Skip to main content
Top
Published in: Journal of Computational Neuroscience 2/2011

01-10-2011

Responses of a bursting pacemaker to excitation reveal spatial segregation between bursting and spiking mechanisms

Authors: Selva K. Maran, Fred H. Sieling, Kavita Demla, Astrid A. Prinz, Carmen C. Canavier

Published in: Journal of Computational Neuroscience | Issue 2/2011

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Central pattern generators (CPGs) frequently include bursting neurons that serve as pacemakers for rhythm generation. Phase resetting curves (PRCs) can provide insight into mechanisms underlying phase locking in such circuits. PRCs were constructed for a pacemaker bursting complex in the pyloric circuit in the stomatogastric ganglion of the lobster and crab. This complex is comprised of the Anterior Burster (AB) neuron and two Pyloric Dilator (PD) neurons that are all electrically coupled. Artificial excitatory synaptic conductance pulses of different strengths and durations were injected into one of the AB or PD somata using the Dynamic Clamp. Previously, we characterized the inhibitory PRCs by assuming a single slow process that enabled synaptic inputs to trigger switches between an up state in which spiking occurs and a down state in which it does not. Excitation produced five different PRC shapes, which could not be explained with such a simple model. A separate dendritic compartment was required to separate the mechanism that generates the up and down phases of the bursting envelope (1) from synaptic inputs applied at the soma, (2) from axonal spike generation and (3) from a slow process with a slower time scale than burst generation. This study reveals that due to the nonlinear properties and compartmentalization of ionic channels, the response to excitation is more complex than inhibition.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
go back to reference Abbott, L. F., Marder, E., & Hooper, S. L. (1991). Oscillating networks: control of burst duration by electrically coupled neurons. Neural Computation, 3, 487–497.CrossRef Abbott, L. F., Marder, E., & Hooper, S. L. (1991). Oscillating networks: control of burst duration by electrically coupled neurons. Neural Computation, 3, 487–497.CrossRef
go back to reference Arshavsky, Y. I., Deliagina, T. G., Orlovsky, G. N., & Panchin, Y. V. (1989). Control of feeding movements in the pteropod mollusk, clione-limacina. Experimental Brain Research, 78, 387–397. Arshavsky, Y. I., Deliagina, T. G., Orlovsky, G. N., & Panchin, Y. V. (1989). Control of feeding movements in the pteropod mollusk, clione-limacina. Experimental Brain Research, 78, 387–397.
go back to reference Arshavsky, Y. I., Grillner, S., Orlovsky, G. N., & Panchin, Y. V. (1991). Central generators and the spatiotemporal pattern of movements. In J. Fagard & P. H. Wolff (Eds.), The development of timing control and temporal organization in coordinated action: Invariant relative timing, rhythms, and coordination (pp. 93–115). Amsterdam: Elsevier.CrossRef Arshavsky, Y. I., Grillner, S., Orlovsky, G. N., & Panchin, Y. V. (1991). Central generators and the spatiotemporal pattern of movements. In J. Fagard & P. H. Wolff (Eds.), The development of timing control and temporal organization in coordinated action: Invariant relative timing, rhythms, and coordination (pp. 93–115). Amsterdam: Elsevier.CrossRef
go back to reference Ayers, J. L., & Selverston, A. I. (1979). Monosynaptic entrainment of an endogenous pacemaker network: a cellular mechanism for von Holst's magnet effect. Journal of Comparative Physiology, 129, 5–17.CrossRef Ayers, J. L., & Selverston, A. I. (1979). Monosynaptic entrainment of an endogenous pacemaker network: a cellular mechanism for von Holst's magnet effect. Journal of Comparative Physiology, 129, 5–17.CrossRef
go back to reference Benson, J. A. (1980). Burst reset and frequency control of the neuronal oscillators in the cardiac ganglion of the crab, Portunus sanguinolentus. The Journal of Experimental Biology, 87, 285–313.PubMed Benson, J. A. (1980). Burst reset and frequency control of the neuronal oscillators in the cardiac ganglion of the crab, Portunus sanguinolentus. The Journal of Experimental Biology, 87, 285–313.PubMed
go back to reference Bucher, D., Johnson, C. D., & Marder, E. (2007). Neuronal morphology and neuropil structure in the stomatogastric ganglion of the lobster, Homarus americanus. The Journal of Comparative Neurology, 501(2), 185–205.PubMedCrossRef Bucher, D., Johnson, C. D., & Marder, E. (2007). Neuronal morphology and neuropil structure in the stomatogastric ganglion of the lobster, Homarus americanus. The Journal of Comparative Neurology, 501(2), 185–205.PubMedCrossRef
go back to reference Calabrese, R. L., & Peterson, E. L. (1983). Neural control of heartbeat in the leech, hirudo medicinalis. In A. Roberts & B. Roberts (Eds.), Neural origin of rhythmic movements (pp. 195–221). Cambridge: Cambridge Univ. Press. Calabrese, R. L., & Peterson, E. L. (1983). Neural control of heartbeat in the leech, hirudo medicinalis. In A. Roberts & B. Roberts (Eds.), Neural origin of rhythmic movements (pp. 195–221). Cambridge: Cambridge Univ. Press.
