Skip to main content
Top
Published in: Journal of Computational Neuroscience 2/2011

01-10-2011

Virtual NEURON: a strategy for merged biochemical and electrophysiological modeling

Authors: Sherry-Ann Brown, Ion I. Moraru, James C. Schaff, Leslie M. Loew

Published in: Journal of Computational Neuroscience | Issue 2/2011

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Because of its highly branched dendrite, the Purkinje neuron requires significant computational resources if coupled electrical and biochemical activity are to be simulated. To address this challenge, we developed a scheme for reducing the geometric complexity; while preserving the essential features of activity in both the soma and a remote dendritic spine. We merged our previously published biochemical model of calcium dynamics and lipid signaling in the Purkinje neuron, developed in the Virtual Cell modeling and simulation environment, with an electrophysiological model based on a Purkinje neuron model available in NEURON. A novel reduction method was applied to the Purkinje neuron geometry to obtain a model with fewer compartments that is tractable in Virtual Cell. Most of the dendritic tree was subject to reduction, but we retained the neuron’s explicit electrical and geometric features along a specified path from spine to soma. Further, unlike previous simplification methods, the dendrites that branch off along the preserved explicit path are retained as reduced branches. We conserved axial resistivity and adjusted passive properties and active channel conductances for the reduction in surface area, and cytosolic calcium for the reduction in volume. Rallpacks are used to validate the reduction algorithm and show that it can be generalized to other complex neuronal geometries. For the Purkinje cell, we found that current injections at the soma were able to produce similar trains of action potentials and membrane potential propagation in the full and reduced models in NEURON; the reduced model produces identical spiking patterns in NEURON and Virtual Cell. Importantly, our reduced model can simulate communication between the soma and a distal spine; an alpha function applied at the spine to represent synaptic stimulation gave similar results in the full and reduced models for potential changes associated with both the spine and the soma. Finally, we combined phosphoinositol signaling and electrophysiology in the reduced model in Virtual Cell. Thus, a strategy has been developed to combine electrophysiology and biochemistry as a step toward merging neuronal and systems biology modeling.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
go back to reference Berridge, M., Lipp, P., & Bootman, M. (2000). The versatility and universality of calcium signalling. Nature Reviews. Molecular Cell Biology, 1, 11–21.PubMedCrossRef Berridge, M., Lipp, P., & Bootman, M. (2000). The versatility and universality of calcium signalling. Nature Reviews. Molecular Cell Biology, 1, 11–21.PubMedCrossRef
go back to reference Bhalla, U., Bilitch, D., & Bower, J. (1992). Rallpacks: a set of benchmarks for neuronal simulators. Trends in Neurosciences, 15, 453–458.PubMedCrossRef Bhalla, U., Bilitch, D., & Bower, J. (1992). Rallpacks: a set of benchmarks for neuronal simulators. Trends in Neurosciences, 15, 453–458.PubMedCrossRef
go back to reference Booth, V., Rinzel, J., & Kiehn, O. (1997). Compartmental model of vertebrate motoneurons for Ca2+-dependent spiking and plateau potentials under pharmacological treatment. J Neurophysiol, 78, 3371–3385. Booth, V., Rinzel, J., & Kiehn, O. (1997). Compartmental model of vertebrate motoneurons for Ca2+-dependent spiking and plateau potentials under pharmacological treatment. J Neurophysiol, 78, 3371–3385.
go back to reference Bower, J. M. & Beeman, D. (2003) The Book of GENESIS: Exploring Realistic Neural Models with the GEneral NEural SImulation System (Free Internet Version). New York, New York: Springer-Verlag. Bower, J. M. & Beeman, D. (2003) The Book of GENESIS: Exploring Realistic Neural Models with the GEneral NEural SImulation System (Free Internet Version). New York, New York: Springer-Verlag.
