Skip to main content
Top
Published in: Journal of Computational Neuroscience 2/2011

01-10-2011

In vivo conditions influence the coding of stimulus features by bursts of action potentials

Authors: Oscar Avila Akerberg, Maurice J. Chacron

Published in: Journal of Computational Neuroscience | Issue 2/2011

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The functional role of burst firing (i.e. the firing of packets of action potentials followed by quiescence) in sensory processing is still under debate. Should bursts be considered as unitary events that signal the presence of a particular feature in the sensory environment or is information about stimulus attributes contained within their temporal structure? We compared the coding of stimulus attributes by bursts in vivo and in vitro of electrosensory pyramidal neurons in weakly electric fish by computing correlations between burst and stimulus attributes. Our results show that, while these correlations were strong in magnitude and significant in vitro, they were actually much weaker in magnitude if at all significant in vivo. We used a mathematical model of pyramidal neuron activity in vivo and showed that such a model could reproduce the correlations seen in vitro, thereby suggesting that differences in burst coding were not due to differences in bursting seen in vivo and in vitro. We next tested whether variability in the baseline (i.e. without stimulation) activity of ELL pyramidal neurons could account for these differences. To do so, we injected noise into our model whose intensity was calibrated to mimic baseline activity variability as quantified by the coefficient of variation. We found that this noise caused significant decreases in the magnitude of correlations between burst and stimulus attributes and could account for differences between in vitro and in vivo conditions. We then tested this prediction experimentally by directly injecting noise in vitro through the recording electrode. Our results show that this caused a lowering in magnitude of the correlations between burst and stimulus attributes in vitro and gave rise to values that were quantitatively similar to those seen under in vivo conditions. While it is expected that noise in the form of baseline activity variability will lower correlations between burst and stimulus attributes, our results show that such variability can account for differences seen in vivo. Thus, the high variability seen under in vivo conditions has profound consequences on the coding of information by bursts in ELL pyramidal neurons. In particular, our results support the viewpoint that bursts serve as a detector of particular stimulus features but do not carry detailed information about such features in their structure.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Arganda, S., Guantes, R., & de Polavieja, G. G. (2007). Sodium pumps adapt spike bursting to stimulus statistics. Nature Neuroscience, 10, 1467–1473.PubMedCrossRef Arganda, S., Guantes, R., & de Polavieja, G. G. (2007). Sodium pumps adapt spike bursting to stimulus statistics. Nature Neuroscience, 10, 1467–1473.PubMedCrossRef
go back to reference Avila Akerberg, O., Krahe, R., & Chacron, M. J. (2010). Neural heterogeneities and stimulus properties affect burst coding in vivo. Neuroscience, 168, 300–313.PubMedCrossRef Avila Akerberg, O., Krahe, R., & Chacron, M. J. (2010). Neural heterogeneities and stimulus properties affect burst coding in vivo. Neuroscience, 168, 300–313.PubMedCrossRef
go back to reference Bastian, J., & Nguyenkim, J. (2001). Dendritic Modulation of Burst-like firing in sensory neurons. Journal of Neurophysiology, 85, 10–22.PubMed Bastian, J., & Nguyenkim, J. (2001). Dendritic Modulation of Burst-like firing in sensory neurons. Journal of Neurophysiology, 85, 10–22.PubMed
go back to reference Bastian, J., Chacron, M. J., & Maler, L. (2002). Receptive field organization determines pyramidal cell stimulus-encoding capability and spatial stimulus selectivity. The Journal of Neuroscience, 22, 4577–4590.PubMed Bastian, J., Chacron, M. J., & Maler, L. (2002). Receptive field organization determines pyramidal cell stimulus-encoding capability and spatial stimulus selectivity. The Journal of Neuroscience, 22, 4577–4590.PubMed
