Skip to main content
Top
Published in: Journal of Computational Neuroscience 2/2011

01-10-2011

Fast inference of interactions in assemblies of stochastic integrate-and-fire neurons from spike recordings

Authors: Remi Monasson, Simona Cocco

Published in: Journal of Computational Neuroscience | Issue 2/2011

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

We present two Bayesian procedures to infer the interactions and external currents in an assembly of stochastic integrate-and-fire neurons from the recording of their spiking activity. The first procedure is based on the exact calculation of the most likely time courses of the neuron membrane potentials conditioned by the recorded spikes, and is exact for a vanishing noise variance and for an instantaneous synaptic integration. The second procedure takes into account the presence of fluctuations around the most likely time courses of the potentials, and can deal with moderate noise levels. The running time of both procedures is proportional to the number S of spikes multiplied by the squared number N of neurons. The algorithms are validated on synthetic data generated by networks with known couplings and currents. We also reanalyze previously published recordings of the activity of the salamander retina (including from 32 to 40 neurons, and from 65,000 to 170,000 spikes). We study the dependence of the inferred interactions on the membrane leaking time; the differences and similarities with the classical cross-correlation analysis are discussed.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Footnotes
1
We consider here that the a priori measure over the couplings and currents is flat.
 
2
Due to the limited temporal resolution of the measurement two inputs of amplitudes J and J′ can apparently arrive at the same time; if so, we consider, based on models (1) and (2), that a single input of amplitude J + J′ enters the neuron.
 
3
This choice is arbitrary; other values, ranging from \(\frac 14\) to 1 have been tried, do not qualitatively affect the results presented later in this article.
 
4
Note that the inferred parameters might be less sensitive than the time course of the potential to the noise level σ. The reason is that the corrections to the log-likelihood L *, to the lowest order in the noise variance σ 2, do not depend on the current and interactions (Appendix D).
 
5
Note that the ratio of the time to calculate H (i) over the time required for the inversion of the Hessian matrix is equal to \(N_{co}\; N^2/N^3 \sim S/N^2\), and is generally much larger than one. The reason is that the number of parameters to be inferred, N, has to be smaller than the number of constraints over the optimal potential, N co . For the real data analyzed in Section 3.2, we have S/N 2 ≃ 64 and 108 for, respectively, Dark and Natural Movie data sets.
 
6
When g = 0, changing the value of the current I amounts to changing the time-scale of the evolution of the potential in Eq. (1). Hence, the errors ϵ s depend on the parameters I, C, σ, V th through the value of r only (as long as I > 0).
 
7
The case of three or a higher number of values for the noise can be handled exactly in the same way.
 
8
This situation can not happen in the g = 0 case, where the noise and the noise coefficient coincide.
 
Literature
go back to reference Aersten, A. M. J. H., & Gerstein, G. L. (1985). Evaluation of neuronal connectivity: Sensitivity of cross-correlation. Brain Research, 340, 341.CrossRef Aersten, A. M. J. H., & Gerstein, G. L. (1985). Evaluation of neuronal connectivity: Sensitivity of cross-correlation. Brain Research, 340, 341.CrossRef
go back to reference Alili, L., Patie, P., & Perdersen, J. L. (2005). Representations of first hitting time density of an Ornstein–Uhlenbeck process. Stochastic Models, 21, 967.CrossRef Alili, L., Patie, P., & Perdersen, J. L. (2005). Representations of first hitting time density of an Ornstein–Uhlenbeck process. Stochastic Models, 21, 967.CrossRef
go back to reference Averbeck, B. B., & Latham, P. E., & Pouget, A. (2006). Neural correlations, population coding and computation. Nature Reviews. Neuroscience, 7, 358.PubMedCrossRef Averbeck, B. B., & Latham, P. E., & Pouget, A. (2006). Neural correlations, population coding and computation. Nature Reviews. Neuroscience, 7, 358.PubMedCrossRef
go back to reference Bettencourt, L. M. A., Stephens, G. J., Ham, M. I., & Gross, G. W. (2007). Functional structure of cortical neuronal networks grown in vitro. Physical Review. E, 75, 021915.CrossRef Bettencourt, L. M. A., Stephens, G. J., Ham, M. I., & Gross, G. W. (2007). Functional structure of cortical neuronal networks grown in vitro. Physical Review. E, 75, 021915.CrossRef
go back to reference Bollobás, B. (2001). Random graphs (2nd ed.). Cambridge: Cambridge University Press.CrossRef Bollobás, B. (2001). Random graphs (2nd ed.). Cambridge: Cambridge University Press.CrossRef
go back to reference Boyd, S., & Vandenberghe, L. (2004). Convex optimization. Cambridge: Cambridge University Press. Boyd, S., & Vandenberghe, L. (2004). Convex optimization. Cambridge: Cambridge University Press.
go back to reference Brivanlou, I. H., Warland, D. K., & Meister, M. (1998). Mechanisms of concerted firing among retinal ganglion cells. Neuron, 20, 527.PubMedCrossRef Brivanlou, I. H., Warland, D. K., & Meister, M. (1998). Mechanisms of concerted firing among retinal ganglion cells. Neuron, 20, 527.PubMedCrossRef
go back to reference Brown, E., Nguyen, D., Frank, L., Wilson, M., & Solo, V. (2001). An analysis of neural receptive field plasticity by point process adaptative filtering. In Proceedings of the National Academy of Sciences of the United States of America, 98, 12261. Brown, E., Nguyen, D., Frank, L., Wilson, M., & Solo, V. (2001). An analysis of neural receptive field plasticity by point process adaptative filtering. In Proceedings of the National Academy of Sciences of the United States of America, 98, 12261.
go back to reference Cocco, S., Leibler, S., & Monasson, R. (2009). Neuronal couplings between retinal ganglion cells inferred by efficient inverse statistical physics methods. In Proceedings of the National Academy of Sciences of the United States of America 106, 14058. Cocco, S., Leibler, S., & Monasson, R. (2009). Neuronal couplings between retinal ganglion cells inferred by efficient inverse statistical physics methods. In Proceedings of the National Academy of Sciences of the United States of America 106, 14058.
go back to reference Cocco, S., & Monasson, R. (2010). Adaptive cluster expansion for Boltzmann machines with noisy data. Physical Review Letters (submitted). Cocco, S., & Monasson, R. (2010). Adaptive cluster expansion for Boltzmann machines with noisy data. Physical Review Letters (submitted).
go back to reference Constantidinidis, C., Franowicz, M. N., & Goldman-Rakic, P. S. (2001). Coding specificity in cortical microcircuits: A multiple-electrode analysis of primate prefrontal cortex. Journal of Neuroscience, 21, 3646. Constantidinidis, C., Franowicz, M. N., & Goldman-Rakic, P. S. (2001). Coding specificity in cortical microcircuits: A multiple-electrode analysis of primate prefrontal cortex. Journal of Neuroscience, 21, 3646.
go back to reference Cover, T. M., & Thomas, J. A. (2006). Elements of information theory. New YorK: Wiley. Cover, T. M., & Thomas, J. A. (2006). Elements of information theory. New YorK: Wiley.
go back to reference Dahlhaus, R., Eichler, M., & Sandkühler, J. (1997). Identification of synaptic connections in neural ensembles by graphical models. Journal of Neuroscience Methods, 77, 93.PubMedCrossRef Dahlhaus, R., Eichler, M., & Sandkühler, J. (1997). Identification of synaptic connections in neural ensembles by graphical models. Journal of Neuroscience Methods, 77, 93.PubMedCrossRef
go back to reference Epping, W. J. M., & Eggermont, J. J. (1987). Coherent neural activity in the auditory midbrain of the grassfrog. Journal of Neurophysiology, 57, 1464.PubMed Epping, W. J. M., & Eggermont, J. J. (1987). Coherent neural activity in the auditory midbrain of the grassfrog. Journal of Neurophysiology, 57, 1464.PubMed
go back to reference Fujisawa, S., Amarasingham, A., Harrison, M. T., & Buzsaki, G. (2008) Behavior-dependent short-term assembly dynamics in the medial prefrontal cortex. Nature Neuroscience, 11, 823.PubMedCrossRef Fujisawa, S., Amarasingham, A., Harrison, M. T., & Buzsaki, G. (2008) Behavior-dependent short-term assembly dynamics in the medial prefrontal cortex. Nature Neuroscience, 11, 823.PubMedCrossRef
go back to reference Gerstner, W., & Kistler, W. (2002). Spiking neuron models. Cambridge: Cambridge University Press. Gerstner, W., & Kistler, W. (2002). Spiking neuron models. Cambridge: Cambridge University Press.
go back to reference Hubert, L. J., & Baker, F. B. (1979). Evaluating the symmetry of a proximity matrix. Quality and Quantity, 13, 77–84.CrossRef Hubert, L. J., & Baker, F. B. (1979). Evaluating the symmetry of a proximity matrix. Quality and Quantity, 13, 77–84.CrossRef
go back to reference Jolivet, R., Lewis, T. J., & Gertsner, W. (2004). Generalized Integrate-and-Fire models of neuronal activity approximate spike trains of a detailed model to a high degree of accuracy. Journal of Neurophysiology, 92, 959.PubMedCrossRef Jolivet, R., Lewis, T. J., & Gertsner, W. (2004). Generalized Integrate-and-Fire models of neuronal activity approximate spike trains of a detailed model to a high degree of accuracy. Journal of Neurophysiology, 92, 959.PubMedCrossRef
go back to reference Jung, S., Nam, Y., & Lee, D. (2010). Inference of combinatorial neuronal synchrony with Bayesian networks. Journal of Neuroscience Methods, 186, 130.PubMedCrossRef Jung, S., Nam, Y., & Lee, D. (2010). Inference of combinatorial neuronal synchrony with Bayesian networks. Journal of Neuroscience Methods, 186, 130.PubMedCrossRef
go back to reference Lansky, P., & Ditlevsen, S. (2008). A review of the methods for signal estimation in stochastic diffusion leaky Integrate-and-Fire neuronal models. Biological Cybernetics, 99 253.PubMedCrossRef Lansky, P., & Ditlevsen, S. (2008). A review of the methods for signal estimation in stochastic diffusion leaky Integrate-and-Fire neuronal models. Biological Cybernetics, 99 253.PubMedCrossRef
go back to reference Makarov, V. A., Panetsos, F., & de Feo, O. (2005). A method for determining neural connectivity and inferring the underlying network dynamics using extracellular spike recordings. Journal of Neuroscience Methods, 144, 265.PubMedCrossRef Makarov, V. A., Panetsos, F., & de Feo, O. (2005). A method for determining neural connectivity and inferring the underlying network dynamics using extracellular spike recordings. Journal of Neuroscience Methods, 144, 265.PubMedCrossRef
go back to reference Marre, O., El Boustani, S., Frégnac, Y., & Destexhe, A. (2009). Prediction of spatiotemporal patterns of neural activity from pairwise correlations. Physical Review Letters, 102, 138101.PubMedCrossRef Marre, O., El Boustani, S., Frégnac, Y., & Destexhe, A. (2009). Prediction of spatiotemporal patterns of neural activity from pairwise correlations. Physical Review Letters, 102, 138101.PubMedCrossRef
go back to reference Mei, W. N., & Lee, Y. C. (1983). Harmonic oscillator with potential barriers-exact solutions and perturbative treatments. Journal of Physics A, 16, 1623.CrossRef Mei, W. N., & Lee, Y. C. (1983). Harmonic oscillator with potential barriers-exact solutions and perturbative treatments. Journal of Physics A, 16, 1623.CrossRef
go back to reference Mullowney, P., & Iyengar, S. (2008). Maximum likelihood estimation of an integrate and fire neuronal model. Journal of Computational Neuroscience, 24, 179.PubMedCrossRef Mullowney, P., & Iyengar, S. (2008). Maximum likelihood estimation of an integrate and fire neuronal model. Journal of Computational Neuroscience, 24, 179.PubMedCrossRef
go back to reference Ostojic, S., Brunel, N., & Hakim, V. (2009). How connectivity, background activity, and synaptic properties shape the cross-correlation between spike trains. Journal of Neuroscience, 29, 10234–10253.PubMedCrossRef Ostojic, S., Brunel, N., & Hakim, V. (2009). How connectivity, background activity, and synaptic properties shape the cross-correlation between spike trains. Journal of Neuroscience, 29, 10234–10253.PubMedCrossRef
go back to reference Paninski, L. (2006). The most likely voltage path and large deviations approximations for Integrate-and-Fire neurons. Journal of Computational Neuroscience, 21, 71.PubMedCrossRef Paninski, L. (2006). The most likely voltage path and large deviations approximations for Integrate-and-Fire neurons. Journal of Computational Neuroscience, 21, 71.PubMedCrossRef
go back to reference Paninski, L., Pillow, J. W., & Simoncelli, E. P. (2004). Maximum likelihood estimation of a stochastic Integrate-and-Fire neural encoding model. Neural Computation, 16, 2553.CrossRef Paninski, L., Pillow, J. W., & Simoncelli, E. P. (2004). Maximum likelihood estimation of a stochastic Integrate-and-Fire neural encoding model. Neural Computation, 16, 2553.CrossRef
go back to reference Perkel, D. H., Gerstein, G. L., & Moore, G. P. (1967). Neuronal spike trains and stochastic point processes: II. Simultaneous spike trains. Biophysical Journal, 7, 419.PubMedCrossRef Perkel, D. H., Gerstein, G. L., & Moore, G. P. (1967). Neuronal spike trains and stochastic point processes: II. Simultaneous spike trains. Biophysical Journal, 7, 419.PubMedCrossRef
go back to reference Peyrache, A., et al. (2009). Replay of rule-learning related neural patterns in the prefrontal cortex during sleep. Nature Neuroscience, 12, 919–926.PubMedCrossRef Peyrache, A., et al. (2009). Replay of rule-learning related neural patterns in the prefrontal cortex during sleep. Nature Neuroscience, 12, 919–926.PubMedCrossRef
go back to reference Pillow, J. W., et al. (2005). Prediction and decoding of retinal ganglion cell responses with a probabilistic spiking model. Journal of Neuroscience, 25, 11003–11013.PubMedCrossRef Pillow, J. W., et al. (2005). Prediction and decoding of retinal ganglion cell responses with a probabilistic spiking model. Journal of Neuroscience, 25, 11003–11013.PubMedCrossRef
go back to reference Pillow, J. W., et al. (2008). Spatio-temporal correlations and visual signalling in a complete neuronal population. Nature, 454, 995.PubMedCrossRef Pillow, J. W., et al. (2008). Spatio-temporal correlations and visual signalling in a complete neuronal population. Nature, 454, 995.PubMedCrossRef
go back to reference Romo, R., Hernandez, A., Zainos, A., & Salinas, E. (2003). Correlated neuronal discharges that increase coding efficiency during perceptual discrimination. Neuron, 38, 649.PubMedCrossRef Romo, R., Hernandez, A., Zainos, A., & Salinas, E. (2003). Correlated neuronal discharges that increase coding efficiency during perceptual discrimination. Neuron, 38, 649.PubMedCrossRef
go back to reference Sameshima, K., & Baccalá, L. A. (1999). Using partial directed coherence to describe neuronal ensemble interactions. Journal of Neuroscience Methods, 94, 93.PubMedCrossRef Sameshima, K., & Baccalá, L. A. (1999). Using partial directed coherence to describe neuronal ensemble interactions. Journal of Neuroscience Methods, 94, 93.PubMedCrossRef
go back to reference Schneidman, E., Berry, M., Segev, R., & Bialek, W. (2006). Weak pairwise correlations imply strongly correlated network states in a population. Nature, 440, 1007.PubMedCrossRef Schneidman, E., Berry, M., Segev, R., & Bialek, W. (2006). Weak pairwise correlations imply strongly correlated network states in a population. Nature, 440, 1007.PubMedCrossRef
go back to reference Schnitzer, M. J., & Meister, M. (2003). Multineuronal firing patterns in the signal from eye to brain. Neuron, 37, 499–511.PubMedCrossRef Schnitzer, M. J., & Meister, M. (2003). Multineuronal firing patterns in the signal from eye to brain. Neuron, 37, 499–511.PubMedCrossRef
go back to reference Segev, R., Puchalla, J., & Berry, M. J. II (2005). The functional organization of ganglion cells in the salamander retina. Journal of Neurophysiology, 95, 2277–2292.PubMedCrossRef Segev, R., Puchalla, J., & Berry, M. J. II (2005). The functional organization of ganglion cells in the salamander retina. Journal of Neurophysiology, 95, 2277–2292.PubMedCrossRef
go back to reference Seth, A. K., & Edelman, G. M. (2007). Distinguishing causal interactions in neural populations. Neural Computations, 19, 910.CrossRef Seth, A. K., & Edelman, G. M. (2007). Distinguishing causal interactions in neural populations. Neural Computations, 19, 910.CrossRef
go back to reference Shlens, J., et al. (2006). The structure of the multi-neuron firing patterns in primate retina. Journal of Neuroscience, 26, 854.CrossRef Shlens, J., et al. (2006). The structure of the multi-neuron firing patterns in primate retina. Journal of Neuroscience, 26, 854.CrossRef
go back to reference Taketani, M., & Baudry, M. (2006). Advances in network electrophysiology using multi-electrode arrays. Berlin: Springer. Taketani, M., & Baudry, M. (2006). Advances in network electrophysiology using multi-electrode arrays. Berlin: Springer.
go back to reference Tang, A., et al. (2008). A maximum entropy model applied to spatial and temporal correlations from cortical networks in vitro. Journal of Neuroscience, 28, 505–518.PubMedCrossRef Tang, A., et al. (2008). A maximum entropy model applied to spatial and temporal correlations from cortical networks in vitro. Journal of Neuroscience, 28, 505–518.PubMedCrossRef
go back to reference Trong, P. K., & Rieke, F. (2008). Origin of correlated activity between parasol retinal ganglion cells. Nature Neuroscience, 11, 1343.PubMedCrossRef Trong, P. K., & Rieke, F. (2008). Origin of correlated activity between parasol retinal ganglion cells. Nature Neuroscience, 11, 1343.PubMedCrossRef
go back to reference Truccolo, W., Eden, U., Fellows, M., Donoghue, J., & Brown, E. (2005). A point process framework for relating neural spiking activity to spiking history, neural ensemble, and extrinsic covariate effects. Journal of Neurophysiology, 93, 1074.PubMedCrossRef Truccolo, W., Eden, U., Fellows, M., Donoghue, J., & Brown, E. (2005). A point process framework for relating neural spiking activity to spiking history, neural ensemble, and extrinsic covariate effects. Journal of Neurophysiology, 93, 1074.PubMedCrossRef
Metadata
Title
Fast inference of interactions in assemblies of stochastic integrate-and-fire neurons from spike recordings
Authors
Remi Monasson
Simona Cocco
Publication date
01-10-2011
Publisher
Springer US
Published in
Journal of Computational Neuroscience / Issue 2/2011
Print ISSN: 0929-5313
Electronic ISSN: 1573-6873
DOI
https://doi.org/10.1007/s10827-010-0306-8

Other articles of this Issue 2/2011

Journal of Computational Neuroscience 2/2011 Go to the issue

Premium Partner