go back to reference Bower, J., & Beeman, D. (2007). Constructing realistic neural simulations with GENESIS. Methods Mol Biol, 401, 103–125.PubMedCrossRef Bower, J., & Beeman, D. (2007). Constructing realistic neural simulations with GENESIS. Methods Mol Biol, 401, 103–125.PubMedCrossRef
go back to reference Brown, S., Morgan, F., Watras, J., & Loew, L. M. (2008). Analysis of phosphatidylinositol-4, 5-bisphosphate signaling in cerebellar Purkinje spines. Biophysical Journal, 95, 1795–1812.PubMedCrossRef Brown, S., Morgan, F., Watras, J., & Loew, L. M. (2008). Analysis of phosphatidylinositol-4, 5-bisphosphate signaling in cerebellar Purkinje spines. Biophysical Journal, 95, 1795–1812.PubMedCrossRef
go back to reference Burke, R., Fyffe, R., & Moschovakis, A. (1994). Electrotonic architecture of cat gamma motoneurons. J Neurophysiol, 72, 2302–2316.PubMed Burke, R., Fyffe, R., & Moschovakis, A. (1994). Electrotonic architecture of cat gamma motoneurons. J Neurophysiol, 72, 2302–2316.PubMed
go back to reference Bush, P., & Sejnowski, T. (1993). Reduced compartmental models of neocortical pyramidal cells. J Neurosci Methods, 46, 159–166.PubMedCrossRef Bush, P., & Sejnowski, T. (1993). Reduced compartmental models of neocortical pyramidal cells. J Neurosci Methods, 46, 159–166.PubMedCrossRef
go back to reference Clements, J., & Redman, S. (1989). Cable properties of cat spinal motoneurones measured by combining voltage clamp, current clamp and intracellular staining. J Physiol, 409, 63–87. Clements, J., & Redman, S. (1989). Cable properties of cat spinal motoneurones measured by combining voltage clamp, current clamp and intracellular staining. J Physiol, 409, 63–87.
go back to reference De Schutter, E., & Bower, J. (1994). An active membrane model of the cerebellar Purkinje cell. I. Simulation of current clamps in slice. Journal of Neurophysiology, 71, 375–400.PubMed De Schutter, E., & Bower, J. (1994). An active membrane model of the cerebellar Purkinje cell. I. Simulation of current clamps in slice. Journal of Neurophysiology, 71, 375–400.PubMed
go back to reference De Smedt, H., Missiaen, L., Parys, J., Henning, R., Sienaert, I., Vanlingen, S., et al. (1997). Isoform diversity of the inositol trisphosphate receptor in cell types of mouse origin. The Biochemical Journal, 322(Pt 2), 575–583.PubMed De Smedt, H., Missiaen, L., Parys, J., Henning, R., Sienaert, I., Vanlingen, S., et al. (1997). Isoform diversity of the inositol trisphosphate receptor in cell types of mouse origin. The Biochemical Journal, 322(Pt 2), 575–583.PubMed
go back to reference Destexhe, A., Babloyantz, A., & Sejnowski, T. (1993). Ionic mechanisms for intrinsic slow oscillations in thalamic relay neurons. Biophysical Journal, 65, 1538–1552.PubMedCrossRef Destexhe, A., Babloyantz, A., & Sejnowski, T. (1993). Ionic mechanisms for intrinsic slow oscillations in thalamic relay neurons. Biophysical Journal, 65, 1538–1552.PubMedCrossRef
go back to reference Di Gregorio, E., Orsi, L., Godani, M., Vaula, G., Jensen, S., Salmon, E., et al. (2010) Two Italian families with ITPR1 gene deletion presenting a broader phenotype of SCA15. Cerebellum. Di Gregorio, E., Orsi, L., Godani, M., Vaula, G., Jensen, S., Salmon, E., et al. (2010) Two Italian families with ITPR1 gene deletion presenting a broader phenotype of SCA15. Cerebellum.
go back to reference Douglas, R., & Martin, K. (1993). Exploring cortical microcircuits: A combined anatomical, physiological, and computational approach. In T. McKenna et al. (Eds.), Single neuron computation (pp. 381–412). Orlando, FL: Academic Press. Douglas, R., & Martin, K. (1993). Exploring cortical microcircuits: A combined anatomical, physiological, and computational approach. In T. McKenna et al. (Eds.), Single neuron computation (pp. 381–412). Orlando, FL: Academic Press.