go back to reference Bastian, J., Chacron, M. J., & Maler, L. (2004). Plastic and non-plastic cells perform unique roles in a network capable of adaptive redundancy reduction. Neuron, 41, 767–779.PubMedCrossRef Bastian, J., Chacron, M. J., & Maler, L. (2004). Plastic and non-plastic cells perform unique roles in a network capable of adaptive redundancy reduction. Neuron, 41, 767–779.PubMedCrossRef
go back to reference Berman, N. J., & Maler, L. (1998). A inhibition evoked from primary afferents in the electrosensory lateral line lobe of the weakly electric fish (Apteronotus leptorhynchus). Journal of Neurophysiology, 80, 3173–3196.PubMed Berman, N. J., & Maler, L. (1998). A inhibition evoked from primary afferents in the electrosensory lateral line lobe of the weakly electric fish (Apteronotus leptorhynchus). Journal of Neurophysiology, 80, 3173–3196.PubMed
go back to reference Berman, N. J., & Maler, L. (1999). Neural architecture of the electrosensory lateral line lobe: adaptations for coincidence detection, a sensory searchlight and frequency-dependent adaptive filtering. The Journal of Experimental Biology, 202, 1243–1253.PubMed Berman, N. J., & Maler, L. (1999). Neural architecture of the electrosensory lateral line lobe: adaptations for coincidence detection, a sensory searchlight and frequency-dependent adaptive filtering. The Journal of Experimental Biology, 202, 1243–1253.PubMed
go back to reference Bullock, T. H., Hopkins, C. D., Popper, A. N., & Fay, R. R. (2005). Electroreception. New York: Springer.CrossRef Bullock, T. H., Hopkins, C. D., Popper, A. N., & Fay, R. R. (2005). Electroreception. New York: Springer.CrossRef
go back to reference Chacron, M. J. (2006). Nonlinear information processing in a model sensory system. Journal of Neurophysiology, 95, 2933–2946.PubMedCrossRef Chacron, M. J. (2006). Nonlinear information processing in a model sensory system. Journal of Neurophysiology, 95, 2933–2946.PubMedCrossRef
go back to reference Chacron, M. J., & Bastian, J. (2008). Population coding by electrosensory neurons. Journal of Neurophysiology, 99, 1825–1835.PubMedCrossRef Chacron, M. J., & Bastian, J. (2008). Population coding by electrosensory neurons. Journal of Neurophysiology, 99, 1825–1835.PubMedCrossRef
go back to reference Chacron, M. J., Doiron, B., Maler, L., Longtin, A., & Bastian, J. (2003). Non-classical receptive field mediates switch in a sensory neuron’s frequency tuning. Nature, 423, 77–81.PubMedCrossRef Chacron, M. J., Doiron, B., Maler, L., Longtin, A., & Bastian, J. (2003). Non-classical receptive field mediates switch in a sensory neuron’s frequency tuning. Nature, 423, 77–81.PubMedCrossRef
go back to reference Chacron, M. J., Longtin, A., & Maler, L. (2004). To burst or not to burst? J Comp Neurosci, 17, 127–136.CrossRef Chacron, M. J., Longtin, A., & Maler, L. (2004). To burst or not to burst? J Comp Neurosci, 17, 127–136.CrossRef
go back to reference Chacron, M. J., Lindner, B., & Longtin, A. (2004). Noise shaping by interval correlations increases information transfer. Physical Review Letters, 92, 080601.PubMedCrossRef Chacron, M. J., Lindner, B., & Longtin, A. (2004). Noise shaping by interval correlations increases information transfer. Physical Review Letters, 92, 080601.PubMedCrossRef
go back to reference Chacron, M. J., Maler, L., & Bastian, J. (2005a). Feedback and feedforward control of frequency tuning to naturalistic stimuli. The Journal of Neuroscience, 25, 5521–5532.PubMedCrossRef Chacron, M. J., Maler, L., & Bastian, J. (2005a). Feedback and feedforward control of frequency tuning to naturalistic stimuli. The Journal of Neuroscience, 25, 5521–5532.PubMedCrossRef
go back to reference Chacron, M. J., Longtin, A., & Maler, L. (2005b). Delayed excitatory and inhibitory feedback shape neural information transmission. Physical Review E, 72, 051917.CrossRef Chacron, M. J., Longtin, A., & Maler, L. (2005b). Delayed excitatory and inhibitory feedback shape neural information transmission. Physical Review E, 72, 051917.CrossRef