go back to reference Canavier, C. C., & Achuthan, S. A. (2010). Pulse coupled oscillators and the phase resetting curve. Mathematical Biosciences, 226, 77–96. [Epub ahead of print] PMID: 20460132.PubMedCrossRef Canavier, C. C., & Achuthan, S. A. (2010). Pulse coupled oscillators and the phase resetting curve. Mathematical Biosciences, 226, 77–96. [Epub ahead of print] PMID: 20460132.PubMedCrossRef
go back to reference Cangiano, L., & Grillner, S. (2005). Mechanisms of rhythm generation in a spinal locomotor network deprived of crossed connections: the lamprey hemicord. The Journal of Neuroscience, 25, 923–935.PubMedCrossRef Cangiano, L., & Grillner, S. (2005). Mechanisms of rhythm generation in a spinal locomotor network deprived of crossed connections: the lamprey hemicord. The Journal of Neuroscience, 25, 923–935.PubMedCrossRef
go back to reference Cheng, J., Stein, R. B., Jovanovic, K., Yoshida, K., Bennett, D. J., & Han, Y. (1998). Identification, localization, and modulation of neural networks for walking in the mudpuppy (necturus maculatus) spinal cord. The Journal of Neuroscience, 18, 4295–4304.PubMed Cheng, J., Stein, R. B., Jovanovic, K., Yoshida, K., Bennett, D. J., & Han, Y. (1998). Identification, localization, and modulation of neural networks for walking in the mudpuppy (necturus maculatus) spinal cord. The Journal of Neuroscience, 18, 4295–4304.PubMed
go back to reference Dando, M. R., & Selverston, A. I. (1972). Command fibres from the supra-oesophageal ganglion to the stomatogastric ganglion in Panulirus argus. Journal of Comparative Physiology, 78, 138–175.CrossRef Dando, M. R., & Selverston, A. I. (1972). Command fibres from the supra-oesophageal ganglion to the stomatogastric ganglion in Panulirus argus. Journal of Comparative Physiology, 78, 138–175.CrossRef
go back to reference Demir S. S., Butera, R. J. Jr., DeFranceschi A. A., Clark, J. W. Jr., & Byrne J. H. (1997). Phase Sensitivity and Entrainment in a Modeled Bursting Neuron. Biophysical Journal, 72, 579–594. Demir S. S., Butera, R. J. Jr., DeFranceschi A. A., Clark, J. W. Jr., & Byrne J. H. (1997). Phase Sensitivity and Entrainment in a Modeled Bursting Neuron. Biophysical Journal, 72, 579–594.