go back to reference Finch, E., & Augustine, G. (1998). Local calcium signalling by inositol-1, 4, 5-trisphosphate in Purkinje cell dendrites. Nature, 396, 753–756.PubMedCrossRef Finch, E., & Augustine, G. (1998). Local calcium signalling by inositol-1, 4, 5-trisphosphate in Purkinje cell dendrites. Nature, 396, 753–756.PubMedCrossRef
go back to reference Fleshman, J., Segev, I., & Burke, R. (1988). Electrotonic architecture of type-identified alpha-motoneurons in the cat spinal cord. J Neurophysiol, 60, 60–85. Fleshman, J., Segev, I., & Burke, R. (1988). Electrotonic architecture of type-identified alpha-motoneurons in the cat spinal cord. J Neurophysiol, 60, 60–85.
go back to reference Gilbert, P., & Thach, W. (1977). Purkinje cell activity during motor learning. Brain Research, 128, 309–328.PubMedCrossRef Gilbert, P., & Thach, W. (1977). Purkinje cell activity during motor learning. Brain Research, 128, 309–328.PubMedCrossRef
go back to reference Hara, K., Shiga, A., Nozaki, H., Mitsui, J., Takahashi, Y., Ishiguro, H., et al. (2008). Total deletion and a missense mutation of ITPR1 in Japanese SCA15 families. Neurology, 71, 547–551.PubMedCrossRef Hara, K., Shiga, A., Nozaki, H., Mitsui, J., Takahashi, Y., Ishiguro, H., et al. (2008). Total deletion and a missense mutation of ITPR1 in Japanese SCA15 families. Neurology, 71, 547–551.PubMedCrossRef
go back to reference Harris, K., & Stevens, J. (1988). Dendritic spines of rat cerebellar Purkinje cells: serial electron microscopy with reference to their biophysical characteristics. The Journal of Neuroscience, 8, 4455–4469.PubMed Harris, K., & Stevens, J. (1988). Dendritic spines of rat cerebellar Purkinje cells: serial electron microscopy with reference to their biophysical characteristics. The Journal of Neuroscience, 8, 4455–4469.PubMed
go back to reference Hendrickson, E., Edgerton, J., & Jaeger, D. (2010). The capabilities and limitations of conductance-based compartmental neuron models with reduced branched or unbranched morphologies and active dendrites. J Comput Neurosci. Hendrickson, E., Edgerton, J., & Jaeger, D. (2010). The capabilities and limitations of conductance-based compartmental neuron models with reduced branched or unbranched morphologies and active dendrites. J Comput Neurosci.
go back to reference Hernjak, N., Slepchenko, B. M., Fernald, K., Fink, C. C., Fortin, D., Moraru, I. I., et al. (2005). Modeling and analysis of calcium signaling events leading to long-term depression in cerebellar purkinje cells. Biophysical Journal, 89, 3790–3806.PubMedCrossRef Hernjak, N., Slepchenko, B. M., Fernald, K., Fink, C. C., Fortin, D., Moraru, I. I., et al. (2005). Modeling and analysis of calcium signaling events leading to long-term depression in cerebellar purkinje cells. Biophysical Journal, 89, 3790–3806.PubMedCrossRef
go back to reference Hines, M. L., & Carnevale, N. T. (1997). The NEURON simulation environment. Neural Computation, 9, 1179–1209.PubMedCrossRef Hines, M. L., & Carnevale, N. T. (1997). The NEURON simulation environment. Neural Computation, 9, 1179–1209.PubMedCrossRef
go back to reference Hines, M. L., & Carnevale, N. T. (2001). NEURON: a tool for neuroscientists. The Neuroscientist, 7, 123–135.PubMedCrossRef Hines, M. L., & Carnevale, N. T. (2001). NEURON: a tool for neuroscientists. The Neuroscientist, 7, 123–135.PubMedCrossRef
go back to reference Hodgkin, A. L., & Huxley, A. F. (1952). A quantitative description of membrane current and its application to conduction and excitation in nerve. The Journal of Physiology, 117, 500–544.PubMed Hodgkin, A. L., & Huxley, A. F. (1952). A quantitative description of membrane current and its application to conduction and excitation in nerve. The Journal of Physiology, 117, 500–544.PubMed
