Skip to main content
Top
Published in: Journal of Materials Science 23/2020

05-05-2020 | Polymers & biopolymers

Exploring the relationship between applied fabric strain and resultant local yarn strain within the elastic fabric based on finite element method

Authors: Shun Chen, Xiao Tian, Tao Hua, Kahei Chan, Jimin Fu, Ben Niu

Published in: Journal of Materials Science | Issue 23/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

As kinds of unique textiles with high extensibility and elasticity, elastic fabrics are widely used for sportswear, medical textiles and electronic textiles. The tensile behavior of fabric is very important for post-processing and usage of fabric. However, there are very few studies on the resultant yarn strain subjected to the applied fabric extension, which is crucial for understanding the tensile behavior of elastic fabric and expanding its potential applications. In order to address the tensile behavior of elastic fabric, a mechanical model of fabric was built for the analysis of local yarn strain within the fabric through finite element method (FEM). The FEM models with full consideration of the tensile property of elastic yarns were built to predict the relationship between the applied fabric strain and the resultant yarn strain. An experimental study was conducted to characterize the yarn deformation behavior during the fabric stretching and compare with the FEM prediction. The FEM simulations show a good agreement with the experimental results. Based on the FEM models, the effects of fabric structural parameters on such a relationship were investigated for understanding the deformation mechanism and thus optimizing the tensile properties of fabrics. A yarn strain of 27.5% could be achieved under 60% fabric strain by adopting an optimized warp yarn spacing of 0.8 mm. The results not only shed light on the origin of high extensibility and elasticity of fabrics but are of great value to the design and development of elastic materials for various applications such as textile-based electronics.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Zhao L, Hu H, Shen J, Rong H (2013) The use of a polytrimethylene terephthalate/polyester bi-component filament for the development of seamless garments. Text Res J 83:1283–1296CrossRef Zhao L, Hu H, Shen J, Rong H (2013) The use of a polytrimethylene terephthalate/polyester bi-component filament for the development of seamless garments. Text Res J 83:1283–1296CrossRef
2.
go back to reference Senthilkumar M, Anbumani N, Hayavadana J (2011) Elastane fabrics-a tool for stretch applications in sports. Indian J Fiber Text 36:300–307 Senthilkumar M, Anbumani N, Hayavadana J (2011) Elastane fabrics-a tool for stretch applications in sports. Indian J Fiber Text 36:300–307
3.
go back to reference Xiong Y, Tao X (2018) Compression garments for medical therapy and sports. Polymers 10:663CrossRef Xiong Y, Tao X (2018) Compression garments for medical therapy and sports. Polymers 10:663CrossRef
4.
go back to reference Li XT, Hu HB, Hua T, Xu BG, Jiang SX (2018) Wearable strain sensing textile based on one-dimensional stretchable and weavable yarn sensors. Nano Res 11:5799–5811CrossRef Li XT, Hu HB, Hua T, Xu BG, Jiang SX (2018) Wearable strain sensing textile based on one-dimensional stretchable and weavable yarn sensors. Nano Res 11:5799–5811CrossRef
6.
go back to reference Marmarali AB (2003) Dimensional and physical properties of cotton spandex single jersey fabrics. Text Res J 73:11–14CrossRef Marmarali AB (2003) Dimensional and physical properties of cotton spandex single jersey fabrics. Text Res J 73:11–14CrossRef
7.
go back to reference Luo J, Wang FM, Li D, Xu BG (2010) Elasticity of woven fabrics made of polytri-methylene terephthalate/polyethylene terephthalate bicomponent filaments. Text Res J 81:865–870 Luo J, Wang FM, Li D, Xu BG (2010) Elasticity of woven fabrics made of polytri-methylene terephthalate/polyethylene terephthalate bicomponent filaments. Text Res J 81:865–870
8.
go back to reference Leung KY (2016) Study on the mechanical properties of elastic woven fabrics. BS Thesis, The Hong Kong Polytechnic University, HK Leung KY (2016) Study on the mechanical properties of elastic woven fabrics. BS Thesis, The Hong Kong Polytechnic University, HK
