechanical Properties of Additive Manufactured Nickel Alloy 625, Addit. Manuf., 2017, 14, p 105–115 H. Hack, R. Link, E. Knudsen, B. Baker, and S. Olig, Mechanical Properties of Additive Manufactured Nickel Alloy 625, Addit. Manuf., 2017, 14, p 105–115
34.
go back to reference I. Yadroitsev, M. Pavlov, P. Bertrand, and I. Smurov, Mechanical Properties of Samples Fabricated by Selective Laser Melting, 2009, p 7 I. Yadroitsev, M. Pavlov, P. Bertrand, and I. Smurov, Mechanical Properties of Samples Fabricated by Selective Laser Melting, 2009, p 7
35.
go back to reference C.P. Paul, P. Ganesh, S.K. Mishra, P. Bhargava, J. Negi, and A.K. Nath, Investigating Laser Rapid Manufacturing for Inconel-625 Components, Opt. Laser Technol., 2007, 39(4), p 800–805CrossRef C.P. Paul, P. Ganesh, S.K. Mishra, P. Bhargava, J. Negi, and A.K. Nath, Investigating Laser Rapid Manufacturing for Inconel-625 Components, Opt. Laser Technol., 2007, 39(4), p 800–805CrossRef
Metadata
Title
Experimental Studies on Laser Additive Manufacturing of Inconel-625 Structures Using Powder Bed Fusion at 100 µm Layer Thickness
Authors
S. K. Nayak
S. K. Mishra
A. N. Jinoop
C. P. Paul
K. S. Bindra
Publication date
28-10-2020
Publisher
Springer US
Published in
Journal of Materials Engineering and Performance / Issue 11/2020
Print ISSN: 1059-9495
Electronic ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-020-05215-9

Other articles of this Issue 11/2020

Journal of Materials Engineering and Performance 11/2020 Go to the issue

Premium Partners