Skip to main content
Top
Published in: Wireless Networks 6/2018

17-02-2017

Extending the user capacity of MU-MIMO systems with low detection complexity and receive diversity

Authors: Walid A. Al-Hussaibi, Falah H. Ali

Published in: Wireless Networks | Issue 6/2018

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Multiple-input multiple-output (MIMO) based technologies are considered as an integral part of the upcoming 5G communications to fulfil the ever-increasing demands of wireless applications with high spectral efficiency requirements. However, in uplink multiuser MIMO (MU-MIMO) channels, the number of allowed users is limited by the number of receive antennas associated with radio frequency (RF) chains at the base-station and the complexity burden of multiuser detection (MUD). In this paper, a novel group layer MU-MIMO scheme with low complexity MUD is proposed to increase the number of served users well beyond the available RF chains. By taking the advantage of power control and inherent path loss in cellular systems, the allowed users are divided into groups based on their received power. Efficient group power allocation and group layer MUD (GL-MUD) are utilized to provide a valuable tradeoff between complexity and achieved performance. Furthermore, when more receive antennas than RF chains is implemented, a generalized norm based antenna selection algorithm is proposed to enhance the error performance. Symbol error probability expressions are derived and the effectiveness of proposed scheme is demonstrated through numerical simulations compared with the conventional MU-MIMO and non-orthogonal multiple-access (NOMA) systems over Rayleigh fading channels. The results show a substantial increase in user capacity up to two-fold for the available number of RF chains. In addition, significant signal-to-noise ratio gain is achieved using GL-MUD compared with different MUD techniques.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Hoymann, C., Astely, D., Stattin, M., Wikstrom, G., Cheng, J., Hoglund, A., et al. (2016). LTE release 14 outlook. IEEE Communications Magazine, 54(6), 44–49.CrossRef Hoymann, C., Astely, D., Stattin, M., Wikstrom, G., Cheng, J., Hoglund, A., et al. (2016). LTE release 14 outlook. IEEE Communications Magazine, 54(6), 44–49.CrossRef
2.
go back to reference Zhao, N., Yu, F. R., & Leung, V. C. M. (2015). Opportunistic communications in interference alignment networks with wireless power transfer. IEEE Wireless Communication, 22(1), 88–95.CrossRef Zhao, N., Yu, F. R., & Leung, V. C. M. (2015). Opportunistic communications in interference alignment networks with wireless power transfer. IEEE Wireless Communication, 22(1), 88–95.CrossRef
3.
go back to reference Paulraj, A., Gore, D., Nabar, R., & Bolcskei, H. (2004). An overview of MIMO communications—A key to gigabit wireless. Proceedings of the IEEE, 92(2), 198–218.CrossRef Paulraj, A., Gore, D., Nabar, R., & Bolcskei, H. (2004). An overview of MIMO communications—A key to gigabit wireless. Proceedings of the IEEE, 92(2), 198–218.CrossRef
4.
go back to reference Miao, G. (2013). Energy-efficient uplink multi-user MIMO. IEEE Transactions on Wireless Communications, 12(5), 2302–2313.CrossRef Miao, G. (2013). Energy-efficient uplink multi-user MIMO. IEEE Transactions on Wireless Communications, 12(5), 2302–2313.CrossRef
5.
go back to reference Jungnickel, V., Manolakis, K., Zirwas, W., Panzner, B., et al. (2014). The role of small cells, coordinated multipoint, and massive MIMO in 5G. IEEE Communications Magazine, 52(2), 44–51.CrossRef Jungnickel, V., Manolakis, K., Zirwas, W., Panzner, B., et al. (2014). The role of small cells, coordinated multipoint, and massive MIMO in 5G. IEEE Communications Magazine, 52(2), 44–51.CrossRef