go back to reference Chacron, M. J., Maler, L., & Bastian, J. (2005c). Electroreceptor neuron dynamics shape information transmission. Nature Neuroscience, 8, 673–678.PubMedCrossRef Chacron, M. J., Maler, L., & Bastian, J. (2005c). Electroreceptor neuron dynamics shape information transmission. Nature Neuroscience, 8, 673–678.PubMedCrossRef
go back to reference Chacron, M. J., Lindner, B., Longtin, A., Maler, L., & Bastian, J. (2005d). Experimental and Theoretical demonstration of noise shaping by interspike interval correlations. Proceedings of SPIE, 5841, 150–163.CrossRef Chacron, M. J., Lindner, B., Longtin, A., Maler, L., & Bastian, J. (2005d). Experimental and Theoretical demonstration of noise shaping by interspike interval correlations. Proceedings of SPIE, 5841, 150–163.CrossRef
go back to reference Chacron, M. J., Lindner, B., & Longtin, A. (2007). Threshold fatigue and information transfer. J Comp Neurosci, 23, 301–311.CrossRef Chacron, M. J., Lindner, B., & Longtin, A. (2007). Threshold fatigue and information transfer. J Comp Neurosci, 23, 301–311.CrossRef
go back to reference Chacron, M. J., Toporikova, N., & Fortune, E. S. (2009). Differences in the time course of short-term depression across receptive fields are correlated with directional selectivity in electrosensory neurons. Journal of Neurophysiology, 102, 3270–3279.PubMedCrossRef Chacron, M. J., Toporikova, N., & Fortune, E. S. (2009). Differences in the time course of short-term depression across receptive fields are correlated with directional selectivity in electrosensory neurons. Journal of Neurophysiology, 102, 3270–3279.PubMedCrossRef
go back to reference Dayan, P., & Abbott, L. F. (2001). Theoretical neuroscience: Computational and mathematical modeling of neural systems. Cambridge: MIT Press. Dayan, P., & Abbott, L. F. (2001). Theoretical neuroscience: Computational and mathematical modeling of neural systems. Cambridge: MIT Press.
go back to reference Dean, A. F. (1981). The variability of discharge of simple cells in the cat striate cortex. Experimental Brain Research, 44, 437–440.CrossRef Dean, A. F. (1981). The variability of discharge of simple cells in the cat striate cortex. Experimental Brain Research, 44, 437–440.CrossRef
go back to reference DeBusk, B. C., DeBruyn, E. J., Snider, R. K., Kabara, J. F., & Bonds, A. B. (1997). Stimulus-dependent modulation of spike burst length in cat striate cortical cells. Journal of Neurophysiology, 78, 199–213.PubMed DeBusk, B. C., DeBruyn, E. J., Snider, R. K., Kabara, J. F., & Bonds, A. B. (1997). Stimulus-dependent modulation of spike burst length in cat striate cortical cells. Journal of Neurophysiology, 78, 199–213.PubMed
go back to reference Destexhe, A., & Paré, D. (1999). Impact of Network activity on the integrative properties of neocortical pyramidal neurons in vivo. Journal of Neurophysiology, 81, 1531–1547.PubMed Destexhe, A., & Paré, D. (1999). Impact of Network activity on the integrative properties of neocortical pyramidal neurons in vivo. Journal of Neurophysiology, 81, 1531–1547.PubMed
go back to reference Destexhe, A., Rudolph, M., Fellous, J. M., & Sejnowski, T. J. (2001). Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience, 107, 13–24.PubMedCrossRef Destexhe, A., Rudolph, M., Fellous, J. M., & Sejnowski, T. J. (2001). Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience, 107, 13–24.PubMedCrossRef
go back to reference Destexhe, A., Rudolph, M., & Pare, D. (2003). The high-conductance state of neocortical neurons in vivo. Nature Reviews. Neuroscience, 4, 739–751.PubMedCrossRef Destexhe, A., Rudolph, M., & Pare, D. (2003). The high-conductance state of neocortical neurons in vivo. Nature Reviews. Neuroscience, 4, 739–751.PubMedCrossRef
go back to reference Doiron, B., Laing, C., Longtin, A., & Maler, L. (2002). Ghostbursting: a novel neuronal burst mechanism. Journal of Computational Neuroscience, 12, 5–25.PubMedCrossRef Doiron, B., Laing, C., Longtin, A., & Maler, L. (2002). Ghostbursting: a novel neuronal burst mechanism. Journal of Computational Neuroscience, 12, 5–25.PubMedCrossRef
