Skip to main content
Top
Published in: Journal of Computational Neuroscience 2/2011

01-10-2011

Effects of conduction delays on the existence and stability of one to one phase locking between two pulse-coupled oscillators

Authors: Michael Marmaduke Woodman, Carmen C. Canavier

Published in: Journal of Computational Neuroscience | Issue 2/2011

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Gamma oscillations can synchronize with near zero phase lag over multiple cortical regions and between hemispheres, and between two distal sites in hippocampal slices. How synchronization can take place over long distances in a stable manner is considered an open question. The phase resetting curve (PRC) keeps track of how much an input advances or delays the next spike, depending upon where in the cycle it is received. We use PRCs under the assumption of pulsatile coupling to derive existence and stability criteria for 1:1 phase-locking that arises via bidirectional pulse coupling of two limit cycle oscillators with a conduction delay of any duration for any 1:1 firing pattern. The coupling can be strong as long as the effect of one input dissipates before the next input is received. We show the form that the generic synchronous and anti-phase solutions take in a system of two identical, identically pulse-coupled oscillators with identical delays. The stability criterion has a simple form that depends only on the slopes of the PRCs at the phases at which inputs are received and on the number of cycles required to complete the delayed feedback loop. The number of cycles required to complete the delayed feedback loop depends upon both the value of the delay and the firing pattern. We successfully tested the predictions of our methods on networks of model neurons. The criteria can easily be extended to include the effect of an input on the cycle after the one in which it is received.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
go back to reference Achuthan, S., & Canavier, C. C. (2009). Phase resetting curves determine synchronization, phase-locking, and clustering in networks of neural oscillators. The Journal of Neuroscience, 29, 5218–33.PubMedCrossRef Achuthan, S., & Canavier, C. C. (2009). Phase resetting curves determine synchronization, phase-locking, and clustering in networks of neural oscillators. The Journal of Neuroscience, 29, 5218–33.PubMedCrossRef
go back to reference Acker, C. D., Kopell, N., & White, J. A. (2003). Synchronization of strongly coupled excitatory neurons: relating network behavior to biophysics. Journal of Computational Neuroscience, 15, 71–90.PubMedCrossRef Acker, C. D., Kopell, N., & White, J. A. (2003). Synchronization of strongly coupled excitatory neurons: relating network behavior to biophysics. Journal of Computational Neuroscience, 15, 71–90.PubMedCrossRef
go back to reference Andersen, P., Silfvenius, H., Sundberg, S. H., Sveen, O., & Wigström, H. (1978). Functional characteristics of unmyelinated fibres in the hippocampal cortex. Brain Research, 144(1), 11–8.PubMedCrossRef Andersen, P., Silfvenius, H., Sundberg, S. H., Sveen, O., & Wigström, H. (1978). Functional characteristics of unmyelinated fibres in the hippocampal cortex. Brain Research, 144(1), 11–8.PubMedCrossRef
go back to reference Canavier, C. C., & Achuthan, S. A. (2010). Pulse coupled oscillators and the phase resetting curve. Mathematical Biosciences, 226, 77–96.PubMedCrossRef Canavier, C. C., & Achuthan, S. A. (2010). Pulse coupled oscillators and the phase resetting curve. Mathematical Biosciences, 226, 77–96.PubMedCrossRef
go back to reference Canavier, C. C,, Fernandez, F., Kispersky, T., & White, J. A. (2009). Generic solutions for pulse coupled oscillatory neurons: Synchrony, antiphase, and leader/follower. Program No. 321.6. 2009 Neuroscience Meeting Planner. Chicago, IL: Society for Neuroscience, 2009. Online. Canavier, C. C,, Fernandez, F., Kispersky, T., & White, J. A. (2009). Generic solutions for pulse coupled oscillatory neurons: Synchrony, antiphase, and leader/follower. Program No. 321.6. 2009 Neuroscience Meeting Planner. Chicago, IL: Society for Neuroscience, 2009. Online.
