Skip to main content
Top
Published in: Journal of Materials Science: Materials in Electronics 8/2021

06-04-2021

Fabrication of quantum dot-sensitized solar cells with multilayer TiO2/PbS(X)/CdS/CdSe/ZnS/SiO2 photoanode and optimization of the PbS nanocrystalline layer

Authors: Mahboubeh Sotodeian, Maziar Marandi

Published in: Journal of Materials Science: Materials in Electronics | Issue 8/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this work, two multilayer photoanode structures of TiO2/PbS(X)/CdS/ZnS/SiO2 and TiO2/PbS(X)/CdS/CdSe/ZnS/SiO2 were fabricated and applied in quantum dot-sensitized solar cells (QDSCs). Then, the effect of PbS QDs layer on the photovoltaic performance of corresponding cells was investigated. The sensitization was carried out by PbS and CdS QDs layers deposited on TiO2 scaffold through successive ionic layer adsorption and reaction (SILAR) method. The CdSe QDs film was also formed by a fast, modified chemical bath deposition (CBD) approach. Two passivating ZnS and SiO2 layers were finally deposited by SILAR and CBD methods, respectively. It was shown that the reference cell with TiO2/CdS/ZnS/SiO2 photoanode demonstrated a power conversion efficiency (PCE) of 3.0%. This efficiency was increased to 4.0% for the QDSC with TiO2/PbS(2)/CdS/ZnS/SiO2 photoelectrode. This was due to the co-absorption of incident light by low-bandgap PbS nanocrystalline film and also the CdS QDs layer and well transport of the charge carriers. For the CdSe included QDSCs, the PbS-free reference cell represented a PCE of 4.1%. This efficiency was improved to 5.1% for the optimized cell with TiO2/PbS(2)/CdS/CdSe/ZnS/SiO2 photoelectrode. The maximized efficiency was enhanced about 25% and 70% compared to the PbS-free reference cells with and without the CdSe QDs layer.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference I. Hod, A. Zaban, Materials and interfaces in quantum dot sensitized solar cells: challenges, advances and prospects. Langmuir 30, 7264–7273 (2014)CrossRef I. Hod, A. Zaban, Materials and interfaces in quantum dot sensitized solar cells: challenges, advances and prospects. Langmuir 30, 7264–7273 (2014)CrossRef
2.
go back to reference D. Sharma, R. Jha, S. Kumar, Quantum dot sensitized solar cell: recent advances and future perspectives in photoanode. Sol. Energy Mater. Sol. Cells 155, 294–322 (2016)CrossRef D. Sharma, R. Jha, S. Kumar, Quantum dot sensitized solar cell: recent advances and future perspectives in photoanode. Sol. Energy Mater. Sol. Cells 155, 294–322 (2016)CrossRef
3.
go back to reference K.A. Sablon, J.W. Little, K.A. Olver, Z.M. Wang, Effects of AlGaAs energy barriers on InAs/GaAs quantum dot solar cells. J. Appl. Phys. 108, 074305–074309 (2010)CrossRef K.A. Sablon, J.W. Little, K.A. Olver, Z.M. Wang, Effects of AlGaAs energy barriers on InAs/GaAs quantum dot solar cells. J. Appl. Phys. 108, 074305–074309 (2010)CrossRef
4.
go back to reference M.A. Abbas, M.A. Basit, T.J. Park, J.H. Bang, Enhanced performance of PbS sensitized solar cells via controlled successive ionic-layer adsorption and reaction. Phys. Chem. Chem. Phys. 17, 9752–9760 (2015)CrossRef M.A. Abbas, M.A. Basit, T.J. Park, J.H. Bang, Enhanced performance of PbS sensitized solar cells via controlled successive ionic-layer adsorption and reaction. Phys. Chem. Chem. Phys. 17, 9752–9760 (2015)CrossRef
5.
go back to reference S. Ruhle, M. Shalom, A. Zaban, Quantum-dot-sensitized solar cells. ChemPhysChem 11, 2290–2304 (2010)CrossRef S. Ruhle, M. Shalom, A. Zaban, Quantum-dot-sensitized solar cells. ChemPhysChem 11, 2290–2304 (2010)CrossRef
6.
go back to reference C.B. Murray, D.J. Norris, M.G. Bawendi, Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites. J. Am. Chem. Soc. 115, 8706–8715 (1993)CrossRef C.B. Murray, D.J. Norris, M.G. Bawendi, Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites. J. Am. Chem. Soc. 115, 8706–8715 (1993)CrossRef
7.
go back to reference W. Youa, L. Guo, X. Peng, Experimental determination of the extinction coefficient of CdTe, CdSe, and CdS nanocrystals. Chem. Mater. 15, 2854–2860 (2003)CrossRef W. Youa, L. Guo, X. Peng, Experimental determination of the extinction coefficient of CdTe, CdSe, and CdS nanocrystals. Chem. Mater. 15, 2854–2860 (2003)CrossRef
8.
go back to reference A.S. Hassanien, A.A. Akl, Effect of Se addition on optical and electrical properties of chalcogenide CdSSe thin films. Superlattices Microstruct. 89, 153–169 (2016)CrossRef A.S. Hassanien, A.A. Akl, Effect of Se addition on optical and electrical properties of chalcogenide CdSSe thin films. Superlattices Microstruct. 89, 153–169 (2016)CrossRef
9.
go back to reference A.S. Hassanien, K.A. Aly, A.A. Akl, Study of optical properties of thermally evaporated ZnSe thin films annealed at different pulsed laser powers. J. Alloys Compd. 685, 733–742 (2016)CrossRef A.S. Hassanien, K.A. Aly, A.A. Akl, Study of optical properties of thermally evaporated ZnSe thin films annealed at different pulsed laser powers. J. Alloys Compd. 685, 733–742 (2016)CrossRef
10.
go back to reference Y.J. Shen, Y.L. Lee, Assembly of CdS quantum dots on to mesoscopic TiO2 films for quantum dot-sensitized solar cell application. Nanotechnology 19, 5602–5610 (2008)CrossRef Y.J. Shen, Y.L. Lee, Assembly of CdS quantum dots on to mesoscopic TiO2 films for quantum dot-sensitized solar cell application. Nanotechnology 19, 5602–5610 (2008)CrossRef
11.
go back to reference T. Takagahara, K. Takeda, Theory of the quantum confinement effect on excitons in quantum dots of indirect-gap materials. APS 46, 1578–1589 (1992) T. Takagahara, K. Takeda, Theory of the quantum confinement effect on excitons in quantum dots of indirect-gap materials. APS 46, 1578–1589 (1992)
12.
go back to reference J. Nozik, Nanoscience and nanostructures for photovoltaics and solar fuels. Nano Lett. 10, 2735–2741 (2010)CrossRef J. Nozik, Nanoscience and nanostructures for photovoltaics and solar fuels. Nano Lett. 10, 2735–2741 (2010)CrossRef
13.
go back to reference J.B. Sambur, T. Novet, B.A. Parkinson, Multiple exciton collection in a sensitized photovoltaic system. Science 330, 63–66 (2010)CrossRef J.B. Sambur, T. Novet, B.A. Parkinson, Multiple exciton collection in a sensitized photovoltaic system. Science 330, 63–66 (2010)CrossRef
14.