go back to reference Doiron, B., Oswald, A. M., & Maler, L. (2007). Interval coding. II. Dendrite-dependent mechanisms.[see comment]. Journal of Neurophysiology, 97, 2744–2757.PubMedCrossRef Doiron, B., Oswald, A. M., & Maler, L. (2007). Interval coding. II. Dendrite-dependent mechanisms.[see comment]. Journal of Neurophysiology, 97, 2744–2757.PubMedCrossRef
go back to reference Ellis, L. D., Krahe, R., Bourque, C. W., Dunn, R. J., & Chacron, M. J. (2007). Muscarinic receptors control frequency tuning through the downregulation of an A-type potassium current. Journal of Neurophysiology, 98, 1526–1537.PubMedCrossRef Ellis, L. D., Krahe, R., Bourque, C. W., Dunn, R. J., & Chacron, M. J. (2007). Muscarinic receptors control frequency tuning through the downregulation of an A-type potassium current. Journal of Neurophysiology, 98, 1526–1537.PubMedCrossRef
go back to reference Ellis, L. D., Mehaffey, W. H., Harvey-Girard, E., Turner, R. W., Maler, L., & Dunn, R. J. (2007). SK channels provide a novel mechanism for the control of frequency tuning in electrosensory neurons. The Journal of Neuroscience, 27, 9491–9502.PubMedCrossRef Ellis, L. D., Mehaffey, W. H., Harvey-Girard, E., Turner, R. W., Maler, L., & Dunn, R. J. (2007). SK channels provide a novel mechanism for the control of frequency tuning in electrosensory neurons. The Journal of Neuroscience, 27, 9491–9502.PubMedCrossRef
go back to reference Eyherabide, H. G., Rokem, A., Herz, A. V., & Samengo, I. (2008). Burst firing is a neural code in an insect auditory system. Front Comput Neurosci, 2, 3.PubMedCrossRef Eyherabide, H. G., Rokem, A., Herz, A. V., & Samengo, I. (2008). Burst firing is a neural code in an insect auditory system. Front Comput Neurosci, 2, 3.PubMedCrossRef
go back to reference Fortune, E. S., & Rose, G. (1997). Passive and active membrane properties contribute to the temporal filtering properties of midbrain neurons in vivo. The Journal of Neuroscience, 17, 3815–3825.PubMed Fortune, E. S., & Rose, G. (1997). Passive and active membrane properties contribute to the temporal filtering properties of midbrain neurons in vivo. The Journal of Neuroscience, 17, 3815–3825.PubMed
go back to reference Frank, K., & Becker, M. C. (1964). Microelectrodes for recording and stimulation. In L. Nastuk (Ed.), Physical techniques in biological research, Vol. V, Part A (pp. 22–87). New York: Academic Press. Frank, K., & Becker, M. C. (1964). Microelectrodes for recording and stimulation. In L. Nastuk (Ed.), Physical techniques in biological research, Vol. V, Part A (pp. 22–87). New York: Academic Press.
go back to reference Gabbiani, F., & Koch, C. (1996). Coding of time-varying signals in spike trains of integrate-and-fire neurons with random threshold. Neural Computation, 8, 44–66.CrossRef Gabbiani, F., & Koch, C. (1996). Coding of time-varying signals in spike trains of integrate-and-fire neurons with random threshold. Neural Computation, 8, 44–66.CrossRef
go back to reference Gabbiani, F., Metzner, W., Wessel, R., & Koch, C. (1996). From stimulus encoding to feature extraction in weakly electric fish. Nature, 384, 564–567.PubMedCrossRef Gabbiani, F., Metzner, W., Wessel, R., & Koch, C. (1996). From stimulus encoding to feature extraction in weakly electric fish. Nature, 384, 564–567.PubMedCrossRef
go back to reference Gaudry, K. S., & Reinagel, P. (2008). Information measure for analyzing specific spiking patterns and applications to LGN bursts. Network, 19, 69–94.PubMedCrossRef Gaudry, K. S., & Reinagel, P. (2008). Information measure for analyzing specific spiking patterns and applications to LGN bursts. Network, 19, 69–94.PubMedCrossRef
go back to reference Hitschfeld, E. M., Stamper, S. A., Vonderschen, K., Fortune, E. S., & Chacron, M. J. (2009). Effects of restraint and immobilization on electrosensory behaviors of weakly electric fish. ILAR Journal, 50, 361–372.PubMed Hitschfeld, E. M., Stamper, S. A., Vonderschen, K., Fortune, E. S., & Chacron, M. J. (2009). Effects of restraint and immobilization on electrosensory behaviors of weakly electric fish. ILAR Journal, 50, 361–372.PubMed