go back to reference Ito, M., & Kano, M. (1982). Long-lasting depression of parallel fiber-Purkinje cell transmission induced by conjunctive stimulation of parallel fibers and climbing fibers in the cerebellar cortex. Neuroscience Letters, 33, 253–258.PubMedCrossRef Ito, M., & Kano, M. (1982). Long-lasting depression of parallel fiber-Purkinje cell transmission induced by conjunctive stimulation of parallel fibers and climbing fibers in the cerebellar cortex. Neuroscience Letters, 33, 253–258.PubMedCrossRef
go back to reference Iwaki, A., Kawano, Y., Miura, S., Shibata, H., Matsuse, D., Li, W., et al. (2008). Heterozygous deletion of ITPR1, but not SUMF1, in spinocerebellar ataxia type 16. Journal of Medical Genetics, 45, 32–35.PubMedCrossRef Iwaki, A., Kawano, Y., Miura, S., Shibata, H., Matsuse, D., Li, W., et al. (2008). Heterozygous deletion of ITPR1, but not SUMF1, in spinocerebellar ataxia type 16. Journal of Medical Genetics, 45, 32–35.PubMedCrossRef
go back to reference Konnerth, A., Dreessen, J., & Augustine, G. (1992). Brief dendritic calcium signals initiate long-lasting synaptic depression in cerebellar Purkinje cells. Proceedings of the National Academy of Sciences of the United States of America, 89, 7051–7055.PubMedCrossRef Konnerth, A., Dreessen, J., & Augustine, G. (1992). Brief dendritic calcium signals initiate long-lasting synaptic depression in cerebellar Purkinje cells. Proceedings of the National Academy of Sciences of the United States of America, 89, 7051–7055.PubMedCrossRef
go back to reference Loew, L., & Schaff, J. (2001). The virtual cell: a software environment for computational cell biology. Trends in Biotechnology, 19, 401–406.PubMedCrossRef Loew, L., & Schaff, J. (2001). The virtual cell: a software environment for computational cell biology. Trends in Biotechnology, 19, 401–406.PubMedCrossRef
go back to reference Major, G., Larkman, A., Jonas, P., Sakmann, B., & Jack, J. (1994). Detailed passive cable models of whole-cell recorded CA3 pyramidal neurons in rat hippocampal slices. The Journal of Neuroscience, 14, 4613–4638.PubMed Major, G., Larkman, A., Jonas, P., Sakmann, B., & Jack, J. (1994). Detailed passive cable models of whole-cell recorded CA3 pyramidal neurons in rat hippocampal slices. The Journal of Neuroscience, 14, 4613–4638.PubMed
go back to reference Manor, Y., Gonczarowski, J., & Segev, I. (1991). Propagation of action potentials along complex axonal trees. Model and implementation. Biophys J, 60, 1411–1423.PubMedCrossRef Manor, Y., Gonczarowski, J., & Segev, I. (1991). Propagation of action potentials along complex axonal trees. Model and implementation. Biophys J, 60, 1411–1423.PubMedCrossRef
go back to reference Matsumoto, M., Nakagawa, T., Inoue, T., Nagata, E., Tanaka, K., Takano, H., et al. (1996). Ataxia and epileptic seizures in mice lacking type 1 inositol 1, 4, 5-trisphosphate receptor. Nature, 379, 168–171.PubMedCrossRef Matsumoto, M., Nakagawa, T., Inoue, T., Nagata, E., Tanaka, K., Takano, H., et al. (1996). Ataxia and epileptic seizures in mice lacking type 1 inositol 1, 4, 5-trisphosphate receptor. Nature, 379, 168–171.PubMedCrossRef
go back to reference McCormick, D., & Huguenard, J. (1992). A model of the electrophysiological properties of thalamocortical relay neurons. J Neurophysiol, 68, 1384–1400. McCormick, D., & Huguenard, J. (1992). A model of the electrophysiological properties of thalamocortical relay neurons. J Neurophysiol, 68, 1384–1400.