go back to reference P.V. Kamat, Quantum dot solar cells semiconductor nanocrystals as light harvesters. J. Phys. Chem. C 112, 18737–18753 (2008)CrossRef P.V. Kamat, Quantum dot solar cells semiconductor nanocrystals as light harvesters. J. Phys. Chem. C 112, 18737–18753 (2008)CrossRef
15.
go back to reference X. Song, M. Wang, J. Deng, Y. Ju, T. Xing, J. Ding, X. Yang, J. Shao, ZnO/PbS core/shell nanorod arrays as efficient counter electrode for quantum dot-sensitized solar cells. J. Power Sources 269, 661–670 (2014)CrossRef X. Song, M. Wang, J. Deng, Y. Ju, T. Xing, J. Ding, X. Yang, J. Shao, ZnO/PbS core/shell nanorod arrays as efficient counter electrode for quantum dot-sensitized solar cells. J. Power Sources 269, 661–670 (2014)CrossRef
16.
go back to reference A.S. Hassanien, A.A. Akl, A.H. Sáaedi, Synthesis, crystallography, microstructure, crystal defects, and morphology of BixZn1–xO nanoparticles prepared by sol–gel technique. CrystEngComm 20, 1716–1730 (2018)CrossRef A.S. Hassanien, A.A. Akl, A.H. Sáaedi, Synthesis, crystallography, microstructure, crystal defects, and morphology of BixZn1–xO nanoparticles prepared by sol–gel technique. CrystEngComm 20, 1716–1730 (2018)CrossRef
17.
go back to reference A.S. Hassanien, A.A. Akl, Optical characteristics of iron oxide thin films prepared by spray pyrolysis technique at different substrate. Appl. Phys. A 124, 752–754 (2018)CrossRef A.S. Hassanien, A.A. Akl, Optical characteristics of iron oxide thin films prepared by spray pyrolysis technique at different substrate. Appl. Phys. A 124, 752–754 (2018)CrossRef
18.
go back to reference S. Karthick, K. Hemalatha, Improved photovoltaic performance of CdSe/CdS/PbS quantum dot sensitized ZnO nanorod array solar cell. J. Power Sources 248, 439–446 (2014)CrossRef S. Karthick, K. Hemalatha, Improved photovoltaic performance of CdSe/CdS/PbS quantum dot sensitized ZnO nanorod array solar cell. J. Power Sources 248, 439–446 (2014)CrossRef
19.
go back to reference T. Shen, J. Tian, C. Fei, Y. Wang, T. Pullerits, Investigation of the role of Mn dopant in CdS quantum dot sensitized solar cell. Electrochim. Acta 191, 62–69 (2016)CrossRef T. Shen, J. Tian, C. Fei, Y. Wang, T. Pullerits, Investigation of the role of Mn dopant in CdS quantum dot sensitized solar cell. Electrochim. Acta 191, 62–69 (2016)CrossRef
20.
go back to reference R.D. Harris, S. Bettis Homan, M. Kodaimati, B. Nepomnyashchii, Electronic processes within quantum dot-molecule complexes. Chem. Rev. 116, 12865–12919 (2016)CrossRef R.D. Harris, S. Bettis Homan, M. Kodaimati, B. Nepomnyashchii, Electronic processes within quantum dot-molecule complexes. Chem. Rev. 116, 12865–12919 (2016)CrossRef
21.
go back to reference J. Tian, G. Cao, Semiconductor quantum dot-sensitized solar cells. Nano Rev. 4, 22578–22602 (2013)CrossRef J. Tian, G. Cao, Semiconductor quantum dot-sensitized solar cells. Nano Rev. 4, 22578–22602 (2013)CrossRef
22.
go back to reference V. Murugadoss, S. Nemala, Cu2ZnSnSe4 QDs sensitized electrospun porous TiO2 nanofibers as photoanode for high performance QDSC. Sol. Energy 171, 571–579 (2018)CrossRef V. Murugadoss, S. Nemala, Cu2ZnSnSe4 QDs sensitized electrospun porous TiO2 nanofibers as photoanode for high performance QDSC. Sol. Energy 171, 571–579 (2018)CrossRef
23.
go back to reference R.K. Chava, M. Kang, Ag2S quantum dot sensitized zinc oxide photoanodes for environment friendly photovoltaic devices. Mater. Lett. 199, 188–191 (2017)CrossRef R.K. Chava, M. Kang, Ag2S quantum dot sensitized zinc oxide photoanodes for environment friendly photovoltaic devices. Mater. Lett. 199, 188–191 (2017)CrossRef
24.
go back to reference S. Pan, R. Zhou, H. Niu, L. Wan, B. Huang, Y. Huang, Hierarchical SnO2 hollow sub-microspheres for panchromatic PbS quantum dot-sensitized solar cells. J. Alloys Compd. 709, 187–196 (2017)CrossRef S. Pan, R. Zhou, H. Niu, L. Wan, B. Huang, Y. Huang, Hierarchical SnO2 hollow sub-microspheres for panchromatic PbS quantum dot-sensitized solar cells. J. Alloys Compd. 709, 187–196 (2017)CrossRef
25.
go back to reference M.V. Malashchonak, E.A. Streltsov, G.A. Ragoisha, M.B. Dergacheva, Evaluation of electroactive surface area of CdSe nanoparticles on wide bandgap oxides (TiO2, ZnO) by cadmium under potential deposition. Electrochem. Commun. 72, 176–180 (2016)CrossRef M.V. Malashchonak, E.A. Streltsov, G.A. Ragoisha, M.B. Dergacheva, Evaluation of electroactive surface area of CdSe nanoparticles on wide bandgap oxides (TiO2, ZnO) by cadmium under potential deposition. Electrochem. Commun. 72, 176–180 (2016)CrossRef
26.
go back to reference X. Zhao, M. Yang, H. Yang, Fabrication of Poss-coated CdTe quantum dots sensitized solar cells with enhanced photovoltaic properties. J. Alloys Compd. 726, 593–600 (2017)CrossRef X. Zhao, M. Yang, H. Yang, Fabrication of Poss-coated CdTe quantum dots sensitized solar cells with enhanced photovoltaic properties. J. Alloys Compd. 726, 593–600 (2017)CrossRef
27.
go back to reference H. Wang, S. Yang, Y. Wang, J. Xu, Y. Huang, S. Muhammad, Y. Jiang, Y. Tang, B. Zou, Influence of post-synthesis annealing on PbS quantum dot solar cells. Org. Electron. 42, 309–315 (2017)CrossRef H. Wang, S. Yang, Y. Wang, J. Xu, Y. Huang, S. Muhammad, Y. Jiang, Y. Tang, B. Zou, Influence of post-synthesis annealing on PbS quantum dot solar cells. Org. Electron. 42, 309–315 (2017)CrossRef
28.
go back to reference X. Jin, C. Chang, Z. Chen, Graphene tailored gel electrolytes for quasi-solid-state quantum dot-sensitized solar cells. Electrochim. Acta 283, 597–602 (2018)CrossRef X. Jin, C. Chang, Z. Chen, Graphene tailored gel electrolytes for quasi-solid-state quantum dot-sensitized solar cells. Electrochim. Acta 283, 597–602 (2018)CrossRef
29.