go back to reference Izhikevich, E. M. (2000). Neural Excitability, spiking, and bursting. International Journal of Bifurcations and Chaos, 10, 1171–1269.CrossRef Izhikevich, E. M. (2000). Neural Excitability, spiking, and bursting. International Journal of Bifurcations and Chaos, 10, 1171–1269.CrossRef
go back to reference Izhikevich, E. M., Desai, N. S., Walcott, E. C., & Hoppensteadt, F. C. (2003). Bursts as a unit of neural information: selective communication via resonance. Trends in Neurosciences, 26, 161–167.PubMedCrossRef Izhikevich, E. M., Desai, N. S., Walcott, E. C., & Hoppensteadt, F. C. (2003). Bursts as a unit of neural information: selective communication via resonance. Trends in Neurosciences, 26, 161–167.PubMedCrossRef
go back to reference Jones, L. M., Lee, S., Trageser, J. C., Simons, D. J., & Keller, A. (2004). Precise temporal responses in whisker trigeminal neurons. Journal of Neurophysiology, 92, 665–668.PubMedCrossRef Jones, L. M., Lee, S., Trageser, J. C., Simons, D. J., & Keller, A. (2004). Precise temporal responses in whisker trigeminal neurons. Journal of Neurophysiology, 92, 665–668.PubMedCrossRef
go back to reference Kepecs, A., Wang, X. J., & Lisman, J. (2002). Bursting neurons signal input slope. The Journal of Neuroscience, 22, 9053–9062.PubMed Kepecs, A., Wang, X. J., & Lisman, J. (2002). Bursting neurons signal input slope. The Journal of Neuroscience, 22, 9053–9062.PubMed
go back to reference Kloeden, P. E., & Platen, E. (1999). Numerical solutions of stochastic differential equations. Berlin: Springer. Kloeden, P. E., & Platen, E. (1999). Numerical solutions of stochastic differential equations. Berlin: Springer.
go back to reference Krahe, R., & Gabbiani, F. (2004). Burst firing in sensory systems. Nature Reviews. Neuroscience, 5, 13–23.PubMedCrossRef Krahe, R., & Gabbiani, F. (2004). Burst firing in sensory systems. Nature Reviews. Neuroscience, 5, 13–23.PubMedCrossRef
go back to reference Krahe, R., Bastian, J., & Chacron, M. J. (2008). Temporal processing across multiple topographic maps in the electrosensory system. Journal of Neurophysiology, 100, 852–867.PubMedCrossRef Krahe, R., Bastian, J., & Chacron, M. J. (2008). Temporal processing across multiple topographic maps in the electrosensory system. Journal of Neurophysiology, 100, 852–867.PubMedCrossRef
go back to reference Lemon, N., & Turner, R. W. (2000). Conditional spike backpropagation generates burst discharge in a sensory neuron. Journal of Neurophysiology, 84, 1519–1530.PubMed Lemon, N., & Turner, R. W. (2000). Conditional spike backpropagation generates burst discharge in a sensory neuron. Journal of Neurophysiology, 84, 1519–1530.PubMed
go back to reference Lesica, N. A., & Stanley, G. B. (2004). Encoding of natural scene movies by tonic and burst spikes in the lateral geniculate nucleus. The Journal of Neuroscience, 24, 10731–10740.PubMedCrossRef Lesica, N. A., & Stanley, G. B. (2004). Encoding of natural scene movies by tonic and burst spikes in the lateral geniculate nucleus. The Journal of Neuroscience, 24, 10731–10740.PubMedCrossRef
go back to reference Lindner, B., Chacron, M. J., & Longtin, A. (2005). Integrate-and-fire neurons with threshold noise: a tractable model of how interspike interval correlations affect neuronal signal transmission. Physical Review. E, 72, 021911.CrossRef Lindner, B., Chacron, M. J., & Longtin, A. (2005). Integrate-and-fire neurons with threshold noise: a tractable model of how interspike interval correlations affect neuronal signal transmission. Physical Review. E, 72, 021911.CrossRef
go back to reference Lisman, J. E. (1997). Bursts as a unit of neural information: making unreliable synapses reliable. Trends in Neurosciences, 20, 38–43.PubMedCrossRef Lisman, J. E. (1997). Bursts as a unit of neural information: making unreliable synapses reliable. Trends in Neurosciences, 20, 38–43.PubMedCrossRef
go back to reference Mainen, Z. F., & Sejnowski, T. J. (1995). Reliability of spike timing in neocortical neurons. Science, 268, 1503–1506.PubMedCrossRef Mainen, Z. F., & Sejnowski, T. J. (1995). Reliability of spike timing in neocortical neurons. Science, 268, 1503–1506.PubMedCrossRef
