Skip to main content
Top
Published in: Neural Computing and Applications 18/2020

29-08-2019 | Extreme Learning Machine and Deep Learning Networks

Extreme-learning-machine-based FNTSM control strategy for electronic throttle

Authors: Youhao Hu, Hai Wang, Zhenwei Cao, Jinchuan Zheng, Zhaowu Ping, Long Chen, Xiaozheng Jin

Published in: Neural Computing and Applications | Issue 18/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

A novel extreme-learning-machine-based robust control scheme for automotive electronic throttle systems with uncertain dynamics is presented in this paper. It is shown that the well-known extreme learning machine (ELM) is used to estimate the upper bound of the lumped uncertainty while a fast nonsingular terminal sliding mode feedback controller is designed to achieve global stability and finite-time convergence for the closed-loop system. Although the ELM used in this paper has the same structure as the one in the conventional least-square-based ELM used for pattern classifications, i.e., the input weights are randomly chosen, the ELM adopted in the closed-loop control system is designed to achieve global control purpose. The output weights of the ELM will be adaptively adjusted in Lyapunov sense from the perspective of global stability of the closed-loop system, rather than local optimization in conventional ELM. The proposed control can thus not only realize the finite-time error convergence but also needs no prior knowledge of lumped uncertainty. Simulation results are demonstrated to verify the excellent tracking performance of the proposed control in comparison with other existing control methods.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Deur J, Pavković D, Perić N, Jansz M (2002) Analysis and optimization of an electronic throttle for linear operating modes. In: 10th International power electronics and motion control conference (EPE-PEMC 2002) Deur J, Pavković D, Perić N, Jansz M (2002) Analysis and optimization of an electronic throttle for linear operating modes. In: 10th International power electronics and motion control conference (EPE-PEMC 2002)
2.
go back to reference Deur J, Pavković D, Perić N et al (2004) An electronic throttle control strategy including compensation of friction and limp-home effects. IEEE Trans Ind Appl 40:821–834CrossRef Deur J, Pavković D, Perić N et al (2004) An electronic throttle control strategy including compensation of friction and limp-home effects. IEEE Trans Ind Appl 40:821–834CrossRef
3.
go back to reference Zhang S, Yang JJ, Zhu GG (2015) LPV modeling and mixed constrained H2/H∞ control of an electronic throttle. IEEE/ASME Trans Mechatron 20:2120–2132CrossRef Zhang S, Yang JJ, Zhu GG (2015) LPV modeling and mixed constrained H2/H control of an electronic throttle. IEEE/ASME Trans Mechatron 20:2120–2132CrossRef
4.
go back to reference Vašak M, Baotić M, Morari M et al (2006) Constrained optimal control of an electronic throttle. Int J Control 79:465–478MathSciNetCrossRef Vašak M, Baotić M, Morari M et al (2006) Constrained optimal control of an electronic throttle. Int J Control 79:465–478MathSciNetCrossRef
5.
go back to reference Vašak M, Baotić M, Petrović I, Perić N (2007) Hybrid theory-based time-optimal control of an electronic throttle. IEEE Trans Ind Electron 54:1483–1494CrossRef Vašak M, Baotić M, Petrović I, Perić N (2007) Hybrid theory-based time-optimal control of an electronic throttle. IEEE Trans Ind Electron 54:1483–1494CrossRef
6.
go back to reference Kim D, Peng H, Bai S, Maguire JM (2007) Control of integrated powertrain with electronic throttle and automatic transmission. IEEE Trans Control Syst Technol 15:474–482CrossRef Kim D, Peng H, Bai S, Maguire JM (2007) Control of integrated powertrain with electronic throttle and automatic transmission. IEEE Trans Control Syst Technol 15:474–482CrossRef
7.
go back to reference Pavković D, Deur J, Jansz M, Perić N (2006) Adaptive control of automotive electronic throttle. Control Eng Pract 14:121–136CrossRef Pavković D, Deur J, Jansz M, Perić N (2006) Adaptive control of automotive electronic throttle. Control Eng Pract 14:121–136CrossRef
8.
