Skip to main content
Top
Published in: Mechanics of Composite Materials 2/2020

19-05-2020

Failure of Polymer Beams Reinforced with Glass Fibers

Authors: L. Czechowski, J. Gralewski, T. Kubiak

Published in: Mechanics of Composite Materials | Issue 2/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The present paper deals with the four-point bending of polyvinyl chloride beams reinforced with glass fiber clusters. The clusters, treated as orthotropic materials, were arranged periodically along the longitudinal axis of beams. The load-carrying capacity of the beams was estimated by two methods. In the first method, the beam strength was assessed using the Max-Stress, Max-Strain, Tsai–Wu, Inverse Tsai–Wu, and Hashin failure criteria. In the second one, the anisotropic Hill potential theory was employed to locally decrease the stiffness at any point of the whole structure. An analysis revealed that the Hill theory better described the true behavior of the beams at large deformations. It is also concluded that the toughness at fiber borders affects the total failure load considerably.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Ch. Dong, “Uncertainties in flexural strength of carbon/glass-fiber-reinforced hybrid epoxy composites,” Composites, Part B, 98, 176-181 (2016). Ch. Dong, “Uncertainties in flexural strength of carbon/glass-fiber-reinforced hybrid epoxy composites,” Composites, Part B, 98, 176-181 (2016).
2.
go back to reference T. Sawada and T. Kusaka, “Strength predictions by applied effective volume theory in short glass-fiber-reinforced plastics,” Polymer Testing, 62, 143-153 (2017).CrossRef T. Sawada and T. Kusaka, “Strength predictions by applied effective volume theory in short glass-fiber-reinforced plastics,” Polymer Testing, 62, 143-153 (2017).CrossRef
3.
go back to reference H. Xin, Y. Liu, A. S. Mosallam, J. He, and A. Du, “Evaluation on material behaviors of pultruded glass-fiber-reinforced polymer (GFRP) laminates,” Composite Structures, 182, 283-300 (2017).CrossRef H. Xin, Y. Liu, A. S. Mosallam, J. He, and A. Du, “Evaluation on material behaviors of pultruded glass-fiber-reinforced polymer (GFRP) laminates,” Composite Structures, 182, 283-300 (2017).CrossRef
4.
go back to reference M. Kalantari, Ch. Dong, and I. J. Davies, “Multi-objective robust optimization of multi-directional carbon/glass-fiber-reinforced hybrid composites with manufacture related uncertainties under flexural loading,” Composite Structures, 182, 132-142 (2017).CrossRef M. Kalantari, Ch. Dong, and I. J. Davies, “Multi-objective robust optimization of multi-directional carbon/glass-fiber-reinforced hybrid composites with manufacture related uncertainties under flexural loading,” Composite Structures, 182, 132-142 (2017).CrossRef
5.
go back to reference Z. Zhai, Ch. Gröschel, and D. Drummer, “Tensile behavior of quasi-unidirectional glass fiber/polypropylene composites at room and elevated temperatures,” Polymer Testing, 54, 126-133 (2016).CrossRef Z. Zhai, Ch. Gröschel, and D. Drummer, “Tensile behavior of quasi-unidirectional glass fiber/polypropylene composites at room and elevated temperatures,” Polymer Testing, 54, 126-133 (2016).CrossRef
6.
go back to reference S. Feih, J. Wei, P. Kingshott, and B. F. Sorensen, “The influence of fiber sizing on the strength and fracture toughness of glass fiber composites,” Composites, Part A, 36, 245-255 (2005). S. Feih, J. Wei, P. Kingshott, and B. F. Sorensen, “The influence of fiber sizing on the strength and fracture toughness of glass fiber composites,” Composites, Part A, 36, 245-255 (2005).
7.
go back to reference D. Hristozov, L. Wroblewski, and P. Sadeghian, “Long-term tensile properties of natural fiber-reinforced polymer composites: Comparison of flax and glass fibers,” Composites, Part B, 95, 82-95 (2016). D. Hristozov, L. Wroblewski, and P. Sadeghian, “Long-term tensile properties of natural fiber-reinforced polymer composites: Comparison of flax and glass fibers,” Composites, Part B, 95, 82-95 (2016).
8.
go back to reference Z. Kołakowski, and A. Teter, “Load carrying capacity of functionally graded columns with open cross-sections under static compression,” Compos. Structures, 129, 1-7 (2015).CrossRef Z. Kołakowski, and A. Teter, “Load carrying capacity of functionally graded columns with open cross-sections under static compression,” Compos. Structures, 129, 1-7 (2015).CrossRef
9.
go back to reference T. Kubiak, Z. Kolakowski, J. Swiniarski, M. Urbaniak, and A. Gliszczynski, “Local buckling and post-buckling of composite channel-section beams - Numerical and experimental investigations,” Composites, Part B, 91, 176-88 (2016). T. Kubiak, Z. Kolakowski, J. Swiniarski, M. Urbaniak, and A. Gliszczynski, “Local buckling and post-buckling of composite channel-section beams - Numerical and experimental investigations,” Composites, Part B, 91, 176-88 (2016).
10.
go back to reference H. Dębski and J. Jonak, “Failure analysis of thin-walled composite channel section columns,” Composite Structures, 132, 567-574 (2015).CrossRef H. Dębski and J. Jonak, “Failure analysis of thin-walled composite channel section columns,” Composite Structures, 132, 567-574 (2015).CrossRef
11.
go back to reference M. Urbaniak, A. Teter, and T. Kubiak, “Influence of boundary conditions on the critical and failure load in the GFPR channel cross-section columns subjected to compression,” Composite Structures, 134, 199-208 (2015).CrossRef M. Urbaniak, A. Teter, and T. Kubiak, “Influence of boundary conditions on the critical and failure load in the GFPR channel cross-section columns subjected to compression,” Composite Structures, 134, 199-208 (2015).CrossRef
12.
go back to reference F. Nunes, M. Correia, J. R. Correia, N. Silvestre, and A. Moreira, “Experimental and numerical study on the structural behaviour of eccentrically loaded GFRP columns,” Thin-Walled Structures, 72, 175-187 (2013).CrossRef F. Nunes, M. Correia, J. R. Correia, N. Silvestre, and A. Moreira, “Experimental and numerical study on the structural behaviour of eccentrically loaded GFRP columns,” Thin-Walled Structures, 72, 175-187 (2013).CrossRef
13.
go back to reference A. Teter, R.J. Mania, and Z. Kołakowski, “Non-linear multi-mode buckling of non-symmetric FML/FGM thin-walled columns with open cross-sections under compression,” Composite Structures, 167, 38-49 (2017).CrossRef A. Teter, R.J. Mania, and Z. Kołakowski, “Non-linear multi-mode buckling of non-symmetric FML/FGM thin-walled columns with open cross-sections under compression,” Composite Structures, 167, 38-49 (2017).CrossRef
14.
go back to reference D. Banat and R. J. Mania, “Comparison of failure criteria application for FML column buckling strength analysis,” Composite Structures, 140, 806-815 (2016).CrossRef D. Banat and R. J. Mania, “Comparison of failure criteria application for FML column buckling strength analysis,” Composite Structures, 140, 806-815 (2016).CrossRef
15.
go back to reference P. M. H. Wong and Y. C. Wang, “An experimental study of pultruded glass-fiber-reinforced plastics channel columns at elevated temperatures,” Composite Structures, 81, 84-95 (2007).CrossRef P. M. H. Wong and Y. C. Wang, “An experimental study of pultruded glass-fiber-reinforced plastics channel columns at elevated temperatures,” Composite Structures, 81, 84-95 (2007).CrossRef
16.
go back to reference M. Schwab, M. Todt, M. Wolfahrt, and M. Pettermann, “Failure mechanism based modelling of impact on fabric reinforced composite laminates based on shell elements,” Composites Science and Technology, 128, 131-137 (2016).CrossRef M. Schwab, M. Todt, M. Wolfahrt, and M. Pettermann, “Failure mechanism based modelling of impact on fabric reinforced composite laminates based on shell elements,” Composites Science and Technology, 128, 131-137 (2016).CrossRef
17.
go back to reference T. Kubiak and Ł. Kaczmarek, “Estimation of load-carrying capacity for thin-walled composite beams,” Composite Structures, 119, 749-756 (2015).CrossRef T. Kubiak and Ł. Kaczmarek, “Estimation of load-carrying capacity for thin-walled composite beams,” Composite Structures, 119, 749-756 (2015).CrossRef
18.
go back to reference H. Dębski, T. Kubiak, and A. Teter, “Experimental investigation of channel-section composite profiles behaviour with various sequences of plies subjected to static compression,” Thin-Walled Structures, 71, 147-154 (2013).CrossRef H. Dębski, T. Kubiak, and A. Teter, “Experimental investigation of channel-section composite profiles behaviour with various sequences of plies subjected to static compression,” Thin-Walled Structures, 71, 147-154 (2013).CrossRef
19.
go back to reference D. S. Lobanov and S. V. Slovikov, “Mechanical behavior of a unidirectional basalt-fiber-reinforced plastic under thermomechanical loadings,” Mech. Compos. Mater., 54, No. 3, 351-358 (2018).CrossRef D. S. Lobanov and S. V. Slovikov, “Mechanical behavior of a unidirectional basalt-fiber-reinforced plastic under thermomechanical loadings,” Mech. Compos. Mater., 54, No. 3, 351-358 (2018).CrossRef
20.
go back to reference S. Xiang, and G. W. Kang, “Meshless solution of the problem on the static behavior of thin and thick laminated composite beams,” Mech. Compos. Mater., 54, No. 1, 89-98 (2018).CrossRef S. Xiang, and G. W. Kang, “Meshless solution of the problem on the static behavior of thin and thick laminated composite beams,” Mech. Compos. Mater., 54, No. 1, 89-98 (2018).CrossRef
21.
go back to reference L. Czechowski, A. Gliszczyński, J. Bieniaś, P. Jakubczak, and K. Majerski, “Failure of GFRP channel section beams subjected to bending - Numerical and experimental investigations,” Composites, Part B, 111, 112-23 (2017). L. Czechowski, A. Gliszczyński, J. Bieniaś, P. Jakubczak, and K. Majerski, “Failure of GFRP channel section beams subjected to bending - Numerical and experimental investigations,” Composites, Part B, 111, 112-23 (2017).
22.
go back to reference P. P. Camanho and F. L. Matthews, “A progressive damage model for mechanically fastened joints in composite laminates,” J. Compos. Mater., 33, 2248-2280 (1999).CrossRef P. P. Camanho and F. L. Matthews, “A progressive damage model for mechanically fastened joints in composite laminates,” J. Compos. Mater., 33, 2248-2280 (1999).CrossRef
23.
go back to reference J. F. Chen, E. V. Morozov, and K. Shankar, “A combined elastoplastic damage model for progressive failure analysis of composite materials and structures,” Compos. Structures, 94, 3478-3489 (2012).CrossRef J. F. Chen, E. V. Morozov, and K. Shankar, “A combined elastoplastic damage model for progressive failure analysis of composite materials and structures,” Compos. Structures, 94, 3478-3489 (2012).CrossRef
24.
go back to reference D. Cárdenas, H. H. Elizalde, P. Marzocca, F. Abdi, L. Minnetyan, and L. Probst, “Progressive failure analysis of thin-walled composite structures,” Composite Structures, 95, 53-62 (2013).CrossRef D. Cárdenas, H. H. Elizalde, P. Marzocca, F. Abdi, L. Minnetyan, and L. Probst, “Progressive failure analysis of thin-walled composite structures,” Composite Structures, 95, 53-62 (2013).CrossRef
25.
go back to reference A. Gliszczyński and T. Kubiak, “Progressive failure analysis of thin-walled composite columns subjected to uniaxial compression,” Composite Structures, 169, 52-61 (2017).CrossRef A. Gliszczyński and T. Kubiak, “Progressive failure analysis of thin-walled composite columns subjected to uniaxial compression,” Composite Structures, 169, 52-61 (2017).CrossRef
26.
go back to reference A. Gliszczyński and L. Czechowski, “Collapse of channel section composite profile subjected to bending. Part I: Numerical investigations,” Composite Structures, 178, 383-394 (2017).CrossRef A. Gliszczyński and L. Czechowski, “Collapse of channel section composite profile subjected to bending. Part I: Numerical investigations,” Composite Structures, 178, 383-394 (2017).CrossRef
27.
go back to reference I. Lapczyk and J. A. Hurtado, “Progressive damage modeling in fiber-reinforced materials,” Composites, Part A, 38, No. 11, 2333-2341 (2007). I. Lapczyk and J. A. Hurtado, “Progressive damage modeling in fiber-reinforced materials,” Composites, Part A, 38, No. 11, 2333-2341 (2007).
28.
go back to reference S. S. Seyedmohammad and F. El-Hajjar Rani, “Effects of scratch damage on progressive failure of laminated carbon fiber/epoxy composites,” International Journal of Mechanical Sciences, 67, 70-77 (2013).CrossRef S. S. Seyedmohammad and F. El-Hajjar Rani, “Effects of scratch damage on progressive failure of laminated carbon fiber/epoxy composites,” International Journal of Mechanical Sciences, 67, 70-77 (2013).CrossRef
29.
go back to reference Y. Zhang, Y. Li, H. Ma, and T. Yu, “Tensile and interfacial properties of unidirectional flax/glass-fiber-reinforced hybrid composites,” Composites Science and Technology, 88, 172-177 (2013).CrossRef Y. Zhang, Y. Li, H. Ma, and T. Yu, “Tensile and interfacial properties of unidirectional flax/glass-fiber-reinforced hybrid composites,” Composites Science and Technology, 88, 172-177 (2013).CrossRef
30.
go back to reference A. Kent, K. A. Harries, Q. Guo, and D. Cardoso, “Creep and creep buckling of pultruded glass-reinforced polymer members,” Composite Structures, 181, 315-324 (2017).CrossRef A. Kent, K. A. Harries, Q. Guo, and D. Cardoso, “Creep and creep buckling of pultruded glass-reinforced polymer members,” Composite Structures, 181, 315-324 (2017).CrossRef
31.
go back to reference P. R. T. Santana, T. H. Panzera, R. T. S. Freire, and A. L. Christoforo, “Apparent shear strength of hybrid glass-fiber-reinforced composite joints,” Polymer Testing, 64, 307-312 (2017).CrossRef P. R. T. Santana, T. H. Panzera, R. T. S. Freire, and A. L. Christoforo, “Apparent shear strength of hybrid glass-fiber-reinforced composite joints,” Polymer Testing, 64, 307-312 (2017).CrossRef
32.
go back to reference P. Wolszczak, T. Sadowski, and S. Samborski, “On quantitative expression in fibrous composites based on an exemplary distribution of roving glass-fibers,” Composites, Part B, 129, 66-76 (2017). P. Wolszczak, T. Sadowski, and S. Samborski, “On quantitative expression in fibrous composites based on an exemplary distribution of roving glass-fibers,” Composites, Part B, 129, 66-76 (2017).
33.
go back to reference P. Slobodian, S. L. Pertegas, P. Riha, J. Matyas, R. Olejnik, R. Schledjewski, and M. Kovar, “Glass fiber/epoxy composites with integrated layer of carbon nanotubes for deformation detection,” Composites Science and Technology, 156, 61-69 (2018).CrossRef P. Slobodian, S. L. Pertegas, P. Riha, J. Matyas, R. Olejnik, R. Schledjewski, and M. Kovar, “Glass fiber/epoxy composites with integrated layer of carbon nanotubes for deformation detection,” Composites Science and Technology, 156, 61-69 (2018).CrossRef
34.
go back to reference R. Barretta and R. Luciano, “Exact solutions of isotropic viscoelastic functionally graded Kirchhoff plates,” Composite Structures, 118, 448-454 (2014).CrossRef R. Barretta and R. Luciano, “Exact solutions of isotropic viscoelastic functionally graded Kirchhoff plates,” Composite Structures, 118, 448-454 (2014).CrossRef
35.
go back to reference A. Apuzzo, R. Barretta, and R. Luciano, “Some analytical solutions of functionally graded Kirchhoff plates,” Composites, Part B, 68, 266-269 (2015). A. Apuzzo, R. Barretta, and R. Luciano, “Some analytical solutions of functionally graded Kirchhoff plates,” Composites, Part B, 68, 266-269 (2015).
36.
go back to reference R. Barretta and R. Luciano, “Analogies between Kirchhoff plates and functionally graded Saint-Venant beams under torsion,” Continuum Mechanics and Thermodynamics, 27, 499-505 (2015).CrossRef R. Barretta and R. Luciano, “Analogies between Kirchhoff plates and functionally graded Saint-Venant beams under torsion,” Continuum Mechanics and Thermodynamics, 27, 499-505 (2015).CrossRef
37.
go back to reference R. Barretta, L. Feo, R. Luciano, F. Marotti de Sciarra, and R. Penna, “Functionally graded Timoshenko nanobeams: A novel nonlocal gradient formulation,” Composites, Part B, 100, 208-219 (2016). R. Barretta, L. Feo, R. Luciano, F. Marotti de Sciarra, and R. Penna, “Functionally graded Timoshenko nanobeams: A novel nonlocal gradient formulation,” Composites, Part B, 100, 208-219 (2016).
38.
go back to reference R. Barretta, L. Feo, R. Luciano, and F. Marotti de Sciarra, “Application of an enhanced version of the Eringen differentia model to nanotechnology,” Composites, Part B, 96, 274-280 (2016). R. Barretta, L. Feo, R. Luciano, and F. Marotti de Sciarra, “Application of an enhanced version of the Eringen differentia model to nanotechnology,” Composites, Part B, 96, 274-280 (2016).
39.
go back to reference R. Barretta, L. Feo, and R. Luciano, “An Eringen-like model for Timoshenko nanobeams,” Composite Structures, 139, 104-110 (2016).CrossRef R. Barretta, L. Feo, and R. Luciano, “An Eringen-like model for Timoshenko nanobeams,” Composite Structures, 139, 104-110 (2016).CrossRef
40.
go back to reference S. W. Tsai and E. M. Wu, “A general theory of strength for anisotropic materials,” J. Compos. Mater., 5, 58-80 (1971).CrossRef S. W. Tsai and E. M. Wu, “A general theory of strength for anisotropic materials,” J. Compos. Mater., 5, 58-80 (1971).CrossRef
41.
go back to reference Z. Hashin, “Failure criteria for unidirectional fiber composite,” J Applied Mechanics, 47, No. 2, 329-334 (1980). Z. Hashin, “Failure criteria for unidirectional fiber composite,” J Applied Mechanics, 47, No. 2, 329-334 (1980).
42.
go back to reference ANSYS 18.2 User’s Guide, Ansys Inc, Houston, USA. ANSYS 18.2 User’s Guide, Ansys Inc, Houston, USA.
43.
go back to reference R. Hill, “Theoretical plasticity of textured aggregates,” Mathematical Proceedings Camb. Philosophical Society, 85, 179 (1979). R. Hill, “Theoretical plasticity of textured aggregates,” Mathematical Proceedings Camb. Philosophical Society, 85, 179 (1979).
44.
go back to reference R. Hill, “A theory of the yielding and plastic flow of anisotropic metals,” Proceedings of Royal Society of London, Series A, No. 193, 281 (1948). R. Hill, “A theory of the yielding and plastic flow of anisotropic metals,” Proceedings of Royal Society of London, Series A, No. 193, 281 (1948).
45.
go back to reference R. Hill, The Mathematical Theory of Plasticity, Oxford University (1950). R. Hill, The Mathematical Theory of Plasticity, Oxford University (1950).
Metadata
Title
Failure of Polymer Beams Reinforced with Glass Fibers
Authors
L. Czechowski
J. Gralewski
T. Kubiak
Publication date
19-05-2020
Publisher
Springer US
Published in
Mechanics of Composite Materials / Issue 2/2020
Print ISSN: 0191-5665
Electronic ISSN: 1573-8922
DOI
https://doi.org/10.1007/s11029-020-09872-8

Other articles of this Issue 2/2020

Mechanics of Composite Materials 2/2020 Go to the issue

Premium Partners