go back to reference Manwani, A., & Koch, C. (1999). Detecting and estimating signals in noisy cable structure, I: neuronal noise sources. Neural Computation, 11, 1797–1829.PubMedCrossRef Manwani, A., & Koch, C. (1999). Detecting and estimating signals in noisy cable structure, I: neuronal noise sources. Neural Computation, 11, 1797–1829.PubMedCrossRef
go back to reference Marsat, G., & Maler, L. (2010). Neural heterogeneity and efficient population codes for communication signals. Journal of Neurophysiology, 104, 2543–2555.PubMedCrossRef Marsat, G., & Maler, L. (2010). Neural heterogeneity and efficient population codes for communication signals. Journal of Neurophysiology, 104, 2543–2555.PubMedCrossRef
go back to reference Marsat, G., & Pollack, G. S. (2006). A behavioral role for feature detection by sensory bursts. The Journal of Neuroscience, 26, 10542–10547.PubMedCrossRef Marsat, G., & Pollack, G. S. (2006). A behavioral role for feature detection by sensory bursts. The Journal of Neuroscience, 26, 10542–10547.PubMedCrossRef
go back to reference Marsat, G., & Pollack, G. S. (2010). The structure and size of sensory bursts encode stimulus information but only size affects behavior. Journal of Comparative Physiology. A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 196, 315–320.PubMedCrossRef Marsat, G., & Pollack, G. S. (2010). The structure and size of sensory bursts encode stimulus information but only size affects behavior. Journal of Comparative Physiology. A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 196, 315–320.PubMedCrossRef
go back to reference Marsat, G., Proville, R. D., & Maler, L. (2009). Transient signals trigger synchronous bursts in an identified population of neurons. Journal of Neurophysiology, 102, 714–723.PubMedCrossRef Marsat, G., Proville, R. D., & Maler, L. (2009). Transient signals trigger synchronous bursts in an identified population of neurons. Journal of Neurophysiology, 102, 714–723.PubMedCrossRef
go back to reference Martinez-Conde, S., Macknik, S. L., & Hubel, D. H. (2002). The function of bursts of spikes during visual fixation in the awake primate lateral geniculate nucleus and primary visual cortex. Proceedings of the National Academy of Sciences of the United States of America, 99, 13920–13925.PubMedCrossRef Martinez-Conde, S., Macknik, S. L., & Hubel, D. H. (2002). The function of bursts of spikes during visual fixation in the awake primate lateral geniculate nucleus and primary visual cortex. Proceedings of the National Academy of Sciences of the United States of America, 99, 13920–13925.PubMedCrossRef
go back to reference Mayer, M. L., & Westbrook, G. L. (1987). Permeation and block of N-methyl-D-aspartic acid receptor channels by divalent cations in mouse cultured central neurones. Journal de Physiologie, 394, 501–527. Mayer, M. L., & Westbrook, G. L. (1987). Permeation and block of N-methyl-D-aspartic acid receptor channels by divalent cations in mouse cultured central neurones. Journal de Physiologie, 394, 501–527.
go back to reference Mehaffey, W. H., Maler, L., & Turner, R. W. (2008). Intrinsic frequency tuning in ELL pyramidal cells varies across electrosensory maps. Journal of Neurophysiology, 99, 2641–2655.PubMedCrossRef Mehaffey, W. H., Maler, L., & Turner, R. W. (2008). Intrinsic frequency tuning in ELL pyramidal cells varies across electrosensory maps. Journal of Neurophysiology, 99, 2641–2655.PubMedCrossRef
go back to reference Mehaffey, W. H., Ellis, L. D., Krahe, R., Dunn, R. J., & Chacron, M. J. (2008). Ionic and neuromodulatory regulation of burst discharge controls frequency tuning. Journal of Physiology - Paris, 102, 195–208.CrossRef Mehaffey, W. H., Ellis, L. D., Krahe, R., Dunn, R. J., & Chacron, M. J. (2008). Ionic and neuromodulatory regulation of burst discharge controls frequency tuning. Journal of Physiology - Paris, 102, 195–208.CrossRef
go back to reference Metzner, W., Koch, C., Wessel, R., & Gabbiani, F. (1998). Feature extraction by burst-like spike patterns in multiple sensory maps. The Journal of Neuroscience, 18, 2283–2300.PubMed Metzner, W., Koch, C., Wessel, R., & Gabbiani, F. (1998). Feature extraction by burst-like spike patterns in multiple sensory maps. The Journal of Neuroscience, 18, 2283–2300.PubMed
go back to reference Noonan, L., Doiron, B., Laing, C., Longtin, A., & Turner, R. W. (2003). A dynamic dendritic refractory period regulates burst discharge in the electrosensory lobe of weakly electric fish. The Journal of Neuroscience, 23, 1524–1534.PubMed Noonan, L., Doiron, B., Laing, C., Longtin, A., & Turner, R. W. (2003). A dynamic dendritic refractory period regulates burst discharge in the electrosensory lobe of weakly electric fish. The Journal of Neuroscience, 23, 1524–1534.PubMed
go back to reference Nowak, L., Bregestovski, P., Ascher, P., Herbet, A., & Prochiantz, A. (1984). Magnesium gates glutamate-activated channels in mouse central neurones. Nature, 307, 462–465.PubMedCrossRef Nowak, L., Bregestovski, P., Ascher, P., Herbet, A., & Prochiantz, A. (1984). Magnesium gates glutamate-activated channels in mouse central neurones. Nature, 307, 462–465.PubMedCrossRef
go back to reference Oswald, A. M. M., Chacron, M. J., Doiron, B., Bastian, J., & Maler, L. (2004). Parallel processing of sensory input by bursts and isolated spikes. The Journal of Neuroscience, 24, 4351–4362.PubMedCrossRef Oswald, A. M. M., Chacron, M. J., Doiron, B., Bastian, J., & Maler, L. (2004). Parallel processing of sensory input by bursts and isolated spikes. The Journal of Neuroscience, 24, 4351–4362.PubMedCrossRef
go back to reference Oswald, A. M., Doiron, B., & Maler, L. (2007). Interval coding. I. Burst interspike intervals as indicators of stimulus intensity.[see comment]. Journal of Neurophysiology, 97, 2731–2743.PubMedCrossRef Oswald, A. M., Doiron, B., & Maler, L. (2007). Interval coding. I. Burst interspike intervals as indicators of stimulus intensity.[see comment]. Journal of Neurophysiology, 97, 2731–2743.PubMedCrossRef
go back to reference Reynolds, I. J., & Miller, R. J. (1990). Allosteric modulation of N-methyl-D-aspartate receptors. Advances in Pharmacology, 21, 101–126.PubMedCrossRef Reynolds, I. J., & Miller, R. J. (1990). Allosteric modulation of N-methyl-D-aspartate receptors. Advances in Pharmacology, 21, 101–126.PubMedCrossRef
go back to reference Rinzel, J. (1987). A formal classification of bursting mechanisms in excitable systems. In E. Teramoto & M. Yamaguti (Eds.), Mathematical Topics in Population Biology, Morphogenesis and Neurosciences, Lecture Notes in Biomathematics 71 (pp. 267–281). New York: Springer-Verlag. Rinzel, J. (1987). A formal classification of bursting mechanisms in excitable systems. In E. Teramoto & M. Yamaguti (Eds.), Mathematical Topics in Population Biology, Morphogenesis and Neurosciences, Lecture Notes in Biomathematics 71 (pp. 267–281). New York: Springer-Verlag.
go back to reference Sadeghi, S. G., Chacron, M. J., Taylor, M. C., & Cullen, K. E. (2007). Neural variability, detection thresholds, and information transmission in the vestibular system. The Journal of Neuroscience, 27, 771–781.PubMedCrossRef Sadeghi, S. G., Chacron, M. J., Taylor, M. C., & Cullen, K. E. (2007). Neural variability, detection thresholds, and information transmission in the vestibular system. The Journal of Neuroscience, 27, 771–781.PubMedCrossRef
go back to reference Samengo, I., & Montemurro, M. A. (2010). Conversion of phase information into a spike-count code by bursting neurons. PLoS ONE, 5, e9669.PubMedCrossRef Samengo, I., & Montemurro, M. A. (2010). Conversion of phase information into a spike-count code by bursting neurons. PLoS ONE, 5, e9669.PubMedCrossRef
go back to reference Sherman, S. M. (2001). Tonic and burst firing: dual modes of thalamocortical relay. Trends in Neurosciences, 24, 122–126.PubMedCrossRef Sherman, S. M. (2001). Tonic and burst firing: dual modes of thalamocortical relay. Trends in Neurosciences, 24, 122–126.PubMedCrossRef
go back to reference Sherman, S. M., & Guillery, R. W. (2002). The role of the thalamus in the flow of information to the cortex. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 357, 1695–1708.PubMedCrossRef Sherman, S. M., & Guillery, R. W. (2002). The role of the thalamus in the flow of information to the cortex. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 357, 1695–1708.PubMedCrossRef
go back to reference Shumway, C. (1989). Multiple electrosensory maps in the medulla of weakly electric Gymnotiform fish. II. Anatomical differences. Journal of Neuroscience, 9, 4400–4415.PubMed Shumway, C. (1989). Multiple electrosensory maps in the medulla of weakly electric Gymnotiform fish. II. Anatomical differences. Journal of Neuroscience, 9, 4400–4415.PubMed
go back to reference Stein, R. B., Gossen, E. R., & Jones, K. E. (2005). Neuronal variability: noise or part of the signal? Nature Reviews. Neuroscience, 6, 389–397.PubMedCrossRef Stein, R. B., Gossen, E. R., & Jones, K. E. (2005). Neuronal variability: noise or part of the signal? Nature Reviews. Neuroscience, 6, 389–397.PubMedCrossRef
go back to reference Theunissen, F., & Miller, J. P. (1995). Temporal encoding in the nervous system: a rigorous definition. Journal of Computational Neuroscience, 2, 149–162.PubMedCrossRef Theunissen, F., & Miller, J. P. (1995). Temporal encoding in the nervous system: a rigorous definition. Journal of Computational Neuroscience, 2, 149–162.PubMedCrossRef
go back to reference Tolhurst, D. J., Movshon, J. A., & Dean, A. F. (1983). The statistical reliability of signals in single neurons in cat and monkey visual cortex. Vision Research, 23, 775–785.PubMedCrossRef Tolhurst, D. J., Movshon, J. A., & Dean, A. F. (1983). The statistical reliability of signals in single neurons in cat and monkey visual cortex. Vision Research, 23, 775–785.PubMedCrossRef
go back to reference Toporikova, N., & Chacron, M. J. (2009). Dendritic SK channels gate information processing in vivo by regulating an intrinsic bursting mechanism seen in vitro. Journal of Neurophysiology, 102, 2273–2287.PubMedCrossRef Toporikova, N., & Chacron, M. J. (2009). Dendritic SK channels gate information processing in vivo by regulating an intrinsic bursting mechanism seen in vitro. Journal of Neurophysiology, 102, 2273–2287.PubMedCrossRef
go back to reference Turner, R. W., Maler, L., Deerinck, T., Levinson, S. R., & Ellisman, M. H. (1994). TTX-sensitive dendritic sodium channels underlie oscillatory discharge in a vertebrate sensory neuron. The Journal of Neuroscience, 14, 6453–6471.PubMed Turner, R. W., Maler, L., Deerinck, T., Levinson, S. R., & Ellisman, M. H. (1994). TTX-sensitive dendritic sodium channels underlie oscillatory discharge in a vertebrate sensory neuron. The Journal of Neuroscience, 14, 6453–6471.PubMed
go back to reference Wagner, J., & Keizer, J. (1994). Effects of rapid buffers on Ca2+ diffusion and Ca2+ oscillations. Biophysical Journal, 67, 447–456.PubMedCrossRef Wagner, J., & Keizer, J. (1994). Effects of rapid buffers on Ca2+ diffusion and Ca2+ oscillations. Biophysical Journal, 67, 447–456.PubMedCrossRef
go back to reference Wang, X. J., & Rinzel, J. (1995). Oscillatory and bursting properties of neurons. In M. A. Arbib (Ed.), The handbook of brain theory and neural networks (pp. 686–691). Cambridge: MIT Press. Wang, X. J., & Rinzel, J. (1995). Oscillatory and bursting properties of neurons. In M. A. Arbib (Ed.), The handbook of brain theory and neural networks (pp. 686–691). Cambridge: MIT Press.
go back to reference Wolfart, J., Debay, D., Le Masson, G., Destexhe, A., & Bal, T. (2005). Synaptic background activity controls spike transfer from thalamus to cortex. Nature Neuroscience, 8, 1760–1767.PubMedCrossRef Wolfart, J., Debay, D., Le Masson, G., Destexhe, A., & Bal, T. (2005). Synaptic background activity controls spike transfer from thalamus to cortex. Nature Neuroscience, 8, 1760–1767.PubMedCrossRef
Metadata
Title
In vivo conditions influence the coding of stimulus features by bursts of action potentials
Authors
Oscar Avila Akerberg
Maurice J. Chacron
Publication date
01-10-2011
Publisher
Springer US
Published in
Journal of Computational Neuroscience / Issue 2/2011
Print ISSN: 0929-5313
Electronic ISSN: 1573-6873
DOI
https://doi.org/10.1007/s10827-011-0313-4

Other articles of this Issue 2/2011

Journal of Computational Neuroscience 2/2011 Go to the issue

Premium Partner