go back to reference Mercorelli P (2009) Robust feedback linearization using an adaptive PD regulator for a sensorless control of a throttle valve. Mechatronics 19:1334–1345CrossRef Mercorelli P (2009) Robust feedback linearization using an adaptive PD regulator for a sensorless control of a throttle valve. Mechatronics 19:1334–1345CrossRef
9.
go back to reference Alt B, Blath JP, Svaricek F, Schultalbers M (2010) Self-tuning control design strategy for an electronic throttle with experimental robustness analysis. In: American control conference, pp 6127–6132 Alt B, Blath JP, Svaricek F, Schultalbers M (2010) Self-tuning control design strategy for an electronic throttle with experimental robustness analysis. In: American control conference, pp 6127–6132
10.
go back to reference Jiao X, Zhang J, Shen T (2014) An adaptive servo control strategy for automotive electronic throttle and experimental validation. IEEE Trans Ind Electron 61:6275–6284CrossRef Jiao X, Zhang J, Shen T (2014) An adaptive servo control strategy for automotive electronic throttle and experimental validation. IEEE Trans Ind Electron 61:6275–6284CrossRef
11.
go back to reference Corno M, Tanelli M, Savaresi SM, Fabbri L (2011) Design and validation of a gain-scheduled controller for the electronic throttle body in ride-by-wire racing motorcycles. IEEE Trans Control Syst Technol 19:18–30CrossRef Corno M, Tanelli M, Savaresi SM, Fabbri L (2011) Design and validation of a gain-scheduled controller for the electronic throttle body in ride-by-wire racing motorcycles. IEEE Trans Control Syst Technol 19:18–30CrossRef
12.
go back to reference di Bernardo M, di Gaeta A, Montanaro U, Santini S (2010) Synthesis and experimental validation of the novel LQ-NEMCSI adaptive strategy on an electronic throttle valve. IEEE Trans Control Syst Technol 18:1325–1337 di Bernardo M, di Gaeta A, Montanaro U, Santini S (2010) Synthesis and experimental validation of the novel LQ-NEMCSI adaptive strategy on an electronic throttle valve. IEEE Trans Control Syst Technol 18:1325–1337
13.
go back to reference Montanaro U, di Gaeta A, Giglio V (2014) Robust discrete-time MRAC with minimal controller synthesis of an electronic throttle body. IEEE/ASME Trans Mechatron 19:524–537CrossRef Montanaro U, di Gaeta A, Giglio V (2014) Robust discrete-time MRAC with minimal controller synthesis of an electronic throttle body. IEEE/ASME Trans Mechatron 19:524–537CrossRef
14.
go back to reference Dagci OH, Pan Y, Ozguner U (2002) Sliding mode control of electronic throttle valve. In: American control conference, pp 1996–2001 Dagci OH, Pan Y, Ozguner U (2002) Sliding mode control of electronic throttle valve. In: American control conference, pp 1996–2001
15.
go back to reference Wang H, Liu L, He P et al (2016) Robust adaptive position control of automotive electronic throttle valve using PID-type sliding mode technique. Nonlinear Dyn 85:1331–1344CrossRef Wang H, Liu L, He P et al (2016) Robust adaptive position control of automotive electronic throttle valve using PID-type sliding mode technique. Nonlinear Dyn 85:1331–1344CrossRef
16.
go back to reference Wang H, Li Z, Jin X et al (2018) Adaptive integral terminal sliding mode control for automobile electronic throttle via an uncertainty observer and experimental validation. IEEE Trans Veh Technol 67:8129–8143CrossRef Wang H, Li Z, Jin X et al (2018) Adaptive integral terminal sliding mode control for automobile electronic throttle via an uncertainty observer and experimental validation. IEEE Trans Veh Technol 67:8129–8143CrossRef
17.
go back to reference Wang H, Shi L, Man Z et al (2018) Continuous fast nonsingular terminal sliding mode control of automotive electronic throttle systems using finite-time exact observer. IEEE Trans Ind Electron 65:7160–7172CrossRef Wang H, Shi L, Man Z et al (2018) Continuous fast nonsingular terminal sliding mode control of automotive electronic throttle systems using finite-time exact observer. IEEE Trans Ind Electron 65:7160–7172CrossRef
18.
go back to reference Sun Z, Zheng J, Man Z, Wang H (2016) Robust control of a vehicle steer-by-wire system using adaptive sliding mode. IEEE Trans Ind Electron 63:2251–2262 Sun Z, Zheng J, Man Z, Wang H (2016) Robust control of a vehicle steer-by-wire system using adaptive sliding mode. IEEE Trans Ind Electron 63:2251–2262
19.
