Skip to main content
Top
Published in: Journal of Materials Science: Materials in Electronics 9/2017

03-03-2017

Facile synthesis of core–shell FeOOH@MnO2 nanomaterials with excellent cycling stability for supercapacitor electrodes

Authors: Juan Yang, Hui Wang, Rongfang Wang

Published in: Journal of Materials Science: Materials in Electronics | Issue 9/2017

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Core–shell nanoparticles have much potential and exciting application in the supercapacitors field. The construction of unique core–shell nanostructures plays an important role in the efficient enhancement of the rate capacity and the stability of this material. The core–shell structure of the FeOOH@MnO2 synthesis procedures involves two main steps. Firstly, the spindle FeOOH was received by the hydrolysis of Fe3+. Then, Manganese sulfate monohydrate reacted with Potassium permanganate and forms Manganese dioxide crystal nucleus, which gradually grew into manganese dioxide nanosheets on the surface of FeOOH and finally obtain core–shell FeOOH@MnO2. The as-prepared FeOOH@MnO2 nanomaterials were used as capacitive materials and showed an excellent capacitance.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference M. Liu, L. Gan, W. Xiong, Z. Xu, D. Zhu, L. Chen, Development of MnO2/porous carbon microspheres with a partially graphitic structure for high performance supercapacitor electrodes. J. Mater. Chem. A 2, 2555–2562 (2014)CrossRef M. Liu, L. Gan, W. Xiong, Z. Xu, D. Zhu, L. Chen, Development of MnO2/porous carbon microspheres with a partially graphitic structure for high performance supercapacitor electrodes. J. Mater. Chem. A 2, 2555–2562 (2014)CrossRef
2.
go back to reference P. Yang, Y. Li, Z. Lin, Y. Ding, S. Yue, C. Wong, X. Cai, S. Tan, W. Mai, Worm-link amorphous MnO2 nanowires grown on textiles for high-performance flexible supercapacitors. J. Mater. Chem. A 2, 595–599 (2014)CrossRef P. Yang, Y. Li, Z. Lin, Y. Ding, S. Yue, C. Wong, X. Cai, S. Tan, W. Mai, Worm-link amorphous MnO2 nanowires grown on textiles for high-performance flexible supercapacitors. J. Mater. Chem. A 2, 595–599 (2014)CrossRef
3.
go back to reference L. Yu, J. Zhu, J. Zhao, Beta-manganese dioxide nanoflowers selfassembled by ultrathin nanoplates with enhancedsupercapacitive performance. J. Mater. Chem. A 2, 9353–9360 (2014)CrossRef L. Yu, J. Zhu, J. Zhao, Beta-manganese dioxide nanoflowers selfassembled by ultrathin nanoplates with enhancedsupercapacitive performance. J. Mater. Chem. A 2, 9353–9360 (2014)CrossRef
4.
go back to reference D. Guo, X. Yu, W. Shi, Y. Luo, Q. Li, T. Wang, Facile synthesis of well-ordered manganese oxide nanosheet arrays on carbon cloth for high-performance supercapacitors. J. Mater. Chem. A 2, 8833–8838 (2014)CrossRef D. Guo, X. Yu, W. Shi, Y. Luo, Q. Li, T. Wang, Facile synthesis of well-ordered manganese oxide nanosheet arrays on carbon cloth for high-performance supercapacitors. J. Mater. Chem. A 2, 8833–8838 (2014)CrossRef
5.
go back to reference X. Feng, N. Chen, Y. Zhang, Z. Yan, X. Liu, Y. Ma, Q. Shen, L. Wang, W. Huang, The self-assembly of shape controlled functionalized graphene-MnO2 composites for application as supercapacitors. J. Mater. Chem. A 2, 9178–9184 (2014)CrossRef X. Feng, N. Chen, Y. Zhang, Z. Yan, X. Liu, Y. Ma, Q. Shen, L. Wang, W. Huang, The self-assembly of shape controlled functionalized graphene-MnO2 composites for application as supercapacitors. J. Mater. Chem. A 2, 9178–9184 (2014)CrossRef
6.
go back to reference H. Chen, S. Zhou, M. Chen, L. Wu, Reduced graphene Oxide-MnO2 hollow sphere hybrid nano- structures as high-performance electrochemical capacitors. J. Mater. Chem. 22, 25207–25216 (2012)CrossRef H. Chen, S. Zhou, M. Chen, L. Wu, Reduced graphene Oxide-MnO2 hollow sphere hybrid nano- structures as high-performance electrochemical capacitors. J. Mater. Chem. 22, 25207–25216 (2012)CrossRef
7.
go back to reference M. Huang, F. Li, F. Dong, Y. Zhang, L. Zhang, MnO2-based nanostructures for high-performance supercapacitors. J. Mater. Chem. A 3, 21380–21423 (2015)CrossRef M. Huang, F. Li, F. Dong, Y. Zhang, L. Zhang, MnO2-based nanostructures for high-performance supercapacitors. J. Mater. Chem. A 3, 21380–21423 (2015)CrossRef
8.
go back to reference L. Yu, G. Zhang, C. Yuan, X. Lou, Hierarchical NiCo2O4@MnO2 core–shell heterostructured nano-wire arrays on Ni foam as high-performance supercapacitor electrodes. Chem. Commun. 49, 137–139 (2013)CrossRef L. Yu, G. Zhang, C. Yuan, X. Lou, Hierarchical NiCo2O4@MnO2 core–shell heterostructured nano-wire arrays on Ni foam as high-performance supercapacitor electrodes. Chem. Commun. 49, 137–139 (2013)CrossRef
9.
go back to reference A. Maliakal, H. Katz, P.M. Cotts, S. Subramoney, P. Mirau, Inorganic oxide core, polymer shell nanocomposite as a high K gate dielectric for flexible electronics applications. J. Am. Chem. Soc. 127, 14655–14662 (2005)CrossRef A. Maliakal, H. Katz, P.M. Cotts, S. Subramoney, P. Mirau, Inorganic oxide core, polymer shell nanocomposite as a high K gate dielectric for flexible electronics applications. J. Am. Chem. Soc. 127, 14655–14662 (2005)CrossRef
10.
go back to reference R. Ghosh Chaudhuri, S. Paria, Core/shell, nanoparticles: classes, properties, synthesis mechanisms, characterization, and applications. Chem. Rev. 112, 2373–2433 (2012)CrossRef R. Ghosh Chaudhuri, S. Paria, Core/shell, nanoparticles: classes, properties, synthesis mechanisms, characterization, and applications. Chem. Rev. 112, 2373–2433 (2012)CrossRef
11.
go back to reference Q.X. Low, G.W. Ho, Facile structural tuning and compositing of iron oxide-graphene anode towards enhanced supacapacitive performance. Nano. Energy 5, 28–35 (2014)CrossRef Q.X. Low, G.W. Ho, Facile structural tuning and compositing of iron oxide-graphene anode towards enhanced supacapacitive performance. Nano. Energy 5, 28–35 (2014)CrossRef
12.
go back to reference K. Zhu, H. Qin, B. Liu, Z. Li, Carbon nanotubes supported Fe-based compounds as the electrode catalyst for oxygen reduction reaction. J. Power Sour. 196, 182–185 (2011)CrossRef K. Zhu, H. Qin, B. Liu, Z. Li, Carbon nanotubes supported Fe-based compounds as the electrode catalyst for oxygen reduction reaction. J. Power Sour. 196, 182–185 (2011)CrossRef
13.
go back to reference S. Lee, J.Y. Cheon, W.J. Lee, S.O. Kim, S.H. Joo, S. Park, Production of novel FeOOH/reduced graphene oxide hybrids and their performance as oxygen reduction reaction catalysts. Carbon 80, 127–134 (2014)CrossRef S. Lee, J.Y. Cheon, W.J. Lee, S.O. Kim, S.H. Joo, S. Park, Production of novel FeOOH/reduced graphene oxide hybrids and their performance as oxygen reduction reaction catalysts. Carbon 80, 127–134 (2014)CrossRef
14.
go back to reference W.D. Chemelewski, H.C. Lee, J.F. Lin, A.J. Bard, C.B. Mullins, Amorphous FeOOH oxygen evolution reaction catalyst for photoelectrochemical water splitting. J. Am. Chem. Soc. 136, 2843–2850 (2014)CrossRef W.D. Chemelewski, H.C. Lee, J.F. Lin, A.J. Bard, C.B. Mullins, Amorphous FeOOH oxygen evolution reaction catalyst for photoelectrochemical water splitting. J. Am. Chem. Soc. 136, 2843–2850 (2014)CrossRef
15.
go back to reference B. Wang, H. Wu, L. Yu, R. Xu, T. Lim, X. Lou, Template-free formation of uniform urchin-like α-FeOOH hollow spheres with superior capability for water treatment. Adv. Mater. 24, 1111–1116 (2012)CrossRef B. Wang, H. Wu, L. Yu, R. Xu, T. Lim, X. Lou, Template-free formation of uniform urchin-like α-FeOOH hollow spheres with superior capability for water treatment. Adv. Mater. 24, 1111–1116 (2012)CrossRef
16.
go back to reference H. Tanaka, R. Mishima, N. Hatanaka, T. Ishikawa, T. Nakayama, Formation of magnetite rust particles by reacting iron powder with artificial α-, β- and γ-FeOOH in aqueous media. Corros. Sci. 78, 384–387 (2014)CrossRef H. Tanaka, R. Mishima, N. Hatanaka, T. Ishikawa, T. Nakayama, Formation of magnetite rust particles by reacting iron powder with artificial α-, β- and γ-FeOOH in aqueous media. Corros. Sci. 78, 384–387 (2014)CrossRef
17.
go back to reference X. Xia, W. Lei, Q. Hao, W. Wang, Y. Sun, X. Wang, One-pot synthesis and electrochemical properties of nitrogen-doped graphene decorated with M(OH)X (M = FeO, Ni. Co) nanoparticles. Electrochim. Acta 113, 117–126 (2013)CrossRef X. Xia, W. Lei, Q. Hao, W. Wang, Y. Sun, X. Wang, One-pot synthesis and electrochemical properties of nitrogen-doped graphene decorated with M(OH)X (M = FeO, Ni. Co) nanoparticles. Electrochim. Acta 113, 117–126 (2013)CrossRef
18.
go back to reference W. Jin, G. Cao, J. Sun, Hybrid supercapacitor based on MnO2 and columned FeOOH using Li2SO4 electrolyte solution. J. Power Sour. 175, 686–691 (2008)CrossRef W. Jin, G. Cao, J. Sun, Hybrid supercapacitor based on MnO2 and columned FeOOH using Li2SO4 electrolyte solution. J. Power Sour. 175, 686–691 (2008)CrossRef
19.
go back to reference Y.C. Chen, Y.G. Lin, Y.K. Hsu, S.C. Yen, K.H. Chen, L.C. Chen, Novel iron oxyhydroxide lepidocrocite nanosheet as ultrahigh power density anode material for asymmetric supercapacitors. Small 10, 3803–3810 (2014)CrossRef Y.C. Chen, Y.G. Lin, Y.K. Hsu, S.C. Yen, K.H. Chen, L.C. Chen, Novel iron oxyhydroxide lepidocrocite nanosheet as ultrahigh power density anode material for asymmetric supercapacitors. Small 10, 3803–3810 (2014)CrossRef
20.
go back to reference M. Zhang, K. Chen, X. Chen, X. Peng, X. Sun, D. Xue, Crystallization of FeOOH via iron salts: an anionchemoaffinity controlled hydrolysis toward high performance inorganic pseudocapacitor materials. Cryst. Eng. Comm. 17, 1917–1922 (2015)CrossRef M. Zhang, K. Chen, X. Chen, X. Peng, X. Sun, D. Xue, Crystallization of FeOOH via iron salts: an anionchemoaffinity controlled hydrolysis toward high performance inorganic pseudocapacitor materials. Cryst. Eng. Comm. 17, 1917–1922 (2015)CrossRef
21.
go back to reference S. Yang, X. Song, P. Zhang, L. Gao, Heating-rate-induced porous α-Fe2O3 with controllable pore size and crystallinity grown on graphene for supercapacitors. ACS Appl. Mater. Interfaces 7, 75–79 (2015)CrossRef S. Yang, X. Song, P. Zhang, L. Gao, Heating-rate-induced porous α-Fe2O3 with controllable pore size and crystallinity grown on graphene for supercapacitors. ACS Appl. Mater. Interfaces 7, 75–79 (2015)CrossRef
22.
go back to reference H. Xu, Z. Hu, A. Lu, Y. Hu, L. Li, Y. Yang, Z. Zhang, H. Wu, Synthesis and super capacitance of goethite/reduced graphene oxide for supercapacitors. Mater. Chem. Phys. 141, 310–317 (2013)CrossRef H. Xu, Z. Hu, A. Lu, Y. Hu, L. Li, Y. Yang, Z. Zhang, H. Wu, Synthesis and super capacitance of goethite/reduced graphene oxide for supercapacitors. Mater. Chem. Phys. 141, 310–317 (2013)CrossRef
23.
go back to reference T. Xiao, C. Yang, Y. Lu, F. Zeng, One-pot hydrothermal synthesis of rod-like FeOOH/reduced graphene oxide composites for supercapacitor. J. Mater. Sci. Mater. Electron. 25, 3364–3374 (2014)CrossRef T. Xiao, C. Yang, Y. Lu, F. Zeng, One-pot hydrothermal synthesis of rod-like FeOOH/reduced graphene oxide composites for supercapacitor. J. Mater. Sci. Mater. Electron. 25, 3364–3374 (2014)CrossRef
24.
go back to reference Q. Shou, J. Cheng, L. Zhang, B.J. Nelson, X. Zhang, Synthesis and characterization of a nanocomposite of goethite nanorods and reduced graphene oxide for electrochemical capacitors. J. Solid State Chem. 185, 191–197 (2012)CrossRef Q. Shou, J. Cheng, L. Zhang, B.J. Nelson, X. Zhang, Synthesis and characterization of a nanocomposite of goethite nanorods and reduced graphene oxide for electrochemical capacitors. J. Solid State Chem. 185, 191–197 (2012)CrossRef
25.
go back to reference J. Liu, M. Zheng, X. Shi, H. Zeng, H. Xia, Amorphous FeOOH quantum dots assembled mesoporous film anchored on graphene nanosheets with superior electrochemical performance for supercapacitors. Adv. Funct. Mater. 26, 919–930 (2016)CrossRef J. Liu, M. Zheng, X. Shi, H. Zeng, H. Xia, Amorphous FeOOH quantum dots assembled mesoporous film anchored on graphene nanosheets with superior electrochemical performance for supercapacitors. Adv. Funct. Mater. 26, 919–930 (2016)CrossRef
26.
go back to reference R. Wang, Y. Ma, H. Wang, J. Key, D. Brett, S. Ji, S. Yin, P.K. Shen, A cost effective, highly porous, manganese oxide/carbon supercapacitor material with high rate capability. J. Mater. Chem. A 4, 5390–5394 (2016)CrossRef R. Wang, Y. Ma, H. Wang, J. Key, D. Brett, S. Ji, S. Yin, P.K. Shen, A cost effective, highly porous, manganese oxide/carbon supercapacitor material with high rate capability. J. Mater. Chem. A 4, 5390–5394 (2016)CrossRef
27.
go back to reference S. Musić, S. Krehula, S. Popović, Ž. Skoko, Some factors influencing forced hydrolysis of FeCl3 solutions. Mater. Lett. 57, 1096–1102 (2003)CrossRef S. Musić, S. Krehula, S. Popović, Ž. Skoko, Some factors influencing forced hydrolysis of FeCl3 solutions. Mater. Lett. 57, 1096–1102 (2003)CrossRef
28.
go back to reference Q. Ren, R. Wang, H. Wang, J. Key, D.J.L. Brett, S. Ji, S. Yin, P. Kang Shen, Ranunculus flower-like Ni(OH)2@Mn2O3 as a high specific capacitance cathode material for alkaline supercapacitors. J. Mater. Chem. A 4, 7591–7595 (2016)CrossRef Q. Ren, R. Wang, H. Wang, J. Key, D.J.L. Brett, S. Ji, S. Yin, P. Kang Shen, Ranunculus flower-like Ni(OH)2@Mn2O3 as a high specific capacitance cathode material for alkaline supercapacitors. J. Mater. Chem. A 4, 7591–7595 (2016)CrossRef
29.
go back to reference M. Xu, L. Kong, W. Zhou, H. Li, Hydrothermal synthesis and pseudocapacitance properties of α-MnO2 hollow spheres and hollow urchins. J. Phys. Chem. C 111, 19141–19147 (2007)CrossRef M. Xu, L. Kong, W. Zhou, H. Li, Hydrothermal synthesis and pseudocapacitance properties of α-MnO2 hollow spheres and hollow urchins. J. Phys. Chem. C 111, 19141–19147 (2007)CrossRef
30.
go back to reference C. Wei, Z. Nan, Mater, Effects of experimental conditions on one-dimensional single-crystal nano-structure of β-FeOOH. Chem. Phys. 127, 220–226 (2011) C. Wei, Z. Nan, Mater, Effects of experimental conditions on one-dimensional single-crystal nano-structure of β-FeOOH. Chem. Phys. 127, 220–226 (2011)
31.
go back to reference S. Devaraj, N. Munichandraiah, Effect of crystallographic structure of MnO2 on Its electro-chemical capacitance properties. J. Phys. Chem. C 112, 4406–4417 (2008)CrossRef S. Devaraj, N. Munichandraiah, Effect of crystallographic structure of MnO2 on Its electro-chemical capacitance properties. J. Phys. Chem. C 112, 4406–4417 (2008)CrossRef
32.
go back to reference C. Long, L. Jiang, T. Wei, J. Yan, Z. Fan, High-performance asymmetric supercapacitors with lithium intercalation reaction using metal oxide-based composites as electrode materials. J. Mater. Chem. A 2, 16678–16686 (2014)CrossRef C. Long, L. Jiang, T. Wei, J. Yan, Z. Fan, High-performance asymmetric supercapacitors with lithium intercalation reaction using metal oxide-based composites as electrode materials. J. Mater. Chem. A 2, 16678–16686 (2014)CrossRef
33.
go back to reference L. Cheng, H. i, Y. Xia, A hybrid nonaqueous electrochemical supercapacitor using nano-sized iron oxyhydroxide and activated carbon. Solid State Electr. 10, 405–410 (2005)CrossRef L. Cheng, H. i, Y. Xia, A hybrid nonaqueous electrochemical supercapacitor using nano-sized iron oxyhydroxide and activated carbon. Solid State Electr. 10, 405–410 (2005)CrossRef
34.
go back to reference C.T. Hsieh, S.M. Hsu, J.Y. Lin, H. Teng, Electrochemical capacitors based on graphene oxide sheets using different aqueous electrolytes. J. Phys. Chem. C 115, 12367–12374 (2011)CrossRef C.T. Hsieh, S.M. Hsu, J.Y. Lin, H. Teng, Electrochemical capacitors based on graphene oxide sheets using different aqueous electrolytes. J. Phys. Chem. C 115, 12367–12374 (2011)CrossRef
35.
go back to reference W. Zhang, C. Ma, J. Fang, J. Cheng, X. Zhang, S. Dong, L. Zhang, Asymmetric electrochemical capacitors with high energy and power density based on graphene/CoAlLDH and activated carbon electrodes. RSC Adv. 3, 2483–2490 (2013)CrossRef W. Zhang, C. Ma, J. Fang, J. Cheng, X. Zhang, S. Dong, L. Zhang, Asymmetric electrochemical capacitors with high energy and power density based on graphene/CoAlLDH and activated carbon electrodes. RSC Adv. 3, 2483–2490 (2013)CrossRef
36.
go back to reference T. Qin, B. Liu, Y. Wen, Z. Wang, X. Jiang, Z. Wan, S. Peng, G. Cao, D. He, Freestanding flexible graphene foams@polypyrrole@MnO2 electrodes for high-performance supercapacitors. J. Mater. Chem. A 4, 9196–9203 (2016)CrossRef T. Qin, B. Liu, Y. Wen, Z. Wang, X. Jiang, Z. Wan, S. Peng, G. Cao, D. He, Freestanding flexible graphene foams@polypyrrole@MnO2 electrodes for high-performance supercapacitors. J. Mater. Chem. A 4, 9196–9203 (2016)CrossRef
Metadata
Title
Facile synthesis of core–shell FeOOH@MnO2 nanomaterials with excellent cycling stability for supercapacitor electrodes
Authors
Juan Yang
Hui Wang
Rongfang Wang
Publication date
03-03-2017
Publisher
Springer US
Published in
Journal of Materials Science: Materials in Electronics / Issue 9/2017
Print ISSN: 0957-4522
Electronic ISSN: 1573-482X
DOI
https://doi.org/10.1007/s10854-017-6335-6

Other articles of this Issue 9/2017

Journal of Materials Science: Materials in Electronics 9/2017 Go to the issue