go back to reference Miyasho, T., Takagi, H., Suzuki, H., Watanabe, S., Inoue, M., Kudo, Y., et al. (2001). Low-threshold potassium channels and a low-threshold calcium channel regulate Ca2+ spike firing in the dendrites of cerebellar Purkinje neurons: a modeling study. Brain Research, 891, 106–115.PubMedCrossRef Miyasho, T., Takagi, H., Suzuki, H., Watanabe, S., Inoue, M., Kudo, Y., et al. (2001). Low-threshold potassium channels and a low-threshold calcium channel regulate Ca2+ spike firing in the dendrites of cerebellar Purkinje neurons: a modeling study. Brain Research, 891, 106–115.PubMedCrossRef
go back to reference Moraru, I. I., Schaff, J. C., Slepchenko, B. M., & Loew, L. M. (2002). The virtual cell: an integrated modeling environment for experimental and computational cell biology. Annals of the New York Academy of Sciences, 971, 595–596.PubMedCrossRef Moraru, I. I., Schaff, J. C., Slepchenko, B. M., & Loew, L. M. (2002). The virtual cell: an integrated modeling environment for experimental and computational cell biology. Annals of the New York Academy of Sciences, 971, 595–596.PubMedCrossRef
go back to reference Napper, R., & Harvey, R. (1988a). Number of parallel fiber synapses on an individual Purkinje cell in the cerebellum of the rat. The Journal of Comparative Neurology, 274, 168–177.PubMedCrossRef Napper, R., & Harvey, R. (1988a). Number of parallel fiber synapses on an individual Purkinje cell in the cerebellum of the rat. The Journal of Comparative Neurology, 274, 168–177.PubMedCrossRef
go back to reference Napper, R., & Harvey, R. (1988b). Quantitative study of the Purkinje cell dendritic spines in the rat cerebellum. The Journal of Comparative Neurology, 274, 158–167.PubMedCrossRef Napper, R., & Harvey, R. (1988b). Quantitative study of the Purkinje cell dendritic spines in the rat cerebellum. The Journal of Comparative Neurology, 274, 158–167.PubMedCrossRef
go back to reference Ogura, H., Matsumoto, M., & Mikoshiba, K. (2001). Motor discoordination in mutant mice heterozygous for the type 1 inositol 1, 4, 5-trisphosphate receptor. Behavioural Brain Research, 122, 215–219.PubMedCrossRef Ogura, H., Matsumoto, M., & Mikoshiba, K. (2001). Motor discoordination in mutant mice heterozygous for the type 1 inositol 1, 4, 5-trisphosphate receptor. Behavioural Brain Research, 122, 215–219.PubMedCrossRef
go back to reference Pinsky, P., & Rinzel, J. (1994). Intrinsic and network rhythmogenesis in a reduced Traub model for CA3 neurons. J Comput Neurosci, 1, 39–60. Pinsky, P., & Rinzel, J. (1994). Intrinsic and network rhythmogenesis in a reduced Traub model for CA3 neurons. J Comput Neurosci, 1, 39–60.
go back to reference Rall, W. (1969). Time constants and electrotonic length of membrane cylinders and neurons. Biophysical Journal, 9, 1483–1508. Rall, W. (1969). Time constants and electrotonic length of membrane cylinders and neurons. Biophysical Journal, 9, 1483–1508.
go back to reference Rall, W., Rinzel, J. (1973). Branch input resistance and steady attenuation for input to one branch of a dendritic neuron model. Biophys J, 13, 648–687. Rall, W., Rinzel, J. (1973). Branch input resistance and steady attenuation for input to one branch of a dendritic neuron model. Biophys J, 13, 648–687.
go back to reference Rall, W., & Agmon-Snir, H. (1998). Cable theory for dendritic neurons. In C. Koch & I. Segev (Eds.), Methods in neuronal modeling: From ions to networks. Cambridge: MIT. Rall, W., & Agmon-Snir, H. (1998). Cable theory for dendritic neurons. In C. Koch & I. Segev (Eds.), Methods in neuronal modeling: From ions to networks. Cambridge: MIT.
go back to reference Rapp, M., Yarom, Y., & Segev, I. (1992). The impact of parallel fiber background activity on the cable properties of cerebellar Purkinje cells. Neural Computation, 4, 518–533. Rapp, M., Yarom, Y., & Segev, I. (1992). The impact of parallel fiber background activity on the cable properties of cerebellar Purkinje cells. Neural Computation, 4, 518–533.
go back to reference Rapp, M., Segev, I., & Yarom, Y. (1994). Physiology, morphology and detailed passive models of guinea-pig cerebellar Purkinje-cells. Journal of Physiology, London, 474, 101–118. Rapp, M., Segev, I., & Yarom, Y. (1994). Physiology, morphology and detailed passive models of guinea-pig cerebellar Purkinje-cells. Journal of Physiology, London, 474, 101–118.
go back to reference Regehr, W., & Mintz, I. (1994). Participation of multiple calcium channel types in transmission at single climbing fiber to Purkinje cell synapses. Neuron, 12, 605–613.PubMedCrossRef Regehr, W., & Mintz, I. (1994). Participation of multiple calcium channel types in transmission at single climbing fiber to Purkinje cell synapses. Neuron, 12, 605–613.PubMedCrossRef
go back to reference Rinzel, J., & Rall, W. (1974). Transient response in a dendritic neuron model for current injected at one branch. Biophys J, 14, 759–790.PubMedCrossRef Rinzel, J., & Rall, W. (1974). Transient response in a dendritic neuron model for current injected at one branch. Biophys J, 14, 759–790.PubMedCrossRef
go back to reference Sarkisov, D., & Wang, S. (2008). Order-dependent coincidence detection in cerebellar Purkinje neurons at the inositol trisphosphate receptor. The Journal of Neuroscience, 28, 133–142.PubMedCrossRef Sarkisov, D., & Wang, S. (2008). Order-dependent coincidence detection in cerebellar Purkinje neurons at the inositol trisphosphate receptor. The Journal of Neuroscience, 28, 133–142.PubMedCrossRef
go back to reference Schaff, J., Fink, C., Slepchenko, B., Carson, J., & Loew, L. (1997). A general computational framework for modeling cellular structure and function. Biophysical Journal, 73, 1135–1146.PubMedCrossRef Schaff, J., Fink, C., Slepchenko, B., Carson, J., & Loew, L. (1997). A general computational framework for modeling cellular structure and function. Biophysical Journal, 73, 1135–1146.PubMedCrossRef
go back to reference Shelton, D. (1985). Membrane resistivity estimated for the Purkinje neuron by means of a passive computer model. Neuroscience, 14, 111–131.PubMedCrossRef Shelton, D. (1985). Membrane resistivity estimated for the Purkinje neuron by means of a passive computer model. Neuroscience, 14, 111–131.PubMedCrossRef
go back to reference Stratford, K., Mason, A., Larkman, A., Major, G., Jack, J. (1989). The modelling of pyramidal neurones in the visual cortex. In: The Computing Neuron (Durbin, R. et al., eds), pp 296-321 London, England: Addison-Wesley. Stratford, K., Mason, A., Larkman, A., Major, G., Jack, J. (1989). The modelling of pyramidal neurones in the visual cortex. In: The Computing Neuron (Durbin, R. et al., eds), pp 296-321 London, England: Addison-Wesley.
go back to reference Street, V., Bosma, M., Demas, V., Regan, M., Lin, D., Robinson, L., et al. (1997). The type 1 inositol 1, 4, 5-trisphosphate receptor gene is altered in the opisthotonos mouse. The Journal of Neuroscience, 17, 635–645.PubMed Street, V., Bosma, M., Demas, V., Regan, M., Lin, D., Robinson, L., et al. (1997). The type 1 inositol 1, 4, 5-trisphosphate receptor gene is altered in the opisthotonos mouse. The Journal of Neuroscience, 17, 635–645.PubMed
go back to reference Takechi, H., Eilers, J., & Konnerth, A. (1998). A new class of synaptic response involving calcium release in dendritic spines. Nature, 396, 757–760.PubMedCrossRef Takechi, H., Eilers, J., & Konnerth, A. (1998). A new class of synaptic response involving calcium release in dendritic spines. Nature, 396, 757–760.PubMedCrossRef
go back to reference Traub, R., Wong, R., Miles, R., Michelson, H. (1991). A model of a CA3 hippocampal pyramidal neuron incorporating voltage-clamp data on intrinsic conductances. J Neurophysiol, 66, 635–650. Traub, R., Wong, R., Miles, R., Michelson, H. (1991). A model of a CA3 hippocampal pyramidal neuron incorporating voltage-clamp data on intrinsic conductances. J Neurophysiol, 66, 635–650.
go back to reference van de Leemput, J., Chandran, J., Knight, M., Holtzclaw, L., Scholz, S., Cookson, M., et al. (2007). Deletion at ITPR1 underlies ataxia in mice and spinocerebellar ataxia 15 in humans. PLoS Genetics, 3, e108.PubMