Skip to main content
Top
Published in: Journal of Materials Science: Materials in Electronics 7/2016

08-03-2016

Fabrication of well-aligned ZnO nanorod photoanodes for perovskite solar cells

Authors: Haiwei Wang, Luting Yan, Jiaqi Liu, Jiali Li, Huili Wang

Published in: Journal of Materials Science: Materials in Electronics | Issue 7/2016

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

ZnO nanorods grown on aluminum doped zinc oxide (AZO) substrate and ZnO seed layer coated substrates, including glass slides, fluorine doped tin oxide, and indium tin oxide substrates were studied. ZnO nanorods grown on AZO substrate had the best alignment and highest packing density. The growth rate of ZnO nanorods was regulated by adding polyethyleneimine (PEI) and introducing contact potential. ZnO nanorods co-adjusted by adding PEI and introducing contact-potential-driven growth formed a textured structure that led to a higher transmittance at 600–800 nm. The strong ultraviolet band emission indicated a relatively low concentration of deep level defects in ZnO nanorods. Good crystallization, together with a small amount of aluminum-doping, guaranteed high electron transfer in the ZnO nanorods. The well-aligned ZnO nanorods were incorporated into a perovskite solar cell prepared with carbon counter electrode under completely open-air conditions. A J sc of 15.53 mA cm−2 and an efficiency of 2.71 % were obtained for ZnO nanorods under contact-potential-driven growth. In addition, for ZnO nanorods co-adjusted by adding PEI and introducing contact potential, a J sc of 14.87 mA cm−2 and an efficiency of 3.62 % were obtained. However, fill factors were very low for hybrid solar cells with the structure of AZO/ZnO nanorods-CH3NH3PbIxCl3−x/carbon.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference M. Mehta, C. Meier, Controlled etching behavior of O-polar and Zn-polar ZnO single crystals. J. Electrochem. Soc. 158, H119–H123 (2011)CrossRef M. Mehta, C. Meier, Controlled etching behavior of O-polar and Zn-polar ZnO single crystals. J. Electrochem. Soc. 158, H119–H123 (2011)CrossRef
2.
go back to reference A.J. Gimenez, J.M. Yáñez-Limón, J.M. Seminario, ZnO—paper based photoconductive UV sensor. J. Phys. Chem. C 115, 282–287 (2011)CrossRef A.J. Gimenez, J.M. Yáñez-Limón, J.M. Seminario, ZnO—paper based photoconductive UV sensor. J. Phys. Chem. C 115, 282–287 (2011)CrossRef
3.
go back to reference S.K. Gupta, A. Joshi, M. Kaur, Development of gas sensors using ZnO nanostructures. J. Chem. Sci. 122, 57–62 (2010)CrossRef S.K. Gupta, A. Joshi, M. Kaur, Development of gas sensors using ZnO nanostructures. J. Chem. Sci. 122, 57–62 (2010)CrossRef
4.
go back to reference I. Takeushi, W. Yang, K.S. Chang, M.A. Aronova, T. Venktesan, R.D. Vispute, I.A. Bendersky, Monolithic multichannel ultraviolet detector arrays and continuous phase evolution in MgxZn1−x O composition spreads. J. Appl. Phys. 94(7336), 0021–8979 (2003) I. Takeushi, W. Yang, K.S. Chang, M.A. Aronova, T. Venktesan, R.D. Vispute, I.A. Bendersky, Monolithic multichannel ultraviolet detector arrays and continuous phase evolution in MgxZn1−x O composition spreads. J. Appl. Phys. 94(7336), 0021–8979 (2003)
5.
go back to reference B.D. Yao, Y.F. Chan, N. Wang, Formation of ZnO nanostructures by a simple way of thermal evaporation. Appl. Phys. Lett. 81, 757–759 (2002)CrossRef B.D. Yao, Y.F. Chan, N. Wang, Formation of ZnO nanostructures by a simple way of thermal evaporation. Appl. Phys. Lett. 81, 757–759 (2002)CrossRef
6.
go back to reference Z.Y. Fan, J.G. Lu, Zinc oxide nanostructures: synthesis and properties. J. Nanosci. Nanotechnol. 10, 1561–1573 (2005)CrossRef Z.Y. Fan, J.G. Lu, Zinc oxide nanostructures: synthesis and properties. J. Nanosci. Nanotechnol. 10, 1561–1573 (2005)CrossRef
7.
go back to reference Z.L. Wang, Zinc oxide nanostructures: growth, properties and applications. J. Phys. Condens. Matter. 16, R829–R858 (2004)CrossRef Z.L. Wang, Zinc oxide nanostructures: growth, properties and applications. J. Phys. Condens. Matter. 16, R829–R858 (2004)CrossRef
8.
go back to reference W. Peng, L. Han, Z. Wang, Hierarchically structured ZnO nanorods as an efficient photoanode for dye-sensitized solar cells. Chem. Eur. J. 20, 8483–8487 (2014)CrossRef W. Peng, L. Han, Z. Wang, Hierarchically structured ZnO nanorods as an efficient photoanode for dye-sensitized solar cells. Chem. Eur. J. 20, 8483–8487 (2014)CrossRef
9.
go back to reference M. Law, L.E. Greene, J.C. Johnson, R. Saykally, P. Yang, Nanowire dye-sensitized solar cells. Nat. Mater. 4, 455–459 (2005)CrossRef M. Law, L.E. Greene, J.C. Johnson, R. Saykally, P. Yang, Nanowire dye-sensitized solar cells. Nat. Mater. 4, 455–459 (2005)CrossRef
10.
go back to reference A. Umar, A.A. Alharbi, P. Singh, S.A. Al-Sayari, Growth of aligned hexagonal ZnO nanorods on FTO substrate for dye-sensitized solar cells (DSSCs) application. J. Nanosci. Nanotechnol. 11(4), 3560–3564 (2011)CrossRef A. Umar, A.A. Alharbi, P. Singh, S.A. Al-Sayari, Growth of aligned hexagonal ZnO nanorods on FTO substrate for dye-sensitized solar cells (DSSCs) application. J. Nanosci. Nanotechnol. 11(4), 3560–3564 (2011)CrossRef
11.
go back to reference L.T. Huang, S.R. Huang, M.L. Chang, R.R. Wang, H.C. Lin, M.J. Che, Dye-sensitized solar cells using ZnO-nanorod electrodes. J. Chin. Chem. Soc. 58, 813–816 (2011)CrossRef L.T. Huang, S.R. Huang, M.L. Chang, R.R. Wang, H.C. Lin, M.J. Che, Dye-sensitized solar cells using ZnO-nanorod electrodes. J. Chin. Chem. Soc. 58, 813–816 (2011)CrossRef
12.
go back to reference Q. Zhang, G. Chen, Y. Yang, X. Shen, Y. Zhang, C. Li, R. Yu, A. Luo, D. Li, Q. Meng, Toward highly efficient CdS/CdSe quantum dots-sensitized solar cells incorporating ordered photoanodes on transparent conductive substrates. Phys. Chem. Chem. Phys. 14, 6479–6486 (2012)CrossRef Q. Zhang, G. Chen, Y. Yang, X. Shen, Y. Zhang, C. Li, R. Yu, A. Luo, D. Li, Q. Meng, Toward highly efficient CdS/CdSe quantum dots-sensitized solar cells incorporating ordered photoanodes on transparent conductive substrates. Phys. Chem. Chem. Phys. 14, 6479–6486 (2012)CrossRef
13.
go back to reference M.H. Lai, M.W. Lee, G.-J. Wang, M.F. Tai, Photovoltaic performance of new-structure ZnO-nanorod dye-sensitized solar cells. Int. J. Electrochem. Sci. 6, 2122–2130 (2011) M.H. Lai, M.W. Lee, G.-J. Wang, M.F. Tai, Photovoltaic performance of new-structure ZnO-nanorod dye-sensitized solar cells. Int. J. Electrochem. Sci. 6, 2122–2130 (2011)
14.
go back to reference J.B. Baxter, A.M. Walker, K. van Ommering, E.S. Aydil, Synthesis and characterization of ZnO nanowires and their integration into dye-sensitized solar cells. Nanotechnology 17, S304–S312 (2006)CrossRef J.B. Baxter, A.M. Walker, K. van Ommering, E.S. Aydil, Synthesis and characterization of ZnO nanowires and their integration into dye-sensitized solar cells. Nanotechnology 17, S304–S312 (2006)CrossRef
15.