6.
go back to reference Xie, H., Wang, B., Gao, F., & Jin, S. (2016). A full-space specrum-sharing strategy for massive MIMO cognitive radio systems. IEEE Journal on Selected Areas in Communications, 34(10), 2537–2549.CrossRef Xie, H., Wang, B., Gao, F., & Jin, S. (2016). A full-space specrum-sharing strategy for massive MIMO cognitive radio systems. IEEE Journal on Selected Areas in Communications, 34(10), 2537–2549.CrossRef
7.
go back to reference Bjornson, E., Larsson, E., & Debbah, M. (2016). Massive MIMO for maximal spectral efficiency: how many users and pilots should be allocated. IEEE Transactions on Wireless Communications, 15(2), 1293–1308.CrossRef Bjornson, E., Larsson, E., & Debbah, M. (2016). Massive MIMO for maximal spectral efficiency: how many users and pilots should be allocated. IEEE Transactions on Wireless Communications, 15(2), 1293–1308.CrossRef
8.
go back to reference Parkvall, S., Furuskar, A., et al. (2011). Evolution of LTE toward IMT-advanced. IEEE Communications Magazine, 49(2), 84–91.CrossRef Parkvall, S., Furuskar, A., et al. (2011). Evolution of LTE toward IMT-advanced. IEEE Communications Magazine, 49(2), 84–91.CrossRef
9.
go back to reference Tse, D., Viswanath, P., & Zheng, L. (2004). Diversity-multiplexing tradeoff in multiple-access channels. IEEE Transactions on Information Theory, 50(9), 1859–1874.MathSciNetCrossRefMATH Tse, D., Viswanath, P., & Zheng, L. (2004). Diversity-multiplexing tradeoff in multiple-access channels. IEEE Transactions on Information Theory, 50(9), 1859–1874.MathSciNetCrossRefMATH
10.
go back to reference Soysal, A., & Ulukus, S. (2010). Joint channel estimation and resource allocation for MIMO systems—PartII: Multi-user and numerical analysis. IEEE Transactions on Wireless Communications, 9(2), 632–640.CrossRef Soysal, A., & Ulukus, S. (2010). Joint channel estimation and resource allocation for MIMO systems—PartII: Multi-user and numerical analysis. IEEE Transactions on Wireless Communications, 9(2), 632–640.CrossRef
11.
go back to reference Ding, Z., Adachi, F., & Poor, H. (2016). The application of MIMO to non-orthogonal multiple access. IEEE Transactions on Wireless Communications, 15(1), 537–552.CrossRef Ding, Z., Adachi, F., & Poor, H. (2016). The application of MIMO to non-orthogonal multiple access. IEEE Transactions on Wireless Communications, 15(1), 537–552.CrossRef
12.
go back to reference Zafar, A., Shaqfeh, M., Alouini, M., & Alnuweiri, H. (2013). On multiple users scheduling using superposition coding over Rayleigh fading channel. IEEE Communications Letters, 17(4), 733–736.CrossRef Zafar, A., Shaqfeh, M., Alouini, M., & Alnuweiri, H. (2013). On multiple users scheduling using superposition coding over Rayleigh fading channel. IEEE Communications Letters, 17(4), 733–736.CrossRef
13.
go back to reference Sugiura, S., Chen, S., & Hanzo, L. (2012). MIMO-aided near-capacity turbo transceivers: taxonomy and performance versus complexity. IEEE Communcations Surveys and Tutorials, 14(2), 421–442.CrossRef Sugiura, S., Chen, S., & Hanzo, L. (2012). MIMO-aided near-capacity turbo transceivers: taxonomy and performance versus complexity. IEEE Communcations Surveys and Tutorials, 14(2), 421–442.CrossRef
14.
go back to reference Zhu, X., & Murch, R. (2002). Performance analysis of maximum likelihood detection in a MIMO antenna system. IEEE Transactions on Communications, 50(2), 187–191.CrossRef Zhu, X., & Murch, R. (2002). Performance analysis of maximum likelihood detection in a MIMO antenna system. IEEE Transactions on Communications, 50(2), 187–191.CrossRef
15.
go back to reference Zanella, A., Chiani, M., & Win, M. (2005). MMSE reception and successive interferance cancellation for MIMO systems with high spectral efficiency. IEEE Transactions on Wireless Communications, 4(3), 1244–1251.CrossRef Zanella, A., Chiani, M., & Win, M. (2005). MMSE reception and successive interferance cancellation for MIMO systems with high spectral efficiency. IEEE Transactions on Wireless Communications, 4(3), 1244–1251.CrossRef
16.
go back to reference Sah, A. A. K., & Chaturvedi, A. (2016). An MMP based approach for detection in large MIMO systems using sphere decoding. IEEE Wireless Communcations Letters, 6(1), 1–4. doi: 10.1109/LWC.2016.2646368. Sah, A. A. K., & Chaturvedi, A. (2016). An MMP based approach for detection in large MIMO systems using sphere decoding. IEEE Wireless Communcations Letters, 6(1), 1–4. doi: 10.​1109/​LWC.​2016.​2646368.
17.
go back to reference Zarikoff, B., Cavers, J., & Bavarian, S. (2007). An iterative groupwise multiuser detector for overloaded MIMO applications. IEEE Transactions on Wireless Communications, 6(2), 443–447.CrossRef Zarikoff, B., Cavers, J., & Bavarian, S. (2007). An iterative groupwise multiuser detector for overloaded MIMO applications. IEEE Transactions on Wireless Communications, 6(2), 443–447.CrossRef
18.
go back to reference Al-Hussaibi, W., & Ali, F. (2013). Fast receive antenna selection for spatial multiplexing MIMO over correlated Rayleigh fading channels. Wireless Personal Communcations, 70(4), 1243–1259.CrossRef Al-Hussaibi, W., & Ali, F. (2013). Fast receive antenna selection for spatial multiplexing MIMO over correlated Rayleigh fading channels. Wireless Personal Communcations, 70(4), 1243–1259.CrossRef
19.
go back to reference Xu, Z., Sfar, S., & Blum, R. (2009). Analysis of MIMO systems with receive antenna selection in spatially correlated Rayleigh fading channels. IEEE Transactions on Vehicular Technology, 58(1), 251–262.CrossRef Xu, Z., Sfar, S., & Blum, R. (2009). Analysis of MIMO systems with receive antenna selection in spatially correlated Rayleigh fading channels. IEEE Transactions on Vehicular Technology, 58(1), 251–262.CrossRef
20.
go back to reference Amadori, P., & Masouros, C. (2016). Interference-driven antenna selection for massive multiuser MIMO. IEEE Transactions on Vehicular Technology, 65(8), 5944–5958.CrossRef Amadori, P., & Masouros, C. (2016). Interference-driven antenna selection for massive multiuser MIMO. IEEE Transactions on Vehicular Technology, 65(8), 5944–5958.CrossRef
21.
go back to reference Mehta, N., Kashyap, S., & Molisch, A. (2012). Antenna selection in LTE: From motivation to specification. IEEE Communications Magazine, 50(10), 144–150.CrossRef Mehta, N., Kashyap, S., & Molisch, A. (2012). Antenna selection in LTE: From motivation to specification. IEEE Communications Magazine, 50(10), 144–150.CrossRef
22.
go back to reference Haci, H., Zhu, H., & Wang, J. (2017). Performance of non-orthogonal multiple access (NOMA) with a novel asynchronous interference cancellation technique. IEEE Transactions on Communications, 99, 1. doi:10.1109/TCOMM.2016.2640307. Haci, H., Zhu, H., & Wang, J. (2017). Performance of non-orthogonal multiple access (NOMA) with a novel asynchronous interference cancellation technique. IEEE Transactions on Communications, 99, 1. doi:10.​1109/​TCOMM.​2016.​2640307.
23.
go back to reference Sari, H., Vanhaverbeke, F., & Moeneclaey, M. (2000). Extending the capacity of multiple access channels. IEEE Communications Magazine, 38, 74–82.CrossRef Sari, H., Vanhaverbeke, F., & Moeneclaey, M. (2000). Extending the capacity of multiple access channels. IEEE Communications Magazine, 38, 74–82.CrossRef
24.
go back to reference Bopping, S. & Shea, J.M. (2006), “Superposition coding in the downlink of CDMA celluar systems,” In Proceedings IEEE WCNC’06, 4, 1978–1983. Bopping, S. & Shea, J.M. (2006), “Superposition coding in the downlink of CDMA celluar systems,” In Proceedings IEEE WCNC’06, 4, 1978–1983.
25.
go back to reference Yang, L. L. (2006). MIMO-assisted space-code-division multiple-access: linear detectors and performance over multipath fading channels. IEEE Journal on Selected Areas in Communications, 24(1), 121–131.MathSciNetCrossRef Yang, L. L. (2006). MIMO-assisted space-code-division multiple-access: linear detectors and performance over multipath fading channels. IEEE Journal on Selected Areas in Communications, 24(1), 121–131.MathSciNetCrossRef
26.
go back to reference Ali, F., & Shakya, I. (2010). Collaborative spreading for the downlink of overloaded CDMA. Wireless Communcations and Mobile Computing, 10(3), 383–393. Ali, F., & Shakya, I. (2010). Collaborative spreading for the downlink of overloaded CDMA. Wireless Communcations and Mobile Computing, 10(3), 383–393.
27.
go back to reference Peters, S., & Heath, R., Jr. (2012). User partitioning for less overhead in MIMO interference channels. IEEE Transactions Wireless Communication, 11(2), 592–603.CrossRef Peters, S., & Heath, R., Jr. (2012). User partitioning for less overhead in MIMO interference channels. IEEE Transactions Wireless Communication, 11(2), 592–603.CrossRef
28.
go back to reference Tse, D., & Viswanath, P. (2005). Fundamentals of wireless communication. Cambridge: Cambridge Univ Press.CrossRefMATH Tse, D., & Viswanath, P. (2005). Fundamentals of wireless communication. Cambridge: Cambridge Univ Press.CrossRefMATH
29.
go back to reference Proakis, J. G. (2001). Digital communications (4th ed.). New York: McGraw-Hill.MATH Proakis, J. G. (2001). Digital communications (4th ed.). New York: McGraw-Hill.MATH
30.
go back to reference Keshavarz, H., Xie, L.-L., & Mazumdar, R. (2009). User capacity scaling laws for fading multiple-access channels. IEEE Transactions on Wireless Communications, 8(9), 4498–4507.CrossRef Keshavarz, H., Xie, L.-L., & Mazumdar, R. (2009). User capacity scaling laws for fading multiple-access channels. IEEE Transactions on Wireless Communications, 8(9), 4498–4507.CrossRef
31.
go back to reference Al-Hussaibi, W., & Ali, F. (2012). Generation of correlated Rayleigh fading channels for accurate simulation of promising wireless communication systems. Simulation Modelling Practice and Theory, 25(4), 56–72.CrossRef Al-Hussaibi, W., & Ali, F. (2012). Generation of correlated Rayleigh fading channels for accurate simulation of promising wireless communication systems. Simulation Modelling Practice and Theory, 25(4), 56–72.CrossRef
32.
go back to reference Al-Imari M., Xiao P., Imran M. A. & Tafazolli R, (2014) “Uplink non-orthogonal multiple access for 5G wireless networks,” In Proceedings 11th IEEE ISWCS, pp. 781–785. Al-Imari M., Xiao P., Imran M. A. & Tafazolli R, (2014) “Uplink non-orthogonal multiple access for 5G wireless networks,” In Proceedings 11th IEEE ISWCS, pp. 781–785.
33.
go back to reference Tillo, T., Baccaglini, E., & Olmo, G. (2011). Unequal Protection of video data according to slice relevance. IEEE Transactions on Image Processing, 20(6), 1572–1582.MathSciNetCrossRefMATH Tillo, T., Baccaglini, E., & Olmo, G. (2011). Unequal Protection of video data according to slice relevance. IEEE Transactions on Image Processing, 20(6), 1572–1582.MathSciNetCrossRefMATH
Metadata
Title
Extending the user capacity of MU-MIMO systems with low detection complexity and receive diversity
Authors
Walid A. Al-Hussaibi
Falah H. Ali
Publication date
17-02-2017
Publisher
Springer US
Published in
Wireless Networks / Issue 6/2018
Print ISSN: 1022-0038
Electronic ISSN: 1572-8196
DOI
https://doi.org/10.1007/s11276-017-1467-4

Other articles of this Issue 6/2018

Wireless Networks 6/2018 Go to the issue