Skip to main content
Top
Published in: Journal of Materials Science: Materials in Electronics 8/2021

02-04-2021

Folded graphene/copper oxide hybrid aerogels: folding, self-reinforcement, and electrochemical performance

Authors: Hongyan Li, Qian Yang, Hongli Liu, Jing Li, Wenjin Yuan, Bo Zhang

Published in: Journal of Materials Science: Materials in Electronics | Issue 8/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In our previous work, the Origami and enhancement theory was introduced into the construction of graphene aerogels to achieve the self-enhancement effect of graphene aerogels through the folding process of graphene lamellae. Based on the above work, after the graphene lamination was folded by Cu ion, it was further converted to cupric oxide by in situ mode, thus participating in the enhancement of the electrochemical behavior of graphene aerogels, and the "folding—enhanced—electrochemical" multiple effects were obtained. The innovation of this article was to use copper ions to achieve the folding of graphene sheet, and convert copper ions into copper oxides to improve the electrochemical properties of graphene aerogels, thereby achieving self-enhancement and electrochemical applications of graphene aerogels.The molecular structure and elemental composition of fGA/CuO were studied by FTIR and XPS. The surface microstructure of fGA/CuO was studied by SEM and bet. The results showed that fGA/CuO was successfully prepared with small and round micropores on the surface.The mechanical and electrochemical properties of fGA/CuO were studied by mechanical properties test, CV, GCD, and EIS tests. The results show that fGA/CuO has good mechanical and electrochemical properties.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference P. Simon, Y. Gogotsi, Capacitive energy storage in nanostructured carbon-electrolyte systems. Accounts Chem Res. 46(5), 1094–1103 (2013)CrossRef P. Simon, Y. Gogotsi, Capacitive energy storage in nanostructured carbon-electrolyte systems. Accounts Chem Res. 46(5), 1094–1103 (2013)CrossRef
2.
go back to reference B.E. Conway, Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications (Plenum Publishers, New York, 1999).CrossRef B.E. Conway, Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications (Plenum Publishers, New York, 1999).CrossRef
3.
go back to reference P. Simon, Y. Gogotsi, B. Dunn, Where do batteries end and supercapacitors begin? Science 343(6176), 1210–1211 (2014)CrossRef P. Simon, Y. Gogotsi, B. Dunn, Where do batteries end and supercapacitors begin? Science 343(6176), 1210–1211 (2014)CrossRef
4.
go back to reference P. Xu, J. Liu, T. Liu, K. Ye, K. Cheng, J. Yin et al., Preparation of binder-free CuO/Cu2O/Cu composites: a novel electrode material for supercapacitor applications. RSC Adv. 6, 28270–28278 (2016)CrossRef P. Xu, J. Liu, T. Liu, K. Ye, K. Cheng, J. Yin et al., Preparation of binder-free CuO/Cu2O/Cu composites: a novel electrode material for supercapacitor applications. RSC Adv. 6, 28270–28278 (2016)CrossRef
5.
go back to reference A. Bittner, M. Zhu, Y. Yang et al., Ageing of electrochemical double layer capacitors. Journal of Power Sources 203(1), 262–273 (2012)CrossRef A. Bittner, M. Zhu, Y. Yang et al., Ageing of electrochemical double layer capacitors. Journal of Power Sources 203(1), 262–273 (2012)CrossRef
6.
go back to reference A. Davies, A. Yu, Material advancements in supercapacitors: from activated carbon to carbon nanotube and graphene. Can J Chem Eng. 89(6), 1342–1357 (2011)CrossRef A. Davies, A. Yu, Material advancements in supercapacitors: from activated carbon to carbon nanotube and graphene. Can J Chem Eng. 89(6), 1342–1357 (2011)CrossRef
7.