go back to reference H. Seo, Y. Wang, G. Uchida, K. Kamataki, N. Itagaki, K. Koga, M. Shiratani, Analysis on the effect of polysulfide electrolyte composition for higher performance of Si quantum dot-sensitized solar cells. Electrochimica 95, 43–47 (2013)CrossRef H. Seo, Y. Wang, G. Uchida, K. Kamataki, N. Itagaki, K. Koga, M. Shiratani, Analysis on the effect of polysulfide electrolyte composition for higher performance of Si quantum dot-sensitized solar cells. Electrochimica 95, 43–47 (2013)CrossRef
30.
go back to reference P.R. Nikam, P.K. Baviskar, S. Majumder, J.V. Sali, B.R. Sankapal, SILAR controlled CdSe nanoparticles sensitized ZnO nanorods photoanode for solar cell application: electrolyte effect. J. Colloid Interface Sci. 524, 148–155 (2018)CrossRef P.R. Nikam, P.K. Baviskar, S. Majumder, J.V. Sali, B.R. Sankapal, SILAR controlled CdSe nanoparticles sensitized ZnO nanorods photoanode for solar cell application: electrolyte effect. J. Colloid Interface Sci. 524, 148–155 (2018)CrossRef
31.
go back to reference H. Kim, I. Hwang, K. Yong, highly durable and efficient quantum dotsensitized solar cells based on oligomer gel electrolytes. ACS Appl. Mater. Interfaces 6, 11245–11253 (2014)CrossRef H. Kim, I. Hwang, K. Yong, highly durable and efficient quantum dotsensitized solar cells based on oligomer gel electrolytes. ACS Appl. Mater. Interfaces 6, 11245–11253 (2014)CrossRef
32.
go back to reference A. Manjceevan, J. Bandara, Robust surface passivation of trap sites in PbS qdots by controlling the thickness of CdS layers in PbS/CdS quantum dot solar cells. Sol. Energy Mater. Sol. Cells 147, 157–163 (2016)CrossRef A. Manjceevan, J. Bandara, Robust surface passivation of trap sites in PbS qdots by controlling the thickness of CdS layers in PbS/CdS quantum dot solar cells. Sol. Energy Mater. Sol. Cells 147, 157–163 (2016)CrossRef
33.
go back to reference L. Zhao, W. Xue, W. Fang, Y. Wang, N-doped carbon Cu nanocomposites as counter electrode catalysts in quantum dot-sensitized solar cells. Sol. Energy 169, 505–511 (2018)CrossRef L. Zhao, W. Xue, W. Fang, Y. Wang, N-doped carbon Cu nanocomposites as counter electrode catalysts in quantum dot-sensitized solar cells. Sol. Energy 169, 505–511 (2018)CrossRef
34.
go back to reference M. Samadpour, S. Arabzade, Graphene/CuS/PbS nanocomposite as an effective counter electrode for quantum dot sensitized solar cells. J. Alloys Compd. 696, 369–375 (2017)CrossRef M. Samadpour, S. Arabzade, Graphene/CuS/PbS nanocomposite as an effective counter electrode for quantum dot sensitized solar cells. J. Alloys Compd. 696, 369–375 (2017)CrossRef
35.
go back to reference H. Guo, R. Zhou, Y. Huang, W. Gan, Electrodeposited CuInSe2 counter electrodes for efficient and stable quantum dot-sensitized solar cells. Ceram. Int. 44, 16092–16098 (2018)CrossRef H. Guo, R. Zhou, Y. Huang, W. Gan, Electrodeposited CuInSe2 counter electrodes for efficient and stable quantum dot-sensitized solar cells. Ceram. Int. 44, 16092–16098 (2018)CrossRef
36.
go back to reference C. Gopi, M. Venkata, Y. Lee, H. Kim, ZnO nanorods decorated with metal sulfides as stable and efficient counter-electrode materials for high-efficiency quantum dot-sensitized solar cells. J. Mater. Chem. 4, 8161–8171 (2016)CrossRef C. Gopi, M. Venkata, Y. Lee, H. Kim, ZnO nanorods decorated with metal sulfides as stable and efficient counter-electrode materials for high-efficiency quantum dot-sensitized solar cells. J. Mater. Chem. 4, 8161–8171 (2016)CrossRef
37.
go back to reference A. Manjceevan, J. Bandara, Optimization of performance and stability of quantum dot sensitized solar cells by manipulating the electrical properties of different metal sulfide counter electrodes. Electrochim. Acta 235, 390–398 (2017)CrossRef A. Manjceevan, J. Bandara, Optimization of performance and stability of quantum dot sensitized solar cells by manipulating the electrical properties of different metal sulfide counter electrodes. Electrochim. Acta 235, 390–398 (2017)CrossRef
38.
go back to reference K. Surana, R. Mehra, B. Bhattacharya, Quantum dot solar cells with size tuned CdSe QDs exhibiting 1.51 V. Mater. Today 5, 9108–9113 (2018) K. Surana, R. Mehra, B. Bhattacharya, Quantum dot solar cells with size tuned CdSe QDs exhibiting 1.51 V. Mater. Today 5, 9108–9113 (2018)
39.
go back to reference A. Kongkanand, K. Tvrdy, K. Takechi, M. Kuno, P. Kamat, Quantum dot solar cells. Tuning photoresponse through size and shape control of CdSe–TiO2 architecture. J. Am. Chem. Soc. 130, 4007–4015 (2008)CrossRef A. Kongkanand, K. Tvrdy, K. Takechi, M. Kuno, P. Kamat, Quantum dot solar cells. Tuning photoresponse through size and shape control of CdSe–TiO2 architecture. J. Am. Chem. Soc. 130, 4007–4015 (2008)CrossRef
40.
go back to reference G. Wang, Q. Meng, Investigation on interfacial charge transfer process in CdSexTe1-x alloyed quantum dot sensitized solar cells. Electrochim. Acta 173, 156–163 (2015)CrossRef G. Wang, Q. Meng, Investigation on interfacial charge transfer process in CdSexTe1-x alloyed quantum dot sensitized solar cells. Electrochim. Acta 173, 156–163 (2015)CrossRef
41.
go back to reference F. Huang, J. Hou, H. Wang, H. Tang, Z. Liu, L. Zhang, Q. Zhang, S. Peng, J. Liu, Impacts of surface or interface chemistry of ZnSe passivation layer on the performance of CdS/CdSe quantum dot sensitized solar cells. Nano Energy 32, 433–440 (2017)CrossRef F. Huang, J. Hou, H. Wang, H. Tang, Z. Liu, L. Zhang, Q. Zhang, S. Peng, J. Liu, Impacts of surface or interface chemistry of ZnSe passivation layer on the performance of CdS/CdSe quantum dot sensitized solar cells. Nano Energy 32, 433–440 (2017)CrossRef
42.
go back to reference R. Evangelista, S. Makuta, S. Yonezu, J. Andrews, Y. Tachibana, Semiconductor quantum dot sensitized solar cells based on ferricyanide/ferrocyanide redox electrolyte reaching an open circuit photovoltage of 0.8 V. ACS Appl. Mater. Interfaces 8, 13957–13965 (2016)CrossRef R. Evangelista, S. Makuta, S. Yonezu, J. Andrews, Y. Tachibana, Semiconductor quantum dot sensitized solar cells based on ferricyanide/ferrocyanide redox electrolyte reaching an open circuit photovoltage of 0.8 V. ACS Appl. Mater. Interfaces 8, 13957–13965 (2016)CrossRef
43.