go back to reference Q. Zhang, C.S. Dandeneau, X. Zhou, G. Cao, ZnO nanostructures for dye-sensitized solar cells. Adv. Mater. 21, 4087–4108 (2009)CrossRef Q. Zhang, C.S. Dandeneau, X. Zhou, G. Cao, ZnO nanostructures for dye-sensitized solar cells. Adv. Mater. 21, 4087–4108 (2009)CrossRef
16.
go back to reference K.H. Kim, K. Utashiro, Y. Abe, M. Kawamura, Structural properties of zinc oxide nanorods grown on Al-doped zinc oxide seed layer and their applications in dye-sensitized solar cells. Materials 7, 2522–2533 (2014). doi:10.3390/ma7042522 CrossRef K.H. Kim, K. Utashiro, Y. Abe, M. Kawamura, Structural properties of zinc oxide nanorods grown on Al-doped zinc oxide seed layer and their applications in dye-sensitized solar cells. Materials 7, 2522–2533 (2014). doi:10.​3390/​ma7042522 CrossRef
17.
go back to reference P. Rai, R. Khan, K.-J. Ko, J.-H. Lee, Y.-T. Yu, CeO2 quantum dot functionalized ZnO nanorods photoanode for DSSC applications. J. Mater. Sci. Mater. Electron. 25, 2872–2877 (2014)CrossRef P. Rai, R. Khan, K.-J. Ko, J.-H. Lee, Y.-T. Yu, CeO2 quantum dot functionalized ZnO nanorods photoanode for DSSC applications. J. Mater. Sci. Mater. Electron. 25, 2872–2877 (2014)CrossRef
18.
go back to reference P. Ravirajan, A.M. Peiro, M.K. Nazeeruddin, M. Grätzel, D.D.C. Bradley, J.R. Durrant, J. Nelson, Hybrid polymer/zinc oxide photovoltaic devices with vertically oriented ZnO nanorods and an amphiphilic molecular interface layer. J. Phys. Chem. B 110, 7635–7639 (2006)CrossRef P. Ravirajan, A.M. Peiro, M.K. Nazeeruddin, M. Grätzel, D.D.C. Bradley, J.R. Durrant, J. Nelson, Hybrid polymer/zinc oxide photovoltaic devices with vertically oriented ZnO nanorods and an amphiphilic molecular interface layer. J. Phys. Chem. B 110, 7635–7639 (2006)CrossRef
19.
go back to reference P. Atienzar, T. Ishwara, B.N. Illy, M.P. Ryan, B.C. O’Regan, J.R. Durrant, J. Nelson, Control of photocurrent generation in polymer/ZnO nanorod solar cells by using a solution-processed TiO2 overlayer. J. Phys. Chem. Lett. 1, 708–713 (2010)CrossRef P. Atienzar, T. Ishwara, B.N. Illy, M.P. Ryan, B.C. O’Regan, J.R. Durrant, J. Nelson, Control of photocurrent generation in polymer/ZnO nanorod solar cells by using a solution-processed TiO2 overlayer. J. Phys. Chem. Lett. 1, 708–713 (2010)CrossRef
20.
go back to reference Y.-C. Ho, S.-H. Kao, H.-C. Lee, S.-K. Chang, C.-C. Lee, C.-F. Lin, Investigation of localized surface plasmon effect from Au nanoparticles in ZnO nanorods for enhancing performance of polymer solar cells. Nanoscale (2014). doi:10.1039/C4NR05194G Y.-C. Ho, S.-H. Kao, H.-C. Lee, S.-K. Chang, C.-C. Lee, C.-F. Lin, Investigation of localized surface plasmon effect from Au nanoparticles in ZnO nanorods for enhancing performance of polymer solar cells. Nanoscale (2014). doi:10.​1039/​C4NR05194G
21.
go back to reference Y.-C. Ho, P.-Y. Ho, H.-C. Lee, S.-K. Chang, Y.-R. Hong, C.-F. Lin, Enhancing performance of inverted polymer solar cells using two-growth ZnO nanorods. Sol. Energy Mater. Sol. Cells 132, 570–577 (2015)CrossRef Y.-C. Ho, P.-Y. Ho, H.-C. Lee, S.-K. Chang, Y.-R. Hong, C.-F. Lin, Enhancing performance of inverted polymer solar cells using two-growth ZnO nanorods. Sol. Energy Mater. Sol. Cells 132, 570–577 (2015)CrossRef
22.
go back to reference P. Ruankham, S. Yoshikawa, T. Sagawa, Effects of the morphology of nanostructured ZnO and interface modification on the device configuration and charge transport of ZnO/polymer hybrid solar cells. Phys. Chem. Chem. Phys. 15, 9516 (2013)CrossRef P. Ruankham, S. Yoshikawa, T. Sagawa, Effects of the morphology of nanostructured ZnO and interface modification on the device configuration and charge transport of ZnO/polymer hybrid solar cells. Phys. Chem. Chem. Phys. 15, 9516 (2013)CrossRef
23.
go back to reference M.H. Kumar, N. Yantara, S. Dharani, M. Graetzel, S. Mhaisalkar, P.P. Boix, N. Mathews, Flexible, low-temperature, solution processed ZnO-based perovskite solid state solar cells. Chem. Commun. 49, 11089–11091 (2013)CrossRef M.H. Kumar, N. Yantara, S. Dharani, M. Graetzel, S. Mhaisalkar, P.P. Boix, N. Mathews, Flexible, low-temperature, solution processed ZnO-based perovskite solid state solar cells. Chem. Commun. 49, 11089–11091 (2013)CrossRef
24.
go back to reference F.J. Ramos, M.C. Lpez-Santos, E. Guilln, M.K. Nazeeruddin, M. Grtzel, A.R. Gonzalez-Elipe, A. Shahzada, Perovskite solar cells based on nanocolumnar plasma-deposited ZnO thin films. ChemPhysChem 15, 1148–1153 (2014)CrossRef F.J. Ramos, M.C. Lpez-Santos, E. Guilln, M.K. Nazeeruddin, M. Grtzel, A.R. Gonzalez-Elipe, A. Shahzada, Perovskite solar cells based on nanocolumnar plasma-deposited ZnO thin films. ChemPhysChem 15, 1148–1153 (2014)CrossRef
25.
go back to reference D. Bi, G. Boschloo, S. Schwarzmuller, L. Yang, E.M.J. Johanssona, A. Hagfeldt, Efficient and stable CH3NH3PbI3-sensitized ZnO nanorod array solid-state solar cells. Nanoscale 5, 11686–11691 (2013)CrossRef D. Bi, G. Boschloo, S. Schwarzmuller, L. Yang, E.M.J. Johanssona, A. Hagfeldt, Efficient and stable CH3NH3PbI3-sensitized ZnO nanorod array solid-state solar cells. Nanoscale 5, 11686–11691 (2013)CrossRef
26.
go back to reference J. Dong, Y. Zhao, J. Shi, H. Wei, J. Xiao, X. Xin, J. Luo, X. Jing, D. Li, Y. Luo, Q. Meng, Impressive enhancement in the cell performance of ZnO nanorod-based perovskite solar cells with Al-doped ZnO interfacial modification. Chem. Commun. 50, 13381–13384 (2014)CrossRef J. Dong, Y. Zhao, J. Shi, H. Wei, J. Xiao, X. Xin, J. Luo, X. Jing, D. Li, Y. Luo, Q. Meng, Impressive enhancement in the cell performance of ZnO nanorod-based perovskite solar cells with Al-doped ZnO interfacial modification. Chem. Commun. 50, 13381–13384 (2014)CrossRef
27.
go back to reference S.-Y. Chang, N.-H. Yang, Y.-C. Huang, Hydrothermal growth and interface correlation of highly aligned ZnO nanorod arrays on UV-activated sol–gel transparent conducting films. J. Electrochem. Soc. 156(11), K200–K204 (2009)CrossRef S.-Y. Chang, N.-H. Yang, Y.-C. Huang, Hydrothermal growth and interface correlation of highly aligned ZnO nanorod arrays on UV-activated sol–gel transparent conducting films. J. Electrochem. Soc. 156(11), K200–K204 (2009)CrossRef
28.
go back to reference S.-C. Liu, W. Jih-Jen, Low-temperature and catalyst-free synthesis of well-aligned ZnO nanorods on Si (100). J. Mater. Chem. 12, 3125–3129 (2002). doi:10.1039/B203871D CrossRef S.-C. Liu, W. Jih-Jen, Low-temperature and catalyst-free synthesis of well-aligned ZnO nanorods on Si (100). J. Mater. Chem. 12, 3125–3129 (2002). doi:10.​1039/​B203871D CrossRef
29.