go back to reference W. Chen, R.B. Rakhi, L. Hu et al., High-performance nanostructured supercapacitors on a sponge. Nano Lett. 11(12), 5165–5172 (2011)CrossRef W. Chen, R.B. Rakhi, L. Hu et al., High-performance nanostructured supercapacitors on a sponge. Nano Lett. 11(12), 5165–5172 (2011)CrossRef
8.
go back to reference A.L.M. Reddy, F.E. Amitha, I. Jafri et al., Asymmetric flexible supercapacitor stack. Nanoscale Res Lett. 3(145), 145–151 (2008)CrossRef A.L.M. Reddy, F.E. Amitha, I. Jafri et al., Asymmetric flexible supercapacitor stack. Nanoscale Res Lett. 3(145), 145–151 (2008)CrossRef
9.
go back to reference P. Justin, S.K. Meher, G.R. Rao, Tuning of capacitance behavior of NiO using anionic, cationic, and nonionic surfactants by hydrothermal synthesis. J Phys Chem C. 14(11), 5203–5210 (2010)CrossRef P. Justin, S.K. Meher, G.R. Rao, Tuning of capacitance behavior of NiO using anionic, cationic, and nonionic surfactants by hydrothermal synthesis. J Phys Chem C. 14(11), 5203–5210 (2010)CrossRef
10.
go back to reference C.C. Wang, H.C. Chen, S.Y. Lu, Manganese oxide/graphene aerogel composites as an outstanding supercapacitor electrode material. Chem-Eur J. 20(2), 517–523 (2014)CrossRef C.C. Wang, H.C. Chen, S.Y. Lu, Manganese oxide/graphene aerogel composites as an outstanding supercapacitor electrode material. Chem-Eur J. 20(2), 517–523 (2014)CrossRef
11.
go back to reference W. Liu, X. Li, M. Zhu et al., High-performance all-solid state asymmetric supercapacitor based on Co3O4 nanowires and carbon aerogel. J Power Sources. 282, 179–186 (2015)CrossRef W. Liu, X. Li, M. Zhu et al., High-performance all-solid state asymmetric supercapacitor based on Co3O4 nanowires and carbon aerogel. J Power Sources. 282, 179–186 (2015)CrossRef
12.
go back to reference H. Ashassi-Sorkhabi, E. Asghari, P. La’le Badakhshan, Potentiostatic and cyclic voltammetric deposition of nanostructured manganese oxide for supercapacitor applications. Curr Appl Phys. 14(2), 187–191 (2014)CrossRef H. Ashassi-Sorkhabi, E. Asghari, P. La’le Badakhshan, Potentiostatic and cyclic voltammetric deposition of nanostructured manganese oxide for supercapacitor applications. Curr Appl Phys. 14(2), 187–191 (2014)CrossRef
13.
go back to reference Yang Jiao, Yang Liu, Bosi Yin et al., Hybrid α-Fe 2O3@NiO heterostructures for flexible and high performance supercapacitor electrodes and visible light driven photocatalysts. Nano Energy. 10, 90–98 (2014)CrossRef Yang Jiao, Yang Liu, Bosi Yin et al., Hybrid α-Fe 2O3@NiO heterostructures for flexible and high performance supercapacitor electrodes and visible light driven photocatalysts. Nano Energy. 10, 90–98 (2014)CrossRef
14.
go back to reference J. Yang, T. Lan, J. Liu et al., Supercapacitor electrode of hollow spherical V2O5 with a high pseudocapacitance in aqueous solution. Electrochim. Acta 105, 489–495 (2013)CrossRef J. Yang, T. Lan, J. Liu et al., Supercapacitor electrode of hollow spherical V2O5 with a high pseudocapacitance in aqueous solution. Electrochim. Acta 105, 489–495 (2013)CrossRef
15.