go back to reference Chandrasekaran, L., Achuthan, S., & Canavier, C. C. (2011). Stability of two cluster solutions in pulse coupled networks of neural oscillators. J. Computational Neurosci. Chandrasekaran, L., Achuthan, S., & Canavier, C. C. (2011). Stability of two cluster solutions in pulse coupled networks of neural oscillators. J. Computational Neurosci.
go back to reference Crook, S. M., Ermentrout, G. B., & Bower, J. M. (1998). Dendritic and synaptic effects in systems of coupled cortical oscillators. Journal of Computational Neuroscience, 5, 315–329.PubMedCrossRef Crook, S. M., Ermentrout, G. B., & Bower, J. M. (1998). Dendritic and synaptic effects in systems of coupled cortical oscillators. Journal of Computational Neuroscience, 5, 315–329.PubMedCrossRef
go back to reference D’Huys, O., Vicente, R., Erneux, T., Danckaert, J., & Fischer, I. (2008). Synchronization properties of network motifs: influence of coupling delay and symmetry. Chaos, 18, 037116.PubMedCrossRef D’Huys, O., Vicente, R., Erneux, T., Danckaert, J., & Fischer, I. (2008). Synchronization properties of network motifs: influence of coupling delay and symmetry. Chaos, 18, 037116.PubMedCrossRef
go back to reference Dhamala, M., Jirsa, V. K., & Ding, M. (2004). Enhancement of neural synchrony by time delay. Physical Review Letters, 92, 074104.PubMedCrossRef Dhamala, M., Jirsa, V. K., & Ding, M. (2004). Enhancement of neural synchrony by time delay. Physical Review Letters, 92, 074104.PubMedCrossRef
go back to reference Dror, R. O., Canavier, C. C., Butera, R. J., Clark, J. W., & Byrne, J. H. (1999). A mathematical criterion based on phase response curves for the stability of a ring network of oscillators. Biological Cybernetics, 80, 11–23.PubMedCrossRef Dror, R. O., Canavier, C. C., Butera, R. J., Clark, J. W., & Byrne, J. H. (1999). A mathematical criterion based on phase response curves for the stability of a ring network of oscillators. Biological Cybernetics, 80, 11–23.PubMedCrossRef
go back to reference Earl, M. G., & Strogatz, S. H. (2003). Synchronization in oscillator networks with delayed coupling: a stability criterion. Physical Review E, 67, 036204.CrossRef Earl, M. G., & Strogatz, S. H. (2003). Synchronization in oscillator networks with delayed coupling: a stability criterion. Physical Review E, 67, 036204.CrossRef
go back to reference Engel, A. K., Konig, P., Kreitner, A. K., & Singer, W. (1991). Interhemispheric synchronization of oscillatory neural responses in cat visual cortex. Science, 252, 1177–1179.CrossRef Engel, A. K., Konig, P., Kreitner, A. K., & Singer, W. (1991). Interhemispheric synchronization of oscillatory neural responses in cat visual cortex. Science, 252, 1177–1179.CrossRef
go back to reference Ermentrout, G. B., & Kopell, N. (1998). Fine structure of neural spiking and synchronization in the presence of conduction delays. Proceedings of the National Academy of Sciences of the United States of America, 95, 1259–1264.PubMedCrossRef Ermentrout, G. B., & Kopell, N. (1998). Fine structure of neural spiking and synchronization in the presence of conduction delays. Proceedings of the National Academy of Sciences of the United States of America, 95, 1259–1264.PubMedCrossRef
go back to reference Ernst, U., Pawelzik, K., & Geisel, T. (1995). Synchronization induced by temporal delays in pulse-couple oscillators. Physical Review Letters, 74, 1570–1573.PubMedCrossRef Ernst, U., Pawelzik, K., & Geisel, T. (1995). Synchronization induced by temporal delays in pulse-couple oscillators. Physical Review Letters, 74, 1570–1573.PubMedCrossRef
go back to reference Ernst, U., Pawelzik, K., & Geisel, T. (1998). Delay-induced multistable synchronization of biological oscillators. Physical review E, 57, 2150–2162.CrossRef Ernst, U., Pawelzik, K., & Geisel, T. (1998). Delay-induced multistable synchronization of biological oscillators. Physical review E, 57, 2150–2162.CrossRef
go back to reference Fischer, I., Vicente, R., Buldu, J. M., Peil, M., Mirasso, C. R., Torrent, M. C., et al. (2006). Zero-lag long range synchronization via dynamical relaying. Physical Review Letters, 97, 123902.PubMedCrossRef Fischer, I., Vicente, R., Buldu, J. M., Peil, M., Mirasso, C. R., Torrent, M. C., et al. (2006). Zero-lag long range synchronization via dynamical relaying. Physical Review Letters, 97, 123902.PubMedCrossRef
go back to reference Foss, J. (1999). Control of multistability in neural feedback systems with delay (PhD thesis). Chicago: The University of Chicago. Foss, J. (1999). Control of multistability in neural feedback systems with delay (PhD thesis). Chicago: The University of Chicago.