go back to reference Z.R. Tian, J.A. Voigt, J. Liu, B. Mckenzie, M.J. Mcdermott, M.A. Rodriguez, H. Konishi, X. Huifang, Complex and oriented ZnO nanostructures. Nat. Mater. 2, 821–826 (2003)CrossRef Z.R. Tian, J.A. Voigt, J. Liu, B. Mckenzie, M.J. Mcdermott, M.A. Rodriguez, H. Konishi, X. Huifang, Complex and oriented ZnO nanostructures. Nat. Mater. 2, 821–826 (2003)CrossRef
30.
go back to reference S. Nozaki, S.N. Sarangi, S.N. Sahu, K. Uchida, Selective growth of ZnO nanorods by the hydrothermal technique. Adv. Nat. Sci. Nanosci. Nanotechnol. 4, 015008 (2013)CrossRef S. Nozaki, S.N. Sarangi, S.N. Sahu, K. Uchida, Selective growth of ZnO nanorods by the hydrothermal technique. Adv. Nat. Sci. Nanosci. Nanotechnol. 4, 015008 (2013)CrossRef
31.
go back to reference D. Polsongkram, P. Chamninok, S. Pukird, L. Chow, O. Lupan, G. Chai, H. Khallaf, S. Park, A. Schulte, Effect of synthesis conditions on the growth of ZnO nanorods via hydrothermal method. Phys. B 403(19–20), 3713–3717 (2008)CrossRef D. Polsongkram, P. Chamninok, S. Pukird, L. Chow, O. Lupan, G. Chai, H. Khallaf, S. Park, A. Schulte, Effect of synthesis conditions on the growth of ZnO nanorods via hydrothermal method. Phys. B 403(19–20), 3713–3717 (2008)CrossRef
32.
go back to reference Z.H. Ibupoto, K. Khun, M. Eriksson, M. AlSalhi, M. Atif, A. Ansari, M. Willander, Hydrothermal growth of vertically aligned ZnO nanorods using a biocomposite seed layer of ZnO nanoparticles. Materials 6, 3584–3597 (2013)CrossRef Z.H. Ibupoto, K. Khun, M. Eriksson, M. AlSalhi, M. Atif, A. Ansari, M. Willander, Hydrothermal growth of vertically aligned ZnO nanorods using a biocomposite seed layer of ZnO nanoparticles. Materials 6, 3584–3597 (2013)CrossRef
33.
go back to reference M. Ohyama, H. Kozuka, T. Yoko, Sol–gel preparation of ZnO films with extremely preferred orientation along (002) plane from zinc acetate solution. Thin Solid Films 306, 78–85 (1997)CrossRef M. Ohyama, H. Kozuka, T. Yoko, Sol–gel preparation of ZnO films with extremely preferred orientation along (002) plane from zinc acetate solution. Thin Solid Films 306, 78–85 (1997)CrossRef
34.
go back to reference Z. Zheng, Z.S. Lim, Y. Peng, L. You, L. Chen, J. Wang, General route to ZnO nanorod arrays on conducting substrates via galvanic-cell-based approach. Sci. Rep. 3, 2434 (2013). doi:10.1038/srep02434 Z. Zheng, Z.S. Lim, Y. Peng, L. You, L. Chen, J. Wang, General route to ZnO nanorod arrays on conducting substrates via galvanic-cell-based approach. Sci. Rep. 3, 2434 (2013). doi:10.​1038/​srep02434
35.
go back to reference M.M. Lee, J. Teuscher, T. Miyasaka, T.N. Murakami, H.J. Snaith, Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science 338, 643–647 (2012). doi:10.1126/science.1228604 CrossRef M.M. Lee, J. Teuscher, T. Miyasaka, T.N. Murakami, H.J. Snaith, Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science 338, 643–647 (2012). doi:10.​1126/​science.​1228604 CrossRef
36.
go back to reference J. Burschka, N. Pellet, S.J. Moon, R. Humphry-Baker, P. Gao, M.K. Nazeeruddin, M. Grätzel, Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature 499, 316–319 (2013)CrossRef J. Burschka, N. Pellet, S.J. Moon, R. Humphry-Baker, P. Gao, M.K. Nazeeruddin, M. Grätzel, Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature 499, 316–319 (2013)CrossRef
37.