go back to reference D.M.G.T. Nathan, S.J.M. Boby, Hydrothermal preparation of hematite nanotubes/reduced graphene oxide nanocomposites as electrode material for high performance supercapacitors. Alloys Compd. 700, 67–74 (2017)CrossRef D.M.G.T. Nathan, S.J.M. Boby, Hydrothermal preparation of hematite nanotubes/reduced graphene oxide nanocomposites as electrode material for high performance supercapacitors. Alloys Compd. 700, 67–74 (2017)CrossRef
16.
go back to reference S. Joseph, S.J.M. Boby, D.M.G.T. Nathan et al., Investigation on the role of cost effective cathode materials for fabrication of efficient DSSCs with TiNT/TiO2 nanocomposite photoanodes. Sol Energ Mat Sol C. 165, 72–81 (2017)CrossRef S. Joseph, S.J.M. Boby, D.M.G.T. Nathan et al., Investigation on the role of cost effective cathode materials for fabrication of efficient DSSCs with TiNT/TiO2 nanocomposite photoanodes. Sol Energ Mat Sol C. 165, 72–81 (2017)CrossRef
17.
go back to reference Ananthakumar Ramadoss, Sang Jae Kim, Enhanced supercapacitor performance using hierarchical TiO 2 nanorod/Co(OH) 2 nanowall array electrodes. Electrochimica Acta. 136, 105–111 (2014)CrossRef Ananthakumar Ramadoss, Sang Jae Kim, Enhanced supercapacitor performance using hierarchical TiO 2 nanorod/Co(OH) 2 nanowall array electrodes. Electrochimica Acta. 136, 105–111 (2014)CrossRef
18.
go back to reference C.K. Chiang, C.R. Fincher, Y.W. Park et al., Electrical conductivity in doped polyacetylene. Phys Rev Lett. 39(17), 1098–1101 (1997)CrossRef C.K. Chiang, C.R. Fincher, Y.W. Park et al., Electrical conductivity in doped polyacetylene. Phys Rev Lett. 39(17), 1098–1101 (1997)CrossRef
19.
go back to reference Y. Zhao, J. Liu, Y. Hu et al., Highly compression-tolerant supercapacitor based on plypyrrole-mediated graphene foam electrodes. Adv Mater. 25(4), 591–595 (2013)CrossRef Y. Zhao, J. Liu, Y. Hu et al., Highly compression-tolerant supercapacitor based on plypyrrole-mediated graphene foam electrodes. Adv Mater. 25(4), 591–595 (2013)CrossRef
20.
go back to reference K.S. Novoselov, S.V. Morozov, T.M.G. Mohinddin et al., Electronic properties of graphene. Phys Status Solidi B. 244(11), 4106–4111 (2007)CrossRef K.S. Novoselov, S.V. Morozov, T.M.G. Mohinddin et al., Electronic properties of graphene. Phys Status Solidi B. 244(11), 4106–4111 (2007)CrossRef
21.
go back to reference A.A. Balandin, S. Ghosh, W. Bao et al., Superior Thermal Conductivity of Single-LayerGraphene. Nano Lett. 8(3), 902–907 (2008)CrossRef A.A. Balandin, S. Ghosh, W. Bao et al., Superior Thermal Conductivity of Single-LayerGraphene. Nano Lett. 8(3), 902–907 (2008)CrossRef
22.
go back to reference F. Bonaccorso, Z. Sun, T. Hasan et al., Graphene photonics and optoelectronics. NaturePhotonics. 4(9), 611–622 (2010) F. Bonaccorso, Z. Sun, T. Hasan et al., Graphene photonics and optoelectronics. NaturePhotonics. 4(9), 611–622 (2010)
23.
go back to reference K.S. Novoselov, V.I. Fal’ko, L. Colombo et al., A roadmap for graphene. Nature 490(7419), 192–200 (2012)CrossRef K.S. Novoselov, V.I. Fal’ko, L. Colombo et al., A roadmap for graphene. Nature 490(7419), 192–200 (2012)CrossRef
24.