9.
go back to reference Kan WS (2018) Design and evaluation of elastic woven fabric substrates for sensing textiles. BS Thesis, The Hong Kong Polytechnic University, HK Kan WS (2018) Design and evaluation of elastic woven fabric substrates for sensing textiles. BS Thesis, The Hong Kong Polytechnic University, HK
10.
go back to reference Qadir B, Hussain T, Malik M (2014) Effect of elastane denier and draft ratio of core-spun cotton weft yarns on the mechanical properties of woven fabrics. J Eng Fiber Fabr 9:23–31 Qadir B, Hussain T, Malik M (2014) Effect of elastane denier and draft ratio of core-spun cotton weft yarns on the mechanical properties of woven fabrics. J Eng Fiber Fabr 9:23–31
11.
go back to reference Almetwally AA, Mourad MM (2014) Effects of spandex drawing ratio and weave structure on the physical properties of cotton/spandex woven fabrics. J Text Inst 105:235–245CrossRef Almetwally AA, Mourad MM (2014) Effects of spandex drawing ratio and weave structure on the physical properties of cotton/spandex woven fabrics. J Text Inst 105:235–245CrossRef
12.
go back to reference Realff ML (1994) Identifying local deformation phenomena during woven fabric uniaxial tensile loading. Text Res J 64:135–141CrossRef Realff ML (1994) Identifying local deformation phenomena during woven fabric uniaxial tensile loading. Text Res J 64:135–141CrossRef
13.
go back to reference Ibrahim SM (1966) Mechanisms of stretch development in fabrics containing spandex yarns. Text Res J 36:696–706CrossRef Ibrahim SM (1966) Mechanisms of stretch development in fabrics containing spandex yarns. Text Res J 36:696–706CrossRef
14.
go back to reference Gorjanc DŠ, Bukošek V (2008) The behaviour of fabric with elastane yarn during stretching. Fibers Text East Eur 16:63–68 Gorjanc DŠ, Bukošek V (2008) The behaviour of fabric with elastane yarn during stretching. Fibers Text East Eur 16:63–68
15.
go back to reference Varghese N, Thilagavathi G (2015) Development of woven stretch fabrics and analysis on handle, stretch, and pressure comfort. J Text Inst 106:242–252CrossRef Varghese N, Thilagavathi G (2015) Development of woven stretch fabrics and analysis on handle, stretch, and pressure comfort. J Text Inst 106:242–252CrossRef
16.
go back to reference Xiao XL, Hua T, Wang JC, Li L, Au WM (2015) Transfer and mechanical behavior of three-dimensional honeycomb fabric. Text Res J 85:1281–1292CrossRef Xiao XL, Hua T, Wang JC, Li L, Au WM (2015) Transfer and mechanical behavior of three-dimensional honeycomb fabric. Text Res J 85:1281–1292CrossRef
17.
go back to reference Jeon BS, Chun SY, Hong CJ (2003) Structural and mechanical properties of woven fabrics employing Peirce’s model. Text Res J 79:929–933CrossRef Jeon BS, Chun SY, Hong CJ (2003) Structural and mechanical properties of woven fabrics employing Peirce’s model. Text Res J 79:929–933CrossRef
18.
go back to reference El Messiry M, El-Tarfawy S (2019) Mechanical properties and buckling analysis of woven fabric. Text Res J 89:2900–2918CrossRef El Messiry M, El-Tarfawy S (2019) Mechanical properties and buckling analysis of woven fabric. Text Res J 89:2900–2918CrossRef
19.
go back to reference Naik NK, Yernamma P, Thoram NM, Gadipatri R, Kavala VR (2010) High strain rate tensile behavior of woven fabric E-glass/epoxy composite. Polym Test 29:14–22CrossRef Naik NK, Yernamma P, Thoram NM, Gadipatri R, Kavala VR (2010) High strain rate tensile behavior of woven fabric E-glass/epoxy composite. Polym Test 29:14–22CrossRef
20.
go back to reference Senthilkumar M, Anbumani N (2011) Dynamics of elastic knitted fabrics for sports wear. J Ind Text 41:13–24CrossRef Senthilkumar M, Anbumani N (2011) Dynamics of elastic knitted fabrics for sports wear. J Ind Text 41:13–24CrossRef
21.
go back to reference Xiao XL, Hua T, Li L, Wang JC (2015) Geometrical modeling of honeycomb woven fabric architecture. Text Res J 85:1651–1665CrossRef Xiao XL, Hua T, Li L, Wang JC (2015) Geometrical modeling of honeycomb woven fabric architecture. Text Res J 85:1651–1665CrossRef
22.
go back to reference Realff ML, Boyce MC, Backer S (1997) A micromechanical model of the tensile behavior of woven fabric. Text Res J 67:445–459CrossRef Realff ML, Boyce MC, Backer S (1997) A micromechanical model of the tensile behavior of woven fabric. Text Res J 67:445–459CrossRef