go back to reference Foss, J., & Milton, J. (2000). Multistability in recurrent neural loops arising from delay. Journal of Neurophysiology, 84, 975–985.PubMed Foss, J., & Milton, J. (2000). Multistability in recurrent neural loops arising from delay. Journal of Neurophysiology, 84, 975–985.PubMed
go back to reference Fries, P. (2005). A mechanism for cognitive dynamics: neuronal communication through neuronal coherence. Trends in Cognitive Neuroscience, 9, 1364–68.CrossRef Fries, P. (2005). A mechanism for cognitive dynamics: neuronal communication through neuronal coherence. Trends in Cognitive Neuroscience, 9, 1364–68.CrossRef
go back to reference Galassi, M., Davies, J., Theiler, J., Gough, B., Jungman, G., Alken, P., et al. (2009). GNU scientific library reference manual (3rd ed.). United Kingdom: Network Theory Ltd. Galassi, M., Davies, J., Theiler, J., Gough, B., Jungman, G., Alken, P., et al. (2009). GNU scientific library reference manual (3rd ed.). United Kingdom: Network Theory Ltd.
go back to reference Golubitsky, M., Stewart, I. N., & Schaeffer, D. G. (1988). Singularities and Groups in Bifurcation Theory: Vol. II, Applied Mathematical Sciences 69. Springer-Verlag, New York. Golubitsky, M., Stewart, I. N., & Schaeffer, D. G. (1988). Singularities and Groups in Bifurcation Theory: Vol. II, Applied Mathematical Sciences 69. Springer-Verlag, New York.
go back to reference Izhikevich, E. M. (1998). Phase models with explicit time delays. Physical Review E, 58, 905–908.CrossRef Izhikevich, E. M. (1998). Phase models with explicit time delays. Physical Review E, 58, 905–908.CrossRef
go back to reference Karbowski, J., & Kopell, N. (2000). Multispikes and synchronization in a large neural network with temporal delays. Neural Computation, 12, 1573–1606.PubMedCrossRef Karbowski, J., & Kopell, N. (2000). Multispikes and synchronization in a large neural network with temporal delays. Neural Computation, 12, 1573–1606.PubMedCrossRef
go back to reference Ko, T. W., & Ermentrout, B. (2009). Delays and weakly coupled neuronal oscillators. Philosophical Transactions of the Royal Society, 367, 1097–1115.CrossRef Ko, T. W., & Ermentrout, B. (2009). Delays and weakly coupled neuronal oscillators. Philosophical Transactions of the Royal Society, 367, 1097–1115.CrossRef
go back to reference Konig, P., & Schillen, T. B. (1991). Stimulus-dependent assembly formation of oscillatory responses: I. Synchronization. Neural Computation, 3, 155–166.CrossRef Konig, P., & Schillen, T. B. (1991). Stimulus-dependent assembly formation of oscillatory responses: I. Synchronization. Neural Computation, 3, 155–166.CrossRef
go back to reference Konig, P., Engel, A. K., & Singer, W. (1995). Relation between oscillatory activity and long range synchronization in cat visual cortex. Proceedings of the National academy of Sciences of the United States of America, 92, 290–294.PubMedCrossRef Konig, P., Engel, A. K., & Singer, W. (1995). Relation between oscillatory activity and long range synchronization in cat visual cortex. Proceedings of the National academy of Sciences of the United States of America, 92, 290–294.PubMedCrossRef