go back to reference A. Badawy, A review on solar cells from Si-single crystals to porous materials and quantum dots. J. Adv. Res. 6, 123–132 (2013)CrossRef A. Badawy, A review on solar cells from Si-single crystals to porous materials and quantum dots. J. Adv. Res. 6, 123–132 (2013)CrossRef
44.
go back to reference K.J. Sun, Y. Jiang, X. Zhong, J.S. Hu, L.J. Wan, Three-dimensional nanostructured electrodes for efficient quantum- dot-sensitized solar cells. Nano Energy 12, 22–26 (2016) K.J. Sun, Y. Jiang, X. Zhong, J.S. Hu, L.J. Wan, Three-dimensional nanostructured electrodes for efficient quantum- dot-sensitized solar cells. Nano Energy 12, 22–26 (2016)
45.
go back to reference N. Mustakim, C. Ubani, S. Sepeai, N. Ludin, M. Teridi, M. Ibrahim, Quantum dots processed by SILAR for solar cell applications. Sol. Energy 163, 256–270 (2018)CrossRef N. Mustakim, C. Ubani, S. Sepeai, N. Ludin, M. Teridi, M. Ibrahim, Quantum dots processed by SILAR for solar cell applications. Sol. Energy 163, 256–270 (2018)CrossRef
46.
go back to reference H. Tung, Quantum dots solar cells based On CdS TiO2 photoanode. Int. J. Latest Res. Sci. Technol. 3, 15–18 (2014) H. Tung, Quantum dots solar cells based On CdS TiO2 photoanode. Int. J. Latest Res. Sci. Technol. 3, 15–18 (2014)
47.
go back to reference F. Huang, J. Hou, Q. Zhang, Y. Wang, R.C. Massé, S. Peng, H. Wang, J. Liu, G. Cao, Doubling the power conversion efficiency in CdS/CdSe quantum dot sensitized solar cells with a ZnSe passivation layer. Nano Energy 26, 114–122 (2016)CrossRef F. Huang, J. Hou, Q. Zhang, Y. Wang, R.C. Massé, S. Peng, H. Wang, J. Liu, G. Cao, Doubling the power conversion efficiency in CdS/CdSe quantum dot sensitized solar cells with a ZnSe passivation layer. Nano Energy 26, 114–122 (2016)CrossRef
48.
go back to reference Z. Zhengguo, Sh. Chengwu, J. Chen, G. Xiao, L. Long, Combination of short-length TiO2 nanorod arrays and compact PbS quantum-dot thin films for efficient solid-state quantum-dot-sensitized solar cells. Appl. Surf. Sci. 410, 8–13 (2017)CrossRef Z. Zhengguo, Sh. Chengwu, J. Chen, G. Xiao, L. Long, Combination of short-length TiO2 nanorod arrays and compact PbS quantum-dot thin films for efficient solid-state quantum-dot-sensitized solar cells. Appl. Surf. Sci. 410, 8–13 (2017)CrossRef
49.
go back to reference R. Mahfoudh, Y. Pellegrin, J. Stéphane, M. Boujtita, F. Odobel, Infra-red photoresponse of mesoscopic NiO-based solar cells sensitized with PbS quantum dot. Sci. Rep. 6(1), 1–7 (2016) R. Mahfoudh, Y. Pellegrin, J. Stéphane, M. Boujtita, F. Odobel, Infra-red photoresponse of mesoscopic NiO-based solar cells sensitized with PbS quantum dot. Sci. Rep. 6(1), 1–7 (2016)
50.
go back to reference L. Diguna, JSh. Qing, J. Kobayashi, T. Toyoda, High efficiency of CdSe quantum-dot-sensitized TiO2 inverse opal solar cells. Appl. Phys. Lett. 91(2), 3116–3123 (2007)CrossRef L. Diguna, JSh. Qing, J. Kobayashi, T. Toyoda, High efficiency of CdSe quantum-dot-sensitized TiO2 inverse opal solar cells. Appl. Phys. Lett. 91(2), 3116–3123 (2007)CrossRef
51.
go back to reference D. Zhonglin, P. Zhenxiao, F. Fabregat-Santiago, K. Zhao, L. Donghui, H. Zhang, Z. Yixin, X. Zhong, Yu. Jong-Sung, J. Bisquert, Carbon counter-electrode-based quantum-dot-sensitized solar cells with certified efficiency exceeding 11%. J Phys Chem Lett 7(16), 3103–3111 (2016)CrossRef D. Zhonglin, P. Zhenxiao, F. Fabregat-Santiago, K. Zhao, L. Donghui, H. Zhang, Z. Yixin, X. Zhong, Yu. Jong-Sung, J. Bisquert, Carbon counter-electrode-based quantum-dot-sensitized solar cells with certified efficiency exceeding 11%. J Phys Chem Lett 7(16), 3103–3111 (2016)CrossRef
52.
go back to reference L. Yuh-Lang, H. Bau-Ming, C. Huei-Ting, Highly efficient CdSe-sensitized TiO2 photoelectrode for quantum-dot-sensitized solar cell applications. Chem. Mater. 20(22), 6903–6905 (2008)CrossRef L. Yuh-Lang, H. Bau-Ming, C. Huei-Ting, Highly efficient CdSe-sensitized TiO2 photoelectrode for quantum-dot-sensitized solar cell applications. Chem. Mater. 20(22), 6903–6905 (2008)CrossRef
53.
go back to reference S. Pralay, K. Prashant, Mn-doped quantum dot sensitized solar cells: a strategy to boost efficiency over 5%. J. Am. Chem. Soc. 134(5), 2508–2511 (2012)CrossRef S. Pralay, K. Prashant, Mn-doped quantum dot sensitized solar cells: a strategy to boost efficiency over 5%. J. Am. Chem. Soc. 134(5), 2508–2511 (2012)CrossRef
54.
go back to reference Q. Zhang, G. Xiaozhi, X. Huang, H. Shuqing, L. Dongmei, L. Yanhong, Q. Shen, T. Toyoda, Highly efficient CdS/CdSe-sensitized solar cells controlled by the structural properties of compact porous TiO2 photoelectrodes. Phys. Chem. Chem. Phys. 13(10), 4659–4667 (2011)CrossRef Q. Zhang, G. Xiaozhi, X. Huang, H. Shuqing, L. Dongmei, L. Yanhong, Q. Shen, T. Toyoda, Highly efficient CdS/CdSe-sensitized solar cells controlled by the structural properties of compact porous TiO2 photoelectrodes. Phys. Chem. Chem. Phys. 13(10), 4659–4667 (2011)CrossRef
55.
go back to reference J. Wang, I. MoraSeró, P. Zhenxiao, K. Zhao, H. Zhang, Y. Feng, G. Yang, X. Zhong, J. Bisquert, Core/shell colloidal quantum dot exciplex states for the development of highly efficient quantum-dot-sensitized solar cells. J. Am. Chem. Soc. 135(42), 15913–15922 (2013)CrossRef J. Wang, I. MoraSeró, P. Zhenxiao, K. Zhao, H. Zhang, Y. Feng, G. Yang, X. Zhong, J. Bisquert, Core/shell colloidal quantum dot exciplex states for the development of highly efficient quantum-dot-sensitized solar cells. J. Am. Chem. Soc. 135(42), 15913–15922 (2013)CrossRef
56.
go back to reference L. YuhLang, L. YiSiou, Highly efficient quantum-dot-sensitized solar cell based on co-sensitization of CdS/CdSe. Adv. Funct. Mater. 19(4), 604–609 (2009)CrossRef L. YuhLang, L. YiSiou, Highly efficient quantum-dot-sensitized solar cell based on co-sensitization of CdS/CdSe. Adv. Funct. Mater. 19(4), 604–609 (2009)CrossRef
57.
go back to reference Y. Keyou, L. Zhang, J. Qiu, Q. Yongcai, Z. Zonglong, J. Wang, Sh. Yang, A quasi-quantum well sensitized solar cell with accelerated charge separation and collection. J. Am. Chem. Soc. 135(25), 9531–9539 (2013)CrossRef Y. Keyou, L. Zhang, J. Qiu, Q. Yongcai, Z. Zonglong, J. Wang, Sh. Yang, A quasi-quantum well sensitized solar cell with accelerated charge separation and collection. J. Am. Chem. Soc. 135(25), 9531–9539 (2013)CrossRef
58.
go back to reference P. Robert, S. Pelet, J. Krueger, M. Grätzel, U. Bach, Quantum dot sensitization of organic–inorganic hybrid solar cells. J. Phys. Chem. B 106(31), 7578–7580 (2002)CrossRef P. Robert, S. Pelet, J. Krueger, M. Grätzel, U. Bach, Quantum dot sensitization of organic–inorganic hybrid solar cells. J. Phys. Chem. B 106(31), 7578–7580 (2002)CrossRef
59.
go back to reference T. Liang, Y. Xiong, H. Liu, W. Shen, High performance PbS quantum dot sensitized solar cells via electric field assisted in situ chemical deposition on modulated TiO2 nanotube arrays. Nanoscale 6(2), 931–938 (2014)CrossRef T. Liang, Y. Xiong, H. Liu, W. Shen, High performance PbS quantum dot sensitized solar cells via electric field assisted in situ chemical deposition on modulated TiO2 nanotube arrays. Nanoscale 6(2), 931–938 (2014)CrossRef
60.
go back to reference J. Shuang, J. Wang, Q. Shen, L. Yan, X. Zhong, Surface engineering of PbS quantum dot sensitized solar cells with a conversion efficiency exceeding 7%. J. Mater. Chem. 19, 7214–7221 (2016) J. Shuang, J. Wang, Q. Shen, L. Yan, X. Zhong, Surface engineering of PbS quantum dot sensitized solar cells with a conversion efficiency exceeding 7%. J. Mater. Chem. 19, 7214–7221 (2016)
61.
go back to reference L. Jin, S. Yong, T. Kyu, S. Hee, Y. Kim, S. Hwang, K. Min Jae, S. Soohwan, H. Hyouksoo, P. Nam-Gyu, Quantum-dot-sensitized solar cell with unprecedentedly high photocurrent. Sci. Rep. 3, 1050–1060 (2013)CrossRef L. Jin, S. Yong, T. Kyu, S. Hee, Y. Kim, S. Hwang, K. Min Jae, S. Soohwan, H. Hyouksoo, P. Nam-Gyu, Quantum-dot-sensitized solar cell with unprecedentedly high photocurrent. Sci. Rep. 3, 1050–1060 (2013)CrossRef
62.
go back to reference M. Samadpour, P. Boix, G. Sixto, A. Iraji Zad, N. Taghavinia, I. Mora-Seró, J. Bisquert, Fluorine treatment of TiO2 for enhancing quantum dot sensitized solar cell performance. J. Phys. Chem. C 115(29), 14400–14407 (2011)CrossRef M. Samadpour, P. Boix, G. Sixto, A. Iraji Zad, N. Taghavinia, I. Mora-Seró, J. Bisquert, Fluorine treatment of TiO2 for enhancing quantum dot sensitized solar cell performance. J. Phys. Chem. C 115(29), 14400–14407 (2011)CrossRef
63.
go back to reference F. Huang, L. Zhang, Q. Zhang, J. Hou, H. Wang, H. Wang, S. Peng, L. Jianshe, C. Guozhong, High efficiency CdS/CdSe quantum dot sensitized solar cells with two ZnSe layers. ACS Appl. Mater. Interfaces 8(50), 34482–34489 (2016)CrossRef F. Huang, L. Zhang, Q. Zhang, J. Hou, H. Wang, H. Wang, S. Peng, L. Jianshe, C. Guozhong, High efficiency CdS/CdSe quantum dot sensitized solar cells with two ZnSe layers. ACS Appl. Mater. Interfaces 8(50), 34482–34489 (2016)CrossRef
64.
go back to reference P. Naresh, A. Kolay, M. Deepa, S. Shivaprasad, K. Srivastava, Stability, scale-up, and performance of quantum dot solar cells with carbonate-treated titanium oxide films. ACS Appl. Mater. Interfaces 9(30), 25278–25290 (2017)CrossRef P. Naresh, A. Kolay, M. Deepa, S. Shivaprasad, K. Srivastava, Stability, scale-up, and performance of quantum dot solar cells with carbonate-treated titanium oxide films. ACS Appl. Mater. Interfaces 9(30), 25278–25290 (2017)CrossRef
65.
go back to reference J. Guocan, P. Zhenxiao, R. Zhenwei, D. Jun, Ch. Yang, W. Wang, X. Zhong, Poly (vinyl pyrrolidone) a superior and general additive in polysulfide electrolytes for high efficiency quantum dot sensitized solar cells. J. Mater. Chem. 29, 11416–11421 (2016) J. Guocan, P. Zhenxiao, R. Zhenwei, D. Jun, Ch. Yang, W. Wang, X. Zhong, Poly (vinyl pyrrolidone) a superior and general additive in polysulfide electrolytes for high efficiency quantum dot sensitized solar cells. J. Mater. Chem. 29, 11416–11421 (2016)
66.
go back to reference Y. Yueyong, L. Zhu, S. Huicheng, X. Huang, L. Yanhong, L. Dongmei, Q. Meng, Composite counter electrode based on nanoparticulate PbS and carbon black: towards quantum dot-sensitized solar cells with both high efficiency and stability. ACS Appl. Mater. Interfaces 4(11), 6162–6168 (2012)CrossRef Y. Yueyong, L. Zhu, S. Huicheng, X. Huang, L. Yanhong, L. Dongmei, Q. Meng, Composite counter electrode based on nanoparticulate PbS and carbon black: towards quantum dot-sensitized solar cells with both high efficiency and stability. ACS Appl. Mater. Interfaces 4(11), 6162–6168 (2012)CrossRef
67.
go back to reference J. Khanam, Y. Simon, Y. Zhibin, L. Tianhan, M. Pengsu, Efficient, stable, and low-cost PbS quantum dot solar cells with Cr–Ag electrodes. Nanomaterials 9, 1205–1216 (2019)CrossRef J. Khanam, Y. Simon, Y. Zhibin, L. Tianhan, M. Pengsu, Efficient, stable, and low-cost PbS quantum dot solar cells with Cr–Ag electrodes. Nanomaterials 9, 1205–1216 (2019)CrossRef
68.
go back to reference G. Néstor, M. Campiña, Q. Shen, T. Toyoda, T. Villarreal, R. Gómez, Uncovering the role of the ZnS treatment in the performance of quantum dot sensitized solar cells. Phys. Chem. Chem. Phys. 13(25), 12024–12032 (2011)CrossRef G. Néstor, M. Campiña, Q. Shen, T. Toyoda, T. Villarreal, R. Gómez, Uncovering the role of the ZnS treatment in the performance of quantum dot sensitized solar cells. Phys. Chem. Chem. Phys. 13(25), 12024–12032 (2011)CrossRef
69.
go back to reference H. Juan, H. Zhao, F. Huang, L. Chen, W. Qiang, L. Zhiyong, P. Shanglong, N. Wang, C. Guozhong, Facile one-step fabrication of CdS 0.12 Se 0.88 quantum dots with a ZnSe/ZnS-passivation layer for highly efficient quantum dot sensitized solar cells. J. Mater. Chem. A 6(21), 9866–9873 (2018)CrossRef H. Juan, H. Zhao, F. Huang, L. Chen, W. Qiang, L. Zhiyong, P. Shanglong, N. Wang, C. Guozhong, Facile one-step fabrication of CdS 0.12 Se 0.88 quantum dots with a ZnSe/ZnS-passivation layer for highly efficient quantum dot sensitized solar cells. J. Mater. Chem. A 6(21), 9866–9873 (2018)CrossRef
70.
go back to reference T. Zion, I. Hod, M. Shalom, L. Grinis, A. Zaban, The importance of the TiO2/quantum dots interface in the recombination processes of quantum dot sensitized solar cells. Phys. Chem. Chem. Phys. 15(11), 3841–3845 (2013)CrossRef T. Zion, I. Hod, M. Shalom, L. Grinis, A. Zaban, The importance of the TiO2/quantum dots interface in the recombination processes of quantum dot sensitized solar cells. Phys. Chem. Chem. Phys. 15(11), 3841–3845 (2013)CrossRef
71.
go back to reference K. Zhao, P. Zhenxiao, E. Cánovas, H. Wang, Y. Song, X. Gong, Boosting power conversion efficiencies of quantum-dot-sensitized solar cells beyond 8% by recombination control. J. Am. Chem. Soc. 137(16), 5602–5609 (2015)CrossRef K. Zhao, P. Zhenxiao, E. Cánovas, H. Wang, Y. Song, X. Gong, Boosting power conversion efficiencies of quantum-dot-sensitized solar cells beyond 8% by recombination control. J. Am. Chem. Soc. 137(16), 5602–5609 (2015)CrossRef
72.
go back to reference A. Manjceevan, J. Bandara, Systematic stacking of PbS/CdS/CdSe multi-layered quantum dots for the enhancement of solar cell efficiency by harvesting wide solar spectrum. Electrochim. Acta 271, 567–575 (2018)CrossRef A. Manjceevan, J. Bandara, Systematic stacking of PbS/CdS/CdSe multi-layered quantum dots for the enhancement of solar cell efficiency by harvesting wide solar spectrum. Electrochim. Acta 271, 567–575 (2018)CrossRef
73.
go back to reference L. Joong, C. Leventis, S. Moon, P. Chen, I. Seigo, A. Haque, T. Torres, PbS and CdS quantum dot-sensitized solid-state solar cells: “old concepts, new results.” Adv. Funct. Mater. 19(17), 2735–2742 (2009)CrossRef L. Joong, C. Leventis, S. Moon, P. Chen, I. Seigo, A. Haque, T. Torres, PbS and CdS quantum dot-sensitized solid-state solar cells: “old concepts, new results.” Adv. Funct. Mater. 19(17), 2735–2742 (2009)CrossRef
74.
go back to reference A. Quah, Kh. Yaacob, Formation and characterization of PbxCd1-xS interlayer for PbS/CdS/ZnS quantum dots sensitized solar cells. in Advanced Materials Research, vol. 1087, ed. by H.Z. Abdullah, R. Hussin, M.F. Mohd Ali, H. Mohd Taib, S. Ahmad, A.R. Ainuddin, H. Abdul Rahman, M.N. Mohd Hatta, W.N.A. Wan Muhammad, S. Mahzan, M. Izwana Idris et al. (Trans Tech Publications Ltd., 2015), pp. 316–320 A. Quah, Kh. Yaacob, Formation and characterization of PbxCd1-xS interlayer for PbS/CdS/ZnS quantum dots sensitized solar cells. in Advanced Materials Research, vol. 1087, ed. by H.Z. Abdullah, R. Hussin, M.F. Mohd Ali, H. Mohd Taib, S. Ahmad, A.R. Ainuddin, H. Abdul Rahman, M.N. Mohd Hatta, W.N.A. Wan Muhammad, S. Mahzan, M. Izwana Idris et al. (Trans Tech Publications Ltd., 2015), pp. 316–320
75.
go back to reference N. Zhou et al., Highly efficient PbS/CdS co-sensitized solar cells based on photoanodes with hierarchical pore distribution. Electrochem. Commun. 20, 97–100 (2012)CrossRef N. Zhou et al., Highly efficient PbS/CdS co-sensitized solar cells based on photoanodes with hierarchical pore distribution. Electrochem. Commun. 20, 97–100 (2012)CrossRef
76.
go back to reference D. Esparza et al., Current improvement in hybrid quantum dot sensitized solar cells by increased light-scattering with a polymer layer. RSC Adv. 45, 36140–36148 (2015)CrossRef D. Esparza et al., Current improvement in hybrid quantum dot sensitized solar cells by increased light-scattering with a polymer layer. RSC Adv. 45, 36140–36148 (2015)CrossRef
77.
go back to reference Y. Liu et al., Effect of the nature of cationic precursors for SILAR deposition on the performance of CdS and PbS/CdS quantum dot-sensitized solar cells. Nanopart. Res. 17, 1–15 (2015)CrossRef Y. Liu et al., Effect of the nature of cationic precursors for SILAR deposition on the performance of CdS and PbS/CdS quantum dot-sensitized solar cells. Nanopart. Res. 17, 1–15 (2015)CrossRef
78.
go back to reference L. Hyun, Ch. Kumar, R. Srinivasa, S. Chung, D. Punnoose, The effect of manganese in a CdS/PbS colloidal quantum dot sensitized TiO2 solar cell to enhance its efficiency. New J. Chem. 39(6), 4805–4813 (2015)CrossRef L. Hyun, Ch. Kumar, R. Srinivasa, S. Chung, D. Punnoose, The effect of manganese in a CdS/PbS colloidal quantum dot sensitized TiO2 solar cell to enhance its efficiency. New J. Chem. 39(6), 4805–4813 (2015)CrossRef
79.
go back to reference H.M. Khalid, A.A. Mortuza, S.K. Sen, M.K. Basher, M.W. Ashraf, S. Tayyaba, M.N.H. Mia, M. Jalal Uddin, A comparative study on the influence of pure anatase and Degussa-P25 TiO2 nanomaterials on the structural and optical properties of dye sensitized solar cell (DSSC) photoanode. Optik 171, 507–516 (2018)CrossRef H.M. Khalid, A.A. Mortuza, S.K. Sen, M.K. Basher, M.W. Ashraf, S. Tayyaba, M.N.H. Mia, M. Jalal Uddin, A comparative study on the influence of pure anatase and Degussa-P25 TiO2 nanomaterials on the structural and optical properties of dye sensitized solar cell (DSSC) photoanode. Optik 171, 507–516 (2018)CrossRef
80.
go back to reference K. Veerathangam, M. Senthil Pandian, P. Ramasamy, Influence of SILAR deposition cycles in CdS quantum dot-sensitized solar cells. Mater. Sci. Mater. Electron. 29(9), 7318–7324 (2018)CrossRef K. Veerathangam, M. Senthil Pandian, P. Ramasamy, Influence of SILAR deposition cycles in CdS quantum dot-sensitized solar cells. Mater. Sci. Mater. Electron. 29(9), 7318–7324 (2018)CrossRef
81.
go back to reference H. Anower, Z. Koh, Q. Wang, PbS/CdS-sensitized mesoscopic SnO2 solar cells for enhanced infrared light harnessing. Phys. Chem. Chem. Phys. 14(20), 7367–7374 (2012)CrossRef H. Anower, Z. Koh, Q. Wang, PbS/CdS-sensitized mesoscopic SnO2 solar cells for enhanced infrared light harnessing. Phys. Chem. Chem. Phys. 14(20), 7367–7374 (2012)CrossRef
82.
go back to reference L. Chang et al., CdS quantum dot-sensitized solar cells based on nano-branched TiO2 arrays. Nanoscale Res. Lett. 9, 1–8 (2014) L. Chang et al., CdS quantum dot-sensitized solar cells based on nano-branched TiO2 arrays. Nanoscale Res. Lett. 9, 1–8 (2014)
83.
go back to reference V.P. Bhalekar, P.K. Baviskar, R. Prasad, B.M. Palve, V.S. Kadam, H.M. Pathan, PbS sensitized TiO2 based quantum dot solar cells with efficiency greater than 5% under artificial light: effect of compact layer and surface passivation. Eng. Sci. 7(2), 38–42 (2019) V.P. Bhalekar, P.K. Baviskar, R. Prasad, B.M. Palve, V.S. Kadam, H.M. Pathan, PbS sensitized TiO2 based quantum dot solar cells with efficiency greater than 5% under artificial light: effect of compact layer and surface passivation. Eng. Sci. 7(2), 38–42 (2019)
84.
go back to reference Ch.V. Thulasivarma, H.-J. Kim, Recent progress in quantum dot sensitized solar cells: an inclusive review of photoanode, sensitizer, electrolyte, and the counter electrode. Mater. Chem. C 717, 4911–4933 (2019) Ch.V. Thulasivarma, H.-J. Kim, Recent progress in quantum dot sensitized solar cells: an inclusive review of photoanode, sensitizer, electrolyte, and the counter electrode. Mater. Chem. C 717, 4911–4933 (2019)
85.
go back to reference D. Punnoose, S. Srinivasa, K. Kyoung, H. Kim, Exploring the effect of manganese in lead sulfide quantum dot sensitized solar cell to enhance the photovoltaic performance. RSC Adv. 5(42), 33136–33145 (2015)CrossRef D. Punnoose, S. Srinivasa, K. Kyoung, H. Kim, Exploring the effect of manganese in lead sulfide quantum dot sensitized solar cell to enhance the photovoltaic performance. RSC Adv. 5(42), 33136–33145 (2015)CrossRef
86.
go back to reference A. Subramanian, D. Punnoose, S. Srinivasa Rao, Ch. Venkata Thulasi Varma, B. Naresh, V. Raman, H.-J. Kim, Improved photovoltaic performance of quantum dot-sensitized solar cells using multi-layered semiconductors with the effect of a ZnSe passivation layer. New J. Chem. 41(13), 5942–5949 (2017)CrossRef A. Subramanian, D. Punnoose, S. Srinivasa Rao, Ch. Venkata Thulasi Varma, B. Naresh, V. Raman, H.-J. Kim, Improved photovoltaic performance of quantum dot-sensitized solar cells using multi-layered semiconductors with the effect of a ZnSe passivation layer. New J. Chem. 41(13), 5942–5949 (2017)CrossRef
87.
go back to reference L. Yu, Z. Li, Y. Liu, F. Cheng, S. Sun, Enhanced photoelectrochemical performance of CdSe/CdS/TiO2 nanorod arrays solar cell with a PbS underlayer. Mater. Sci. Mater. Electron. 26(4), 2286–2295 (2015)CrossRef L. Yu, Z. Li, Y. Liu, F. Cheng, S. Sun, Enhanced photoelectrochemical performance of CdSe/CdS/TiO2 nanorod arrays solar cell with a PbS underlayer. Mater. Sci. Mater. Electron. 26(4), 2286–2295 (2015)CrossRef
88.
go back to reference M.J. Fahimi, D. Fathi, H. Bastami, Blocking layer modeling for temperature analysis of electron transfer rate in quantum dot sensitized solar cells. Fundam. Appl. Sci. 8(3), 54–70 (2016)CrossRef M.J. Fahimi, D. Fathi, H. Bastami, Blocking layer modeling for temperature analysis of electron transfer rate in quantum dot sensitized solar cells. Fundam. Appl. Sci. 8(3), 54–70 (2016)CrossRef
89.
go back to reference H.J. Lee, P. Chen, S.-J. Moon, F. Sauvage, K. Sivula, T. Bessho, D.R. Gamelin et al., Regenerative PbS and CdS quantum dot sensitized solar cells with a cobalt complex as hole mediator. Langmuir 25(13), 7602–7608 (2009)CrossRef H.J. Lee, P. Chen, S.-J. Moon, F. Sauvage, K. Sivula, T. Bessho, D.R. Gamelin et al., Regenerative PbS and CdS quantum dot sensitized solar cells with a cobalt complex as hole mediator. Langmuir 25(13), 7602–7608 (2009)CrossRef
90.
go back to reference Z. Li, L. Yu, H. Wang, H. Yang, H. Ma, TiO2 passivation layer on ZnO hollow microspheres for quantum dots sensitized solar cells with improved light harvesting and electron collection. Nanomaterials 10(4), 631 (2020)CrossRef Z. Li, L. Yu, H. Wang, H. Yang, H. Ma, TiO2 passivation layer on ZnO hollow microspheres for quantum dots sensitized solar cells with improved light harvesting and electron collection. Nanomaterials 10(4), 631 (2020)CrossRef
91.
go back to reference M. Marandi, N. Torabi, F. Ahangarani Farahani, Facile fabrication of well-performing CdS/CdSe quantum dot sensitized solar cells through a fast and effective formation of the CdSe nanocrystalline layer. Sol. Energy 207, 32–39 (2020)CrossRef M. Marandi, N. Torabi, F. Ahangarani Farahani, Facile fabrication of well-performing CdS/CdSe quantum dot sensitized solar cells through a fast and effective formation of the CdSe nanocrystalline layer. Sol. Energy 207, 32–39 (2020)CrossRef
92.
go back to reference Y. Xiong, F. Deng, L. Wang, Y. Liu, TiO2 inverse opal based CdS/CdSe quantum dot co-sensitized solar cells. Mater. Sci. Mater. Electron. 25(7), 3039–3043 (2014)CrossRef Y. Xiong, F. Deng, L. Wang, Y. Liu, TiO2 inverse opal based CdS/CdSe quantum dot co-sensitized solar cells. Mater. Sci. Mater. Electron. 25(7), 3039–3043 (2014)CrossRef
93.
go back to reference M.A. Dissanayake, T. Jaseetharan, G.K.R. Senadeera, J.M.K.W. Kumari, Efficiency enhancement in PbS/CdS quantum dot-sensitized solar cells by plasmonic Ag nanoparticles. Solid State Electrochem. 24(2), 283–292 (2020)CrossRef M.A. Dissanayake, T. Jaseetharan, G.K.R. Senadeera, J.M.K.W. Kumari, Efficiency enhancement in PbS/CdS quantum dot-sensitized solar cells by plasmonic Ag nanoparticles. Solid State Electrochem. 24(2), 283–292 (2020)CrossRef
94.
go back to reference L. Turyanska et al., Paramagnetic, near-infrared fluorescent Mn-doped PbS colloidal nanocrystals. Part. Part. Syst. Charact. 30, 945–949 (2013)CrossRef L. Turyanska et al., Paramagnetic, near-infrared fluorescent Mn-doped PbS colloidal nanocrystals. Part. Part. Syst. Charact. 30, 945–949 (2013)CrossRef
95.
go back to reference C.V.V.M. Gopi, M. Venkata-Haritha, S.-K. Kim, H.-J. Kim, A strategy to improve the energy conversion efficiency and stability of quantum dot-sensitized solar cells using manganese-doped cadmium sulfide quantum dots. Dalton Trans. 2, 630–638 (2015)CrossRef C.V.V.M. Gopi, M. Venkata-Haritha, S.-K. Kim, H.-J. Kim, A strategy to improve the energy conversion efficiency and stability of quantum dot-sensitized solar cells using manganese-doped cadmium sulfide quantum dots. Dalton Trans. 2, 630–638 (2015)CrossRef
96.
go back to reference Y. Li, L. Wei, X. Chen, R. Zhang, X. Sui, Y. Chen, J. Jiao, L. Mei, Efficient PbS/CdS co-sensitized solar cells based on TiO2 nanorod arrays. Nanoscale Res. Lett. 8(1), 1–7 (2013)CrossRef Y. Li, L. Wei, X. Chen, R. Zhang, X. Sui, Y. Chen, J. Jiao, L. Mei, Efficient PbS/CdS co-sensitized solar cells based on TiO2 nanorod arrays. Nanoscale Res. Lett. 8(1), 1–7 (2013)CrossRef
97.
go back to reference M. Mehrabian, N. Ghasemian, Constructing PbS quantum dot sensitized ZnO nanorod array photoelectrodes for highly efficient photovoltaic devices. Can. J. Phys. 94(7), 687–692 (2016)CrossRef M. Mehrabian, N. Ghasemian, Constructing PbS quantum dot sensitized ZnO nanorod array photoelectrodes for highly efficient photovoltaic devices. Can. J. Phys. 94(7), 687–692 (2016)CrossRef
98.
go back to reference K.L. Foo et al., Sol–gel synthesized zinc oxide nanorods and their structural and optical investigation for optoelectronic application. Nanoscale Res. Lett. 9, 1–10 (2014)CrossRef K.L. Foo et al., Sol–gel synthesized zinc oxide nanorods and their structural and optical investigation for optoelectronic application. Nanoscale Res. Lett. 9, 1–10 (2014)CrossRef
99.
go back to reference H. Insung, K. Yong, Counter electrodes for quantum dot sensitized solar cells. ChemElectroChem 2(5), 634–653 (2015)CrossRef H. Insung, K. Yong, Counter electrodes for quantum dot sensitized solar cells. ChemElectroChem 2(5), 634–653 (2015)CrossRef
100.
go back to reference C.V.V.M. Gopi, M. Venkata-Haritha, Y.-S. Lee, H.-J. Kim, Correction: ZnO nanorods decorated with metal sulfides as stable and efficient counter-electrode materials for high-efficiency quantum dot-sensitized solar cells. Mater. Chem. A 5(1), 428–429 (2016)CrossRef C.V.V.M. Gopi, M. Venkata-Haritha, Y.-S. Lee, H.-J. Kim, Correction: ZnO nanorods decorated with metal sulfides as stable and efficient counter-electrode materials for high-efficiency quantum dot-sensitized solar cells. Mater. Chem. A 5(1), 428–429 (2016)CrossRef
101.
go back to reference T. Jianjun, T. Shen, X. Liu, C. Fei, L. Lv, G. Cao, Enhanced performance of PbS-quantum-dot-sensitized solar cells via optimizing precursor solution and electrolytes. Sci. Rep. 6(1), 1–9 (2016) T. Jianjun, T. Shen, X. Liu, C. Fei, L. Lv, G. Cao, Enhanced performance of PbS-quantum-dot-sensitized solar cells via optimizing precursor solution and electrolytes. Sci. Rep. 6(1), 1–9 (2016)
102.
go back to reference A. Benayas, R. Fuqiang, E. Carrasco, V. Marzal, B. del Rosal, B.A. Gonfa, Á. Juarranz et al., PbS/CdS/ZnS quantum dots: a multifunctional platform for in vivo near-infrared low-dose fluorescence imaging. Adv. Funct. Mater. 25(42), 6650–6659 (2015)CrossRef A. Benayas, R. Fuqiang, E. Carrasco, V. Marzal, B. del Rosal, B.A. Gonfa, Á. Juarranz et al., PbS/CdS/ZnS quantum dots: a multifunctional platform for in vivo near-infrared low-dose fluorescence imaging. Adv. Funct. Mater. 25(42), 6650–6659 (2015)CrossRef
103.
go back to reference M. Naeimi Sani Sabet, M. Marandi, F. Ahmadloo, Fabrication of dye sensitized solar cells with different photoanode compositions using hydrothermally grown and P25 TiO2 nanocrystals. Eur. Phys. J. Appl. Phys. 69, 20401 (2015)CrossRef M. Naeimi Sani Sabet, M. Marandi, F. Ahmadloo, Fabrication of dye sensitized solar cells with different photoanode compositions using hydrothermally grown and P25 TiO2 nanocrystals. Eur. Phys. J. Appl. Phys. 69, 20401 (2015)CrossRef
Metadata
Title
Fabrication of quantum dot-sensitized solar cells with multilayer TiO2/PbS(X)/CdS/CdSe/ZnS/SiO2 photoanode and optimization of the PbS nanocrystalline layer
Authors
Mahboubeh Sotodeian
Maziar Marandi
Publication date
06-04-2021
Publisher
Springer US
Published in
Journal of Materials Science: Materials in Electronics / Issue 8/2021
Print ISSN: 0957-4522
Electronic ISSN: 1573-482X
DOI
https://doi.org/10.1007/s10854-021-05670-7

Other articles of this Issue 8/2021

Journal of Materials Science: Materials in Electronics 8/2021 Go to the issue