go back to reference X. Chengkun, P. Shin, L. Cao, D. Gao, Preferential growth of long ZnO nanowire array and its application in dye-sensitized solar cells. J. Phys. Chem. C 114, 125–129 (2010)CrossRef X. Chengkun, P. Shin, L. Cao, D. Gao, Preferential growth of long ZnO nanowire array and its application in dye-sensitized solar cells. J. Phys. Chem. C 114, 125–129 (2010)CrossRef
38.
go back to reference X. Yin, W. Que, D. Fei, H. Xie, Z. He, G. Wang, Strategies to prepare an efficient photoanode for ZnO nanowires-based CdS–CdSe co-sensitized solar cells. Electrochim. Acta 89, 561–570 (2013)CrossRef X. Yin, W. Que, D. Fei, H. Xie, Z. He, G. Wang, Strategies to prepare an efficient photoanode for ZnO nanowires-based CdS–CdSe co-sensitized solar cells. Electrochim. Acta 89, 561–570 (2013)CrossRef
39.
go back to reference S.B. Ambade, R.B. Ambade, L. Wonjoo, R.S. Mane, Y. Sung Cheol, L. Soo-Hyoung, Development of highly transparent seedless ZnO nanorods engineered for inverted polymer solar cells. Nanoscale 6(20), 12130–12141 (2014)CrossRef S.B. Ambade, R.B. Ambade, L. Wonjoo, R.S. Mane, Y. Sung Cheol, L. Soo-Hyoung, Development of highly transparent seedless ZnO nanorods engineered for inverted polymer solar cells. Nanoscale 6(20), 12130–12141 (2014)CrossRef
40.
go back to reference S. Cho, I.M. Kang, P-type conduction characteristics of lithium-doped ZnO nanowires. Curr. Appl. Phys. 23(36), 4183–4187 (2011) S. Cho, I.M. Kang, P-type conduction characteristics of lithium-doped ZnO nanowires. Curr. Appl. Phys. 23(36), 4183–4187 (2011)
41.
go back to reference L. Suganya, B. Sundaresan, G. Sankareswari, K. Ravichandran, B. Sakthivel, Influence of incorporation of Al3+ ions on the structural, optical and ac impedance characteristics of spin coated ZnO thin films. J. Mater. Sci. Mater. Electron. 25(1), 361–368 (2014)CrossRef L. Suganya, B. Sundaresan, G. Sankareswari, K. Ravichandran, B. Sakthivel, Influence of incorporation of Al3+ ions on the structural, optical and ac impedance characteristics of spin coated ZnO thin films. J. Mater. Sci. Mater. Electron. 25(1), 361–368 (2014)CrossRef
42.
go back to reference S. Zhao, Y. Zhou, K. Zhao, Z. Liu, P. Han, S. Wang et al., Violet luminescence emitted from Ag-nanocluster doped ZnO thin films grown on fused quartz substrates by pulsed laser deposition. Phys. B 373(1), 154–156 (2006)CrossRef S. Zhao, Y. Zhou, K. Zhao, Z. Liu, P. Han, S. Wang et al., Violet luminescence emitted from Ag-nanocluster doped ZnO thin films grown on fused quartz substrates by pulsed laser deposition. Phys. B 373(1), 154–156 (2006)CrossRef
43.
go back to reference H. Zhou et al., Hole-conductor-free, metal-electrode-free TiO2/CH3NH3PbI3 heterojunction solar cells based on a low-temperature carbon electrode. J. Phys. Chem. Lett. 5(18), 3241–3246 (2014)CrossRef H. Zhou et al., Hole-conductor-free, metal-electrode-free TiO2/CH3NH3PbI3 heterojunction solar cells based on a low-temperature carbon electrode. J. Phys. Chem. Lett. 5(18), 3241–3246 (2014)CrossRef
Metadata
Title
Fabrication of well-aligned ZnO nanorod photoanodes for perovskite solar cells
Authors
Haiwei Wang
Luting Yan
Jiaqi Liu
Jiali Li
Huili Wang
Publication date
08-03-2016
Publisher
Springer US
Published in
Journal of Materials Science: Materials in Electronics / Issue 7/2016
Print ISSN: 0957-4522
Electronic ISSN: 1573-482X
DOI
https://doi.org/10.1007/s10854-016-4640-0

Other articles of this Issue 7/2016

Journal of Materials Science: Materials in Electronics 7/2016 Go to the issue