go back to reference Dorval, A. D., Christini, D. J., & White, J. A. (2001). Real-time linux dynamic clamp: a fast and flexible way to construct virtual ion channels in living cells. Annals of Biomedical Engineering, 29, 897–907.PubMedCrossRef Dorval, A. D., Christini, D. J., & White, J. A. (2001). Real-time linux dynamic clamp: a fast and flexible way to construct virtual ion channels in living cells. Annals of Biomedical Engineering, 29, 897–907.PubMedCrossRef
go back to reference Ermentrout, G. B., & Kopell, N. (1991). Multiple pulse interactions and averaging in coupled neural oscillators. Journal of Mathematical Biology, 29(3), 195–217.CrossRef Ermentrout, G. B., & Kopell, N. (1991). Multiple pulse interactions and averaging in coupled neural oscillators. Journal of Mathematical Biology, 29(3), 195–217.CrossRef
go back to reference Glass, L., & Winfree, A. T. (1984). Discontinuities in phase resetting experiments. The American Journal of Physiology, 246(Regulatory Integrative Comp. Physiol. 15), R251–R258.PubMed Glass, L., & Winfree, A. T. (1984). Discontinuities in phase resetting experiments. The American Journal of Physiology, 246(Regulatory Integrative Comp. Physiol. 15), R251–R258.PubMed
go back to reference Goldberg, J. A., Deister, C. A., & Wilson, C. J. (2007). Response properties and synchronization of rhythmically firing dendritic neurons. Journal of Neurophysiology, 97(1), 208–219. Epub 2006 Sep 6.PubMedCrossRef Goldberg, J. A., Deister, C. A., & Wilson, C. J. (2007). Response properties and synchronization of rhythmically firing dendritic neurons. Journal of Neurophysiology, 97(1), 208–219. Epub 2006 Sep 6.PubMedCrossRef
go back to reference Guckenheimer, J., Gueron, S., & Harris-Warrick, R. M. (1993). Mapping the dynamics of a bursting neuron. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 341, 345–359.PubMedCrossRef Guckenheimer, J., Gueron, S., & Harris-Warrick, R. M. (1993). Mapping the dynamics of a bursting neuron. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 341, 345–359.PubMedCrossRef
go back to reference Hammond, C., Bergman, H., & Brown, P. (2007). Pathological synchronization in Parkinson's disease: networks, models and treatments. Trends in Neurosciences, 30, 357–364.PubMedCrossRef Hammond, C., Bergman, H., & Brown, P. (2007). Pathological synchronization in Parkinson's disease: networks, models and treatments. Trends in Neurosciences, 30, 357–364.PubMedCrossRef
go back to reference Hartline, D. K. (1979). Pattern generation in the lobster (panulirus) stomatogastric ganglion. II. Pyloric network simulation. Biological Cybernetics, 33, 223–236.PubMedCrossRef Hartline, D. K. (1979). Pattern generation in the lobster (panulirus) stomatogastric ganglion. II. Pyloric network simulation. Biological Cybernetics, 33, 223–236.PubMedCrossRef
go back to reference Hartline, D. K., & Gassie, D. V. (1979). Pattern generation in the lobster (panulirus) stomatogastric ganglion.I. Pyloric neuron kinetics and synaptic interactions. Biological Cybernetics, 33, 209–222.PubMedCrossRef Hartline, D. K., & Gassie, D. V. (1979). Pattern generation in the lobster (panulirus) stomatogastric ganglion.I. Pyloric neuron kinetics and synaptic interactions. Biological Cybernetics, 33, 209–222.PubMedCrossRef
go back to reference Hooper, S. L., Buchman, E., Weaver, A. L., Thuma, J. B., & Hobbs, K. H. (2009). Slow conductances could underlie intrinsic phase-maintaining properties of isolated lobster (Panulirus interruptus) pyloric neurons. The Journal of Neuroscience, 29, 1834–1845.PubMedCrossRef Hooper, S. L., Buchman, E., Weaver, A. L., Thuma, J. B., & Hobbs, K. H. (2009). Slow conductances could underlie intrinsic phase-maintaining properties of isolated lobster (Panulirus interruptus) pyloric neurons. The Journal of Neuroscience, 29, 1834–1845.PubMedCrossRef