go back to reference Melloni, L., Molina, C., Pena, M., Torres, D., Singer, W., & Rodriguez, E. (2007). Synchronization of neural activity across cortical areas correlates with conscious perception. The Journal of Neuroscience, 27, 2858–2865.PubMedCrossRef Melloni, L., Molina, C., Pena, M., Torres, D., Singer, W., & Rodriguez, E. (2007). Synchronization of neural activity across cortical areas correlates with conscious perception. The Journal of Neuroscience, 27, 2858–2865.PubMedCrossRef
go back to reference Mirollo, R. E., & Strogatz, S. H. (1990). Synchronization of pulse-coupled biological oscillators. SIAM Journal on Applied Mathematics, 50, 1645–1662.CrossRef Mirollo, R. E., & Strogatz, S. H. (1990). Synchronization of pulse-coupled biological oscillators. SIAM Journal on Applied Mathematics, 50, 1645–1662.CrossRef
go back to reference Morris, C., & Lecar, H. (1981). Voltage oscillations in the barnacle giant muscle fiber. Biophysical Journal, 35, 193–213.PubMedCrossRef Morris, C., & Lecar, H. (1981). Voltage oscillations in the barnacle giant muscle fiber. Biophysical Journal, 35, 193–213.PubMedCrossRef
go back to reference Oh, M., & Matveev, V. (2009). Loss of phase-locking in non-weakly coupled inhibitory networks of type-I model neurons. Journal of Computational Neuroscience, 26, 303–320.PubMedCrossRef Oh, M., & Matveev, V. (2009). Loss of phase-locking in non-weakly coupled inhibitory networks of type-I model neurons. Journal of Computational Neuroscience, 26, 303–320.PubMedCrossRef
go back to reference Oprisan, S. A., Prinz, A. A., & Canavier, C. C. (2004). Phase resetting and phase locking in hybrid circuits of one model and one biological neuron. Biophysical J., 87, 2283–2298.CrossRef Oprisan, S. A., Prinz, A. A., & Canavier, C. C. (2004). Phase resetting and phase locking in hybrid circuits of one model and one biological neuron. Biophysical J., 87, 2283–2298.CrossRef
go back to reference Perez Velasquez, J. L., Galan, R. F., Dominguez, L. G., Leshchenko, Y., Lo, S., Belkas, J., et al. (2007). Phase response curves in the characterization of epileptiform activity. Physical Review E, 76, 061912.CrossRef Perez Velasquez, J. L., Galan, R. F., Dominguez, L. G., Leshchenko, Y., Lo, S., Belkas, J., et al. (2007). Phase response curves in the characterization of epileptiform activity. Physical Review E, 76, 061912.CrossRef
go back to reference Pervouchine, D. D., Netoff, T. I., Rotstein, H. G., White, J. A., Cunningham, M. O., Whittington, M. A., et al. (2006). Low-dimensional maps encoding dynamics in entorhinal cortex and hippocampus. Neural Computation, 18, 1–34.CrossRef Pervouchine, D. D., Netoff, T. I., Rotstein, H. G., White, J. A., Cunningham, M. O., Whittington, M. A., et al. (2006). Low-dimensional maps encoding dynamics in entorhinal cortex and hippocampus. Neural Computation, 18, 1–34.CrossRef
go back to reference Peskin, CS. (1975). Mathematical aspects of heart physiology. New York: Courant Institute of Mathematical Sciences, New York, 268–278. Peskin, CS. (1975). Mathematical aspects of heart physiology. New York: Courant Institute of Mathematical Sciences, New York, 268–278.