go back to reference Sun Z, Zheng J, Man Z et al (2019) Nested adaptive super-twisting sliding mode control design for a vehicle steer-by-wire system. Mech Syst Signal Process 122:658–672CrossRef Sun Z, Zheng J, Man Z et al (2019) Nested adaptive super-twisting sliding mode control design for a vehicle steer-by-wire system. Mech Syst Signal Process 122:658–672CrossRef
20.
go back to reference Xiaofang Y, Yaonan W, Wei S, Lianghong W (2010) RBF networks-based adaptive inverse model control system for electronic throttle. IEEE Trans Control Syst Technol 18:750–756CrossRef Xiaofang Y, Yaonan W, Wei S, Lianghong W (2010) RBF networks-based adaptive inverse model control system for electronic throttle. IEEE Trans Control Syst Technol 18:750–756CrossRef
21.
go back to reference Eski İ, Yıldırım Ş (2017) Neural network-based fuzzy inference system for speed control of heavy duty vehicles with electronic throttle control system. Neural Comput Appl 28:907–916CrossRef Eski İ, Yıldırım Ş (2017) Neural network-based fuzzy inference system for speed control of heavy duty vehicles with electronic throttle control system. Neural Comput Appl 28:907–916CrossRef
22.
go back to reference Huang G-B, Zhu Q-Y, Siew C-K (2006) Extreme learning machine: theory and applications. Neurocomputing 70:489–501CrossRef Huang G-B, Zhu Q-Y, Siew C-K (2006) Extreme learning machine: theory and applications. Neurocomputing 70:489–501CrossRef
23.
go back to reference Zhang Y, Fang Z, Li H (2015) Extreme learning machine assisted adaptive control of a quadrotor helicopter. Math Probl Eng 2015:1–12 Zhang Y, Fang Z, Li H (2015) Extreme learning machine assisted adaptive control of a quadrotor helicopter. Math Probl Eng 2015:1–12
24.
go back to reference Rong H-J, Zhao G-S (2013) Direct adaptive neural control of nonlinear systems with extreme learning machine. Neural Comput Appl 22:577–586CrossRef Rong H-J, Zhao G-S (2013) Direct adaptive neural control of nonlinear systems with extreme learning machine. Neural Comput Appl 22:577–586CrossRef
25.
go back to reference Xu B, Pan Y, Wang D, Sun F (2014) Discrete-time hypersonic flight control based on extreme learning machine. Neurocomputing 128:232–241CrossRef Xu B, Pan Y, Wang D, Sun F (2014) Discrete-time hypersonic flight control based on extreme learning machine. Neurocomputing 128:232–241CrossRef
26.
go back to reference Elkoteshy Y, Jiao LC, Chen W (2014) ELM-based adaptive backstepping neural control for a class of uncertain MIMO nonlinear systems with predefined tracking accuracy. Int J Control 87:1047–1060MathSciNetCrossRef Elkoteshy Y, Jiao LC, Chen W (2014) ELM-based adaptive backstepping neural control for a class of uncertain MIMO nonlinear systems with predefined tracking accuracy. Int J Control 87:1047–1060MathSciNetCrossRef
27.
go back to reference Yang L, Yang J (2011) Nonsingular fast terminal sliding-mode control for nonlinear dynamical systems. Int J Robust Nonlinear Control 21:1865–1879MathSciNetCrossRef Yang L, Yang J (2011) Nonsingular fast terminal sliding-mode control for nonlinear dynamical systems. Int J Robust Nonlinear Control 21:1865–1879MathSciNetCrossRef
28.
go back to reference Khalil HK (2002) Nonlinear systems. Prentice-Hall, New YorkMATH Khalil HK (2002) Nonlinear systems. Prentice-Hall, New YorkMATH
29.
go back to reference Feng Y, Yu X, Man Z (2002) Non-singular terminal sliding mode control of rigid manipulators. Automatica 38:2159–2167MathSciNetCrossRef Feng Y, Yu X, Man Z (2002) Non-singular terminal sliding mode control of rigid manipulators. Automatica 38:2159–2167MathSciNetCrossRef
Metadata
Title
Extreme-learning-machine-based FNTSM control strategy for electronic throttle
Authors
Youhao Hu
Hai Wang
Zhenwei Cao
Jinchuan Zheng
Zhaowu Ping
Long Chen
Xiaozheng Jin
Publication date
29-08-2019
Publisher
Springer London
Published in
Neural Computing and Applications / Issue 18/2020
Print ISSN: 0941-0643
Electronic ISSN: 1433-3058
DOI
https://doi.org/10.1007/s00521-019-04446-9

Other articles of this Issue 18/2020

Neural Computing and Applications 18/2020 Go to the issue

Extreme Learning Machine and Deep Learning Networks

Hierarchical attentive Siamese network for real-time visual tracking

Deep Learning Approaches for RealTime Image Super Resolution (DLRSR)

Perceptual image quality using dual generative adversarial network

Extreme Learning Machine and Deep Learning Networks

Gait recognition using multichannel convolution neural networks

Premium Partner