go back to reference Huguenard, J. R., & McCormick, D. A. (2007). Thalamic synchrony and dynamic regulation of global forebrain oscillations. Trends in Neurosciences, 30, 350–356.PubMedCrossRef Huguenard, J. R., & McCormick, D. A. (2007). Thalamic synchrony and dynamic regulation of global forebrain oscillations. Trends in Neurosciences, 30, 350–356.PubMedCrossRef
go back to reference Marder, E., & Calabrese, R. L. (1996). Principles of rhythmic motor pattern generation. Physiological Reviews, 76, 687–717.PubMed Marder, E., & Calabrese, R. L. (1996). Principles of rhythmic motor pattern generation. Physiological Reviews, 76, 687–717.PubMed
go back to reference McCrea, D. A., & Rybak, I. A. (2008). Organization of mammalian locomotor rhythm and pattern generation. Brain Research Reviews, 57, 134–146.PubMedCrossRef McCrea, D. A., & Rybak, I. A. (2008). Organization of mammalian locomotor rhythm and pattern generation. Brain Research Reviews, 57, 134–146.PubMedCrossRef
go back to reference Miller, J. P., & Selverston, A. I. (1982). Mechanisms underlying pattern generation in lobster stomatogastric ganglion as determined by selective inactivation of identified neurons. II. Oscillatory properties of pyloric neurons. Journal of Neurophysiology, 48, 1378–1391.PubMed Miller, J. P., & Selverston, A. I. (1982). Mechanisms underlying pattern generation in lobster stomatogastric ganglion as determined by selective inactivation of identified neurons. II. Oscillatory properties of pyloric neurons. Journal of Neurophysiology, 48, 1378–1391.PubMed
go back to reference Nargeot, R., Baxter, D. A., & Byrne, J. H. (1997). Contingent-dependent enhancement of rhythmic motor patterns: an in vitro analog of operant conditioning. The Journal of Neuroscience, 17, 8093–8105.PubMed Nargeot, R., Baxter, D. A., & Byrne, J. H. (1997). Contingent-dependent enhancement of rhythmic motor patterns: an in vitro analog of operant conditioning. The Journal of Neuroscience, 17, 8093–8105.PubMed
go back to reference Nargeot, R., Petrissans, C., & Simmers, J. (2007). Behavioral and in vitro correlates of compulsive-like food seeking induced by operant conditioning in Aplysia. The Journal of Neuroscience, 27, 8059–8070.PubMedCrossRef Nargeot, R., Petrissans, C., & Simmers, J. (2007). Behavioral and in vitro correlates of compulsive-like food seeking induced by operant conditioning in Aplysia. The Journal of Neuroscience, 27, 8059–8070.PubMedCrossRef
go back to reference Netoff, T. I., Acker, C. D., Bettencourt, J. C., & White, J. A. (2005). Beyond two-cell networks: experimental measurement of neuronal responses to multiple synaptic inputs. Journal of Computational Neuroscience, 18(3), 287–295.PubMedCrossRef Netoff, T. I., Acker, C. D., Bettencourt, J. C., & White, J. A. (2005). Beyond two-cell networks: experimental measurement of neuronal responses to multiple synaptic inputs. Journal of Computational Neuroscience, 18(3), 287–295.PubMedCrossRef
go back to reference Oprisan, S. A., Thirumalai, V., & Canavier, C. C. (2003). Dynamics from a time series: can we extract the phase resetting curve from a time series? Biophysical Journal, 84, 2919–2928.PubMedCrossRef Oprisan, S. A., Thirumalai, V., & Canavier, C. C. (2003). Dynamics from a time series: can we extract the phase resetting curve from a time series? Biophysical Journal, 84, 2919–2928.PubMedCrossRef
go back to reference Oprisan, S. A., Prinz, A. A., & Canavier, C. C. (2004). Phase resetting and phase locking in hybrid circuits of one model and one biological neuron. Biophysical Journal, 87, 2283–2298.PubMedCrossRef Oprisan, S. A., Prinz, A. A., & Canavier, C. C. (2004). Phase resetting and phase locking in hybrid circuits of one model and one biological neuron. Biophysical Journal, 87, 2283–2298.PubMedCrossRef