go back to reference Prasad, A., Dana, S. K., Kamatak, R., Kurths, J., Blasius, B., & Ramaswamy, R. (2008). Universal occurrence of the phase-flip bifurcation in time-delay coupled systems. Chaos, 18, 023111.PubMedCrossRef Prasad, A., Dana, S. K., Kamatak, R., Kurths, J., Blasius, B., & Ramaswamy, R. (2008). Universal occurrence of the phase-flip bifurcation in time-delay coupled systems. Chaos, 18, 023111.PubMedCrossRef
go back to reference Remme, M. W. H., Lengyel, M., & Gutkin, B. S. (2009). The role of ongoing dendritic oscillations in single-neuron dynamics. PLoS Computational Biology, 5(9), e1000493.PubMedCrossRef Remme, M. W. H., Lengyel, M., & Gutkin, B. S. (2009). The role of ongoing dendritic oscillations in single-neuron dynamics. PLoS Computational Biology, 5(9), e1000493.PubMedCrossRef
go back to reference Rinzel, J., & Ermentrout, G. B. (1998). Analysis of neural excitability and oscillations. In C. Koch & I. Segev (Eds.), Methods in neuronal modeling from ions to networks. Cambridge: MIT. Rinzel, J., & Ermentrout, G. B. (1998). Analysis of neural excitability and oscillations. In C. Koch & I. Segev (Eds.), Methods in neuronal modeling from ions to networks. Cambridge: MIT.
go back to reference Schuster, H. G., & Wagner, P. (1989). Mutual entrainment of two limit cycle oscillators with time delayed coupling. Prog. Theor. Phys., 81, 939.CrossRef Schuster, H. G., & Wagner, P. (1989). Mutual entrainment of two limit cycle oscillators with time delayed coupling. Prog. Theor. Phys., 81, 939.CrossRef
go back to reference Schuster, H. G., & Wagner, P. (1990). A model for neuronal oscillations in the visual cortex. 2. Phase description of the feature dependent synchronization. Biological Cybernetics, 64, 83–85.PubMedCrossRef Schuster, H. G., & Wagner, P. (1990). A model for neuronal oscillations in the visual cortex. 2. Phase description of the feature dependent synchronization. Biological Cybernetics, 64, 83–85.PubMedCrossRef
go back to reference Sieling, F. H., Canavier, C. C., & Prinz, A. A. (2009). Predictions of phase-locking in excitatory hybrid networks: excitation does not promote phase-locking in pattern-generating networks as reliably as inhibition. Journal of Neurophysiology, 102(1), 69–84.PubMedCrossRef Sieling, F. H., Canavier, C. C., & Prinz, A. A. (2009). Predictions of phase-locking in excitatory hybrid networks: excitation does not promote phase-locking in pattern-generating networks as reliably as inhibition. Journal of Neurophysiology, 102(1), 69–84.PubMedCrossRef
go back to reference Singer, W. (1993). Synchronization of cortical activity and its putative role in information processing and learning. Annual Review of Physiology, 55, 349–374.PubMedCrossRef Singer, W. (1993). Synchronization of cortical activity and its putative role in information processing and learning. Annual Review of Physiology, 55, 349–374.PubMedCrossRef
go back to reference Singer, W. (1999). Neural synchrony: a versatile code for definition of relations. Neuron, 24, 49–65.PubMedCrossRef Singer, W. (1999). Neural synchrony: a versatile code for definition of relations. Neuron, 24, 49–65.PubMedCrossRef
go back to reference Timme, M., & Wolf, F. (2008). The simplest problem in the collective dynamics of neural networks: is synchrony stable? Nonlinearity, 21, 1579–1599.CrossRef Timme, M., & Wolf, F. (2008). The simplest problem in the collective dynamics of neural networks: is synchrony stable? Nonlinearity, 21, 1579–1599.CrossRef
go back to reference Timme, M., Wolf, F., & Geisel, T. (2002). Coexistence of regular and irregular dynamics in complex networks of pulse coupled oscillators. Physical Review Letters, 89, 258701.PubMedCrossRef Timme, M., Wolf, F., & Geisel, T. (2002). Coexistence of regular and irregular dynamics in complex networks of pulse coupled oscillators. Physical Review Letters, 89, 258701.PubMedCrossRef