23.
go back to reference Tehrani-Dehkordi M, Nosraty H (2015) Tensile behavior simulation of woven fabric with different weave pattern based on finite element method. J Text Polym 3:34–38 Tehrani-Dehkordi M, Nosraty H (2015) Tensile behavior simulation of woven fabric with different weave pattern based on finite element method. J Text Polym 3:34–38
24.
go back to reference Shen Y, Meir AJ, Cao Y, Adanur S (2015) Finite element analysis of monofilament woven fabrics under uniaxial tension. J Text Inst 106:90–100CrossRef Shen Y, Meir AJ, Cao Y, Adanur S (2015) Finite element analysis of monofilament woven fabrics under uniaxial tension. J Text Inst 106:90–100CrossRef
25.
go back to reference Tarfaoui M, Akesbi S (2001) A finite element model of mechanical properties of plain weave. Collides Surf A Physicochem Eng Asp 187–188:439–448CrossRef Tarfaoui M, Akesbi S (2001) A finite element model of mechanical properties of plain weave. Collides Surf A Physicochem Eng Asp 187–188:439–448CrossRef
26.
go back to reference Li YH, Xie CP, Liu XJ (2017) Finite element simulation on tensile mechanical properties of three-elementary weave fabric. J Text Res 38:41–47 Li YH, Xie CP, Liu XJ (2017) Finite element simulation on tensile mechanical properties of three-elementary weave fabric. J Text Res 38:41–47
27.
go back to reference Li YH, Xie CP, Liu XJ, Su XZ (2018) Finite element simulation of tensile mechanical properties of silk fabrics and polyester silk-like fabrics. J Silk 55:27–31 Li YH, Xie CP, Liu XJ, Su XZ (2018) Finite element simulation of tensile mechanical properties of silk fabrics and polyester silk-like fabrics. J Silk 55:27–31
28.
go back to reference Cheng JF, Chai XM, Zhou JM, Chen JY, Zhang HP (2013) Study of tensile property of Kevlar 129 yarn and fabric with finite element analysis method. J Zhenjiang Sci-Technol Univ 30:649–653 Cheng JF, Chai XM, Zhou JM, Chen JY, Zhang HP (2013) Study of tensile property of Kevlar 129 yarn and fabric with finite element analysis method. J Zhenjiang Sci-Technol Univ 30:649–653
29.
go back to reference Daelemans L, Faes J, Allaoui S, Hivet G, Dierick M, Hoorebeke VL, Paepegem VW (2016) Finite element simulation of the woven geometry and mechanical behaviour of a 3D woven dry fabric under tensile and shear loading using the digital element method. Sci Technol 137:177–187 Daelemans L, Faes J, Allaoui S, Hivet G, Dierick M, Hoorebeke VL, Paepegem VW (2016) Finite element simulation of the woven geometry and mechanical behaviour of a 3D woven dry fabric under tensile and shear loading using the digital element method. Sci Technol 137:177–187
30.
go back to reference Perumalsamy E, Sakthivel JC, Anbumai N (2014) Prediction of deformation behavior of single jersey cotton knitted fabrics using finite element method. Int J Cloth Sci Tech 26:222–234CrossRef Perumalsamy E, Sakthivel JC, Anbumai N (2014) Prediction of deformation behavior of single jersey cotton knitted fabrics using finite element method. Int J Cloth Sci Tech 26:222–234CrossRef
31.
go back to reference Liu Y, Hu H (2015) Finite element analysis of compression behaviour of 3D spacer fabric structure. Int J Mech Sci 94–95:244–259CrossRef Liu Y, Hu H (2015) Finite element analysis of compression behaviour of 3D spacer fabric structure. Int J Mech Sci 94–95:244–259CrossRef
32.
go back to reference Chen Y, Jiang N, Hu H (2019) Mechanical modeling of an auxetic tubular braided structure: experimental and numerical analyses. Int J Mech Sci 160:182–191CrossRef Chen Y, Jiang N, Hu H (2019) Mechanical modeling of an auxetic tubular braided structure: experimental and numerical analyses. Int J Mech Sci 160:182–191CrossRef
Metadata
Title
Exploring the relationship between applied fabric strain and resultant local yarn strain within the elastic fabric based on finite element method
Authors
Shun Chen
Xiao Tian
Tao Hua
Kahei Chan
Jimin Fu
Ben Niu
Publication date
05-05-2020
Publisher
Springer US
Published in
Journal of Materials Science / Issue 23/2020
Print ISSN: 0022-2461
Electronic ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-020-04738-9

Other articles of this Issue 23/2020

Journal of Materials Science 23/2020 Go to the issue

Premium Partners