go back to reference Preyer, A. J., & Butera, R. J. (2005). Neuronal oscillators in aplysia californica that demonstrate weak coupling in vitro. Physical Review Letters, 95(13), 138103.PubMedCrossRef Preyer, A. J., & Butera, R. J. (2005). Neuronal oscillators in aplysia californica that demonstrate weak coupling in vitro. Physical Review Letters, 95(13), 138103.PubMedCrossRef
go back to reference Prinz, A. A., Billimoria, C. P., & Marder, E. (2003a). Alternative to hand-tuning conductance-based models: construction and analysis of databases of model neurons. Journal of Neurophysiology, 90, 3998–4015.CrossRef Prinz, A. A., Billimoria, C. P., & Marder, E. (2003a). Alternative to hand-tuning conductance-based models: construction and analysis of databases of model neurons. Journal of Neurophysiology, 90, 3998–4015.CrossRef
go back to reference Prinz, A. A., Thirumalai, V., & Marder, E. (2003b). The functional consequences of changes in the strength and duration of synaptic inputs to oscillatory neurons. The Journal of Neuroscience, 23, 943–954. Prinz, A. A., Thirumalai, V., & Marder, E. (2003b). The functional consequences of changes in the strength and duration of synaptic inputs to oscillatory neurons. The Journal of Neuroscience, 23, 943–954.
go back to reference Prinz, A. A., Abbott, L. F., & Marder, E. (2004). The dynamic clamp comes of age. Trends in Neurosciences, 27, 218–224.PubMedCrossRef Prinz, A. A., Abbott, L. F., & Marder, E. (2004). The dynamic clamp comes of age. Trends in Neurosciences, 27, 218–224.PubMedCrossRef
go back to reference Rinzel, J., & Ermentrout, B. (1989). Analysis of neural excitability and oscillations. In C. Koch & I. Segev (Eds.), Methods in neuronal modelling: From synapses to networks". Cambridge: MIT. revised 1998. Rinzel, J., & Ermentrout, B. (1989). Analysis of neural excitability and oscillations. In C. Koch & I. Segev (Eds.), Methods in neuronal modelling: From synapses to networks". Cambridge: MIT. revised 1998.
go back to reference Schultheiss, N. W., Edgerton, J. R., & Jaeger, D. (2010). Phase response curve analysis of a full morphological globus pallidus neuron model reveals distinct perisomatic and dendritic modes of synaptic integration. The Journal of Neuroscience, 30(7), 2767–2782.PubMedCrossRef Schultheiss, N. W., Edgerton, J. R., & Jaeger, D. (2010). Phase response curve analysis of a full morphological globus pallidus neuron model reveals distinct perisomatic and dendritic modes of synaptic integration. The Journal of Neuroscience, 30(7), 2767–2782.PubMedCrossRef
go back to reference Sharp, A. A., O'Neil, M. B., Abbott, L. F., & Marder, E. (1993a). Dynamic Clamp: computer-generated conductances in real neurons. Journal of Neurophysiology, 69, 992–995.PubMed Sharp, A. A., O'Neil, M. B., Abbott, L. F., & Marder, E. (1993a). Dynamic Clamp: computer-generated conductances in real neurons. Journal of Neurophysiology, 69, 992–995.PubMed
go back to reference Sharp, A. A., O'Neil, M. B., Abbott, L. F., & Marder, E. (1993b). The dynamic clamp—Artificial conductances in biological neurons. Trends in Neurosciences, 16, 389–394.PubMedCrossRef Sharp, A. A., O'Neil, M. B., Abbott, L. F., & Marder, E. (1993b). The dynamic clamp—Artificial conductances in biological neurons. Trends in Neurosciences, 16, 389–394.PubMedCrossRef
go back to reference Sieling, F. H., Canavier, C. C., Prinz, A. A. (2009). Predictions of phase-locking in excitatory hybrid networks: excitation does not promote phase-locking in pattern generating networks as reliably as inhibition. J Neurophysiol, 102, 69–84. First published doi:10.1152/jn.00091.2009. Sieling, F. H., Canavier, C. C., Prinz, A. A. (2009). Predictions of phase-locking in excitatory hybrid networks: excitation does not promote phase-locking in pattern generating networks as reliably as inhibition. J Neurophysiol, 102, 69–84. First published doi:10.​1152/​jn.​00091.​2009.