go back to reference Tort, A. B. L., Rotstein, H. G., Dugladze, T., Gloveli, T., & Kopell, N. J. (2007). On the formation of gamma-coherent cell assemblies by oriens lacunosum-moleculare interneurons in the hippocampus. PNAS, 104, 13490–13495.PubMedCrossRef Tort, A. B. L., Rotstein, H. G., Dugladze, T., Gloveli, T., & Kopell, N. J. (2007). On the formation of gamma-coherent cell assemblies by oriens lacunosum-moleculare interneurons in the hippocampus. PNAS, 104, 13490–13495.PubMedCrossRef
go back to reference Traub, R. D., Whittington, M. A., Stanford, I. M., & Jefferys, J. G. R. (1996). A mechanism for the generation of long-range synchronous fast oscillations in the cortex. Nature, 383, 621–624.PubMedCrossRef Traub, R. D., Whittington, M. A., Stanford, I. M., & Jefferys, J. G. R. (1996). A mechanism for the generation of long-range synchronous fast oscillations in the cortex. Nature, 383, 621–624.PubMedCrossRef
go back to reference Uhlhass, P. J., & Singer, W. (2006). Neural synchrony in brain disorders: relevance for cognitive dysfunction and pathophysiology. Neuron, 52, 155–158.CrossRef Uhlhass, P. J., & Singer, W. (2006). Neural synchrony in brain disorders: relevance for cognitive dysfunction and pathophysiology. Neuron, 52, 155–158.CrossRef
go back to reference Uhlhass, P. J., Pipa, G., Lima, B., Melloni, L., Neuenschwander, S., Nikolic, D., et al. (2009). Neural synchrony in cortical networks: history concept and current status. Frontiers in Integrative Neuroscience. doi:10.3389. Uhlhass, P. J., Pipa, G., Lima, B., Melloni, L., Neuenschwander, S., Nikolic, D., et al. (2009). Neural synchrony in cortical networks: history concept and current status. Frontiers in Integrative Neuroscience. doi:10.​3389.
go back to reference Vicente, R., Gollo, L. L., Mirasso, C. R., Fischer, I., & Pipa, G. (2008). Dynamical relaying can yield zero time lag neuronal synchrony despite long conduction delays. PNAS, 105, 17157–17162.PubMedCrossRef Vicente, R., Gollo, L. L., Mirasso, C. R., Fischer, I., & Pipa, G. (2008). Dynamical relaying can yield zero time lag neuronal synchrony despite long conduction delays. PNAS, 105, 17157–17162.PubMedCrossRef
go back to reference Wang, X. J., & Buzsaki, G. (1996). Gamma oscillation by synaptic inhibition in a hippocampal interneuronal network model. The Journal of Neuroscience, 16, 6402–6413.PubMed Wang, X. J., & Buzsaki, G. (1996). Gamma oscillation by synaptic inhibition in a hippocampal interneuronal network model. The Journal of Neuroscience, 16, 6402–6413.PubMed
go back to reference Womelsdorf, T., Schoeffelen, J.-M., Oostenveld, R., Singer, W., Desimone, R., Engel, A. K., et al. (2007). Modulation of neuronal interactions through neuronal synchronization. Science, 316, 1609–1612.PubMedCrossRef Womelsdorf, T., Schoeffelen, J.-M., Oostenveld, R., Singer, W., Desimone, R., Engel, A. K., et al. (2007). Modulation of neuronal interactions through neuronal synchronization. Science, 316, 1609–1612.PubMedCrossRef
Metadata
Title
Effects of conduction delays on the existence and stability of one to one phase locking between two pulse-coupled oscillators
Authors
Michael Marmaduke Woodman
Carmen C. Canavier
Publication date
01-10-2011
Publisher
Springer US
Published in
Journal of Computational Neuroscience / Issue 2/2011
Print ISSN: 0929-5313
Electronic ISSN: 1573-6873
DOI
https://doi.org/10.1007/s10827-011-0315-2

Other articles of this Issue 2/2011

Journal of Computational Neuroscience 2/2011 Go to the issue

Premium Partner