go back to reference M.D. Stoller, S. Park, Y. Zhu et al., Graphene-based ultracapacitors. Nano Lett. 8(10), 3498–3502 (2008)CrossRef M.D. Stoller, S. Park, Y. Zhu et al., Graphene-based ultracapacitors. Nano Lett. 8(10), 3498–3502 (2008)CrossRef
25.
go back to reference V. Alzari, V. Sanna, S. Biccai et al., Tailoring the physical properties of nanocomposite films by the insertion of graphene and other nanoparticles. Compos Part B-Eng. 60, 29–35 (2014)CrossRef V. Alzari, V. Sanna, S. Biccai et al., Tailoring the physical properties of nanocomposite films by the insertion of graphene and other nanoparticles. Compos Part B-Eng. 60, 29–35 (2014)CrossRef
26.
go back to reference G.G. Politano, C. Versace, C. Vena et al., Physical investigation of electrophoretically deposited graphene oxide and reduced graphene oxide thin films. J Appl Phys. 120(19), 200–116 (2016)CrossRef G.G. Politano, C. Versace, C. Vena et al., Physical investigation of electrophoretically deposited graphene oxide and reduced graphene oxide thin films. J Appl Phys. 120(19), 200–116 (2016)CrossRef
27.
go back to reference Politano Antonio, Cattelan Mattia, W. Boukhvalov Danil et al., Unveiling the Mechanisms Leading to H2 Production Promoted by Water Decomposition on Epitaxial Graphene at Room Temperature. ACS Nano. 10(4), 4543–9 (2016)CrossRef Politano Antonio, Cattelan Mattia, W. Boukhvalov Danil et al., Unveiling the Mechanisms Leading to H2 Production Promoted by Water Decomposition on Epitaxial Graphene at Room Temperature. ACS Nano. 10(4), 4543–9 (2016)CrossRef
28.
go back to reference W. Jing, Z. Zhigang, Z. Yubo et al., Enhanced performance of light-controlled conductive switching in hybrid cuprous oxide/reduced graphene oxide (Cu2O/rGO) nanocomposites. Opt. Lett. 42(5), 911–914 (2017)CrossRef W. Jing, Z. Zhigang, Z. Yubo et al., Enhanced performance of light-controlled conductive switching in hybrid cuprous oxide/reduced graphene oxide (Cu2O/rGO) nanocomposites. Opt. Lett. 42(5), 911–914 (2017)CrossRef
29.
go back to reference A. Gugliuzza, A. Politano, E. Drioli, The advent of graphene and other two-dimensional materials in membrane science and technology. Curr Opin Chem Eng 16, 78–85 (2017)CrossRef A. Gugliuzza, A. Politano, E. Drioli, The advent of graphene and other two-dimensional materials in membrane science and technology. Curr Opin Chem Eng 16, 78–85 (2017)CrossRef
30.
go back to reference Hou Junbo, Shao Yuyan, W. Ellis Michael et al., Graphene-based electrochemical energy conversion and storage: fuel cells, supercapacitors and lithium ion batteries. Phys Chem Chem Phys 13(34), 15384–402 (2011)CrossRef Hou Junbo, Shao Yuyan, W. Ellis Michael et al., Graphene-based electrochemical energy conversion and storage: fuel cells, supercapacitors and lithium ion batteries. Phys Chem Chem Phys 13(34), 15384–402 (2011)CrossRef
31.
go back to reference F. Bonaccorso, L. Colombo, Yu. Guihua et al., Graphene, related two-dimensional crystals, and hybrid systems for energy conversion and storage. Science 347(6217), 1246501 (2015)CrossRef F. Bonaccorso, L. Colombo, Yu. Guihua et al., Graphene, related two-dimensional crystals, and hybrid systems for energy conversion and storage. Science 347(6217), 1246501 (2015)CrossRef
32.
go back to reference J. He, Y. Chen, W. Lv et al., Highly-flexible 3D Li 2 S/graphene cathode for high-performance lithium sulfur batteries. J Power Sources 327, 474–480 (2016)CrossRef J. He, Y. Chen, W. Lv et al., Highly-flexible 3D Li 2 S/graphene cathode for high-performance lithium sulfur batteries. J Power Sources 327, 474–480 (2016)CrossRef
33.
go back to reference A. Politano, G. Chiarello, Periodically rippled graphene on Ru(0001): A template for site-selective adsorption of hydrogen dimers via water splitting and hydrogen-spillover at room temperature. Carbon 61, 412–417 (2013)CrossRef A. Politano, G. Chiarello, Periodically rippled graphene on Ru(0001): A template for site-selective adsorption of hydrogen dimers via water splitting and hydrogen-spillover at room temperature. Carbon 61, 412–417 (2013)CrossRef
34.
go back to reference F. Qi, Y. Chen, B. Zheng, J. He, Q. Li, X. Wang, J. Lin, J. Zhou, B. Yu, P. Li, W. Zhang, Hierarchical architecture of ReS2/rGO composites with enhanced electrochemical properties for lithium-ion batteries. Appl. Surf. Sci. 413, 123–128 (2017)CrossRef F. Qi, Y. Chen, B. Zheng, J. He, Q. Li, X. Wang, J. Lin, J. Zhou, B. Yu, P. Li, W. Zhang, Hierarchical architecture of ReS2/rGO composites with enhanced electrochemical properties for lithium-ion batteries. Appl. Surf. Sci. 413, 123–128 (2017)CrossRef
35.
go back to reference P.J. Liu, Z.J. Yao, J.T. Zhou, Investigation of thermal properties and mechanical properties of reduced graphene oxide/polyimide resin composites. Polymer Composites. 38, 2321 (2017)CrossRef P.J. Liu, Z.J. Yao, J.T. Zhou, Investigation of thermal properties and mechanical properties of reduced graphene oxide/polyimide resin composites. Polymer Composites. 38, 2321 (2017)CrossRef
36.
go back to reference P. Liu, Z. Yao, J. Zhou et al., Small magnetic Co-doped NiZn ferrite/graphene nanocomposites and their dual-region microwave absorption performance[J]. Journal of Materials Chemistry C. 4(41), 9738 (2016)CrossRef P. Liu, Z. Yao, J. Zhou et al., Small magnetic Co-doped NiZn ferrite/graphene nanocomposites and their dual-region microwave absorption performance[J]. Journal of Materials Chemistry C. 4(41), 9738 (2016)CrossRef
37.
go back to reference M.H. Tsai, C.J. Chang, H.H. Lu, Y.F. Liao, I.H. Tseng, Thin Solid Films 544, 324 (2013)CrossRef M.H. Tsai, C.J. Chang, H.H. Lu, Y.F. Liao, I.H. Tseng, Thin Solid Films 544, 324 (2013)CrossRef
38.
go back to reference P. Liu, Z. Yao, J. Zhou, Mechanical, thermal and dielectric properties of graphene oxide/polyimide resin composite[J]. High Performance Polymers 28(9), 1033 (2015)CrossRef P. Liu, Z. Yao, J. Zhou, Mechanical, thermal and dielectric properties of graphene oxide/polyimide resin composite[J]. High Performance Polymers 28(9), 1033 (2015)CrossRef
39.
go back to reference S.J. Ki, H. Lee, Y.K. Park et al., Assessing the electrochemical performance of a supercapacitor electrode made of copper oxide and activated carbon using liquid phase plasma. Appl Surf Sci 446, 243–249 (2018)CrossRef S.J. Ki, H. Lee, Y.K. Park et al., Assessing the electrochemical performance of a supercapacitor electrode made of copper oxide and activated carbon using liquid phase plasma. Appl Surf Sci 446, 243–249 (2018)CrossRef
40.
go back to reference K. Krishnamoorthy, S.J. Kim, Growth, characterization and electrochemical properties of hierarchical CuO nanostructures for supercapacitor applications. Mater Res Bull 48(9), 3136–3139 (2013)CrossRef K. Krishnamoorthy, S.J. Kim, Growth, characterization and electrochemical properties of hierarchical CuO nanostructures for supercapacitor applications. Mater Res Bull 48(9), 3136–3139 (2013)CrossRef
41.
go back to reference C.K. Chan, H. Peng, G. Liu et al., High-performance lithium battery anodes using silicon nanowires. Nat Nanotechnol 3(1), 31–5 (2008)CrossRef C.K. Chan, H. Peng, G. Liu et al., High-performance lithium battery anodes using silicon nanowires. Nat Nanotechnol 3(1), 31–5 (2008)CrossRef
42.
go back to reference X. Zhou, L.J. Wan, Y.G. Guo, Binding SnO2nanocrystals in nitrogen-doped graphene sheets as anode materials for lithiumion batteries. Adv Mater 25(15), 2152–2157 (2013)CrossRef X. Zhou, L.J. Wan, Y.G. Guo, Binding SnO2nanocrystals in nitrogen-doped graphene sheets as anode materials for lithiumion batteries. Adv Mater 25(15), 2152–2157 (2013)CrossRef
44.
go back to reference Hongyan Li, Cong Sun, Hongli Liu et al., Aerogels fabricated with origami graphene part I: Preparation andmechanical behavior. J Alloy Compd 783, 486–493 (2019)CrossRef Hongyan Li, Cong Sun, Hongli Liu et al., Aerogels fabricated with origami graphene part I: Preparation andmechanical behavior. J Alloy Compd 783, 486–493 (2019)CrossRef
45.
go back to reference J.C. Fan, Z.X. Shi, M. Lian, H. Li, J. Yin, Mechanically strong graphene oxide/sodium alginate/polyacrylamide nanocomposite hydrogel with improved dyeadsorption capacity. J Mater Chem A. 1, 7433–7443 (2013)CrossRef J.C. Fan, Z.X. Shi, M. Lian, H. Li, J. Yin, Mechanically strong graphene oxide/sodium alginate/polyacrylamide nanocomposite hydrogel with improved dyeadsorption capacity. J Mater Chem A. 1, 7433–7443 (2013)CrossRef
46.
go back to reference D.C. Marcano, D.V. Kosynkin, J.M. Berlin, A. Sinitskii, Z.Z. Sun, A. Slesarev et al., Improved synthesis of graphene oxide. ACS Nano 4, 4806–4814 (2010)CrossRef D.C. Marcano, D.V. Kosynkin, J.M. Berlin, A. Sinitskii, Z.Z. Sun, A. Slesarev et al., Improved synthesis of graphene oxide. ACS Nano 4, 4806–4814 (2010)CrossRef
47.
go back to reference J. Lluch-Cerezo, R. Benavente, M.D. Meseguer, S.C. Gutiérrez, Study of samples geometry to analyze mechanical properties in Fused Deposition Modeling process (FDM) - ScienceDirect. Procedia Manufacturing. 41, 890–897 (2019)CrossRef J. Lluch-Cerezo, R. Benavente, M.D. Meseguer, S.C. Gutiérrez, Study of samples geometry to analyze mechanical properties in Fused Deposition Modeling process (FDM) - ScienceDirect. Procedia Manufacturing. 41, 890–897 (2019)CrossRef
48.
go back to reference W. Wang, Y. Zhang, J. Zhang, J. Li, X. Li, Metal-organic framework-derived Cu2O-CuO octahedrons for sensitive and selective detection of ppb-level NO2 at room temperature. Sens. Actuators, B Chem. 328, 129045 (2021)CrossRef W. Wang, Y. Zhang, J. Zhang, J. Li, X. Li, Metal-organic framework-derived Cu2O-CuO octahedrons for sensitive and selective detection of ppb-level NO2 at room temperature. Sens. Actuators, B Chem. 328, 129045 (2021)CrossRef
50.
go back to reference Y.J. Dappe, M.A. Basanta, F. Flores, J. Ortega, Weak chemical interaction andvan der Waals forces between graphene layers: a combined density functionaland intermolecular perturbation theory approach. Phys. Rev. B. 74, 205434 (2006)CrossRef Y.J. Dappe, M.A. Basanta, F. Flores, J. Ortega, Weak chemical interaction andvan der Waals forces between graphene layers: a combined density functionaland intermolecular perturbation theory approach. Phys. Rev. B. 74, 205434 (2006)CrossRef
51.
go back to reference B.C. Wang, J.J. Li, Y.N. Liu, Y. Gao, Reduced graphene oxide/carbon nanotubesnanohybrids as preformed reinforcement for polystyrene composites. J. Appl. Polym. Sci. 134, 45054 (2017)CrossRef B.C. Wang, J.J. Li, Y.N. Liu, Y. Gao, Reduced graphene oxide/carbon nanotubesnanohybrids as preformed reinforcement for polystyrene composites. J. Appl. Polym. Sci. 134, 45054 (2017)CrossRef
52.
go back to reference N.M. Han, Z.Y. Wang, X. Shen, Y. Wu, X. Liu, Q.B. Zheng, T.H. Kim, J.L. Yang, J.K. Kim, Graphene size dependent multi-functional properties of unidirec-tional graphene aerogel/epoxy nanocomposites. ACS Appl Mater Inter. 10, 6580–6592 (2018)CrossRef N.M. Han, Z.Y. Wang, X. Shen, Y. Wu, X. Liu, Q.B. Zheng, T.H. Kim, J.L. Yang, J.K. Kim, Graphene size dependent multi-functional properties of unidirec-tional graphene aerogel/epoxy nanocomposites. ACS Appl Mater Inter. 10, 6580–6592 (2018)CrossRef
53.
go back to reference Y.X. Zuo, X.R. Su, X.W. Li, Z.J. Yao, T.T. Yu, J.T. Zhou, J. Li, J. Lu, J. Ding, Multimaterial 3D-printing of graphene/Li0.35Zn0.3Fe2.35O4 and graphene/carbonyl iron composites with superior microwave absorption properties and adjustable bandwidth. Carbon. 167, 62–74 (2020)CrossRef Y.X. Zuo, X.R. Su, X.W. Li, Z.J. Yao, T.T. Yu, J.T. Zhou, J. Li, J. Lu, J. Ding, Multimaterial 3D-printing of graphene/Li0.35Zn0.3Fe2.35O4 and graphene/carbonyl iron composites with superior microwave absorption properties and adjustable bandwidth. Carbon. 167, 62–74 (2020)CrossRef
54.
go back to reference Z. Jiao, Z. Yao, J. Zhou, P. Yi, C. Lu, Reinforced interface and mechanical properties of high strength carbon fiber composites. High Perform. Polym. 7, 095400832095739 (2020) Z. Jiao, Z. Yao, J. Zhou, P. Yi, C. Lu, Reinforced interface and mechanical properties of high strength carbon fiber composites. High Perform. Polym. 7, 095400832095739 (2020)
Metadata
Title
Folded graphene/copper oxide hybrid aerogels: folding, self-reinforcement, and electrochemical performance
Authors
Hongyan Li
Qian Yang
Hongli Liu
Jing Li
Wenjin Yuan
Bo Zhang
Publication date
02-04-2021
Publisher
Springer US
Published in
Journal of Materials Science: Materials in Electronics / Issue 8/2021
Print ISSN: 0957-4522
Electronic ISSN: 1573-482X
DOI
https://doi.org/10.1007/s10854-021-05759-z

Other articles of this Issue 8/2021

Journal of Materials Science: Materials in Electronics 8/2021 Go to the issue