go back to reference Soto-Treviño, C., Rabbah, P., Marder, E., & Nadim, F. (2005). Computational model of electrically coupled, intrinsically distinct pacemaker neuron. Journal of Neurophysiology, 94, 590–604.PubMedCrossRef Soto-Treviño, C., Rabbah, P., Marder, E., & Nadim, F. (2005). Computational model of electrically coupled, intrinsically distinct pacemaker neuron. Journal of Neurophysiology, 94, 590–604.PubMedCrossRef
go back to reference Stein, S. G., Grillner, S., Selverston, A. I., & Stuart, D. G., (Eds). (1997). Neurons, networks, and motor behavior. MIT. Stein, S. G., Grillner, S., Selverston, A. I., & Stuart, D. G., (Eds). (1997). Neurons, networks, and motor behavior. MIT.
go back to reference Tazaki, K., & Cooke, I. M. (1990). Characterization of Ca current underlying burst formation in lobster cardiac ganglion motorneurons. Journal of Neurophysiology, 63, 370–384.PubMed Tazaki, K., & Cooke, I. M. (1990). Characterization of Ca current underlying burst formation in lobster cardiac ganglion motorneurons. Journal of Neurophysiology, 63, 370–384.PubMed
go back to reference Tohidi, V., & Nadim, F. (2009). Membrane resonance in bursting pacemaker neurons of an oscillatory network is correlated with network frequency. The Journal of Neuroscience, 29, 6427–6435.PubMedCrossRef Tohidi, V., & Nadim, F. (2009). Membrane resonance in bursting pacemaker neurons of an oscillatory network is correlated with network frequency. The Journal of Neuroscience, 29, 6427–6435.PubMedCrossRef
go back to reference Traub, R. D., & Jefferys, J. G. (1994). Are there unifying principles underlying the generation of epileptic afterdischarges in vitro? Progress in Brain Research, 102, 383–394.PubMedCrossRef Traub, R. D., & Jefferys, J. G. (1994). Are there unifying principles underlying the generation of epileptic afterdischarges in vitro? Progress in Brain Research, 102, 383–394.PubMedCrossRef
go back to reference Turrigiano, G., Abbott, L. F., & Marder, E. (1994). Activity-dependent changes in the intrinsic properties of cultured neurons. Science, 264(5161), 974–977.PubMedCrossRef Turrigiano, G., Abbott, L. F., & Marder, E. (1994). Activity-dependent changes in the intrinsic properties of cultured neurons. Science, 264(5161), 974–977.PubMedCrossRef
go back to reference Turrigiano, G., LeMasson, G., & Marder, E. (1995). Selective regulation of current densities underlies spontaneous changes in the activity of cultured neurons. Journal of Neuroscience, 15(5 Pt 1), 3640–3652.PubMed Turrigiano, G., LeMasson, G., & Marder, E. (1995). Selective regulation of current densities underlies spontaneous changes in the activity of cultured neurons. Journal of Neuroscience, 15(5 Pt 1), 3640–3652.PubMed
go back to reference Winfree, A. T. (1980). The geometry of biological time. New York: Springer. Winfree, A. T. (1980). The geometry of biological time. New York: Springer.
Metadata
Title
Responses of a bursting pacemaker to excitation reveal spatial segregation between bursting and spiking mechanisms
Authors
Selva K. Maran
Fred H. Sieling
Kavita Demla
Astrid A. Prinz
Carmen C. Canavier
Publication date
01-10-2011
Publisher
Springer US
Published in
Journal of Computational Neuroscience / Issue 2/2011
Print ISSN: 0929-5313
Electronic ISSN: 1573-6873
DOI
https://doi.org/10.1007/s10827-011-0319-y

Other articles of this Issue 2/2011

Journal of Computational Neuroscience 2/2011 Go to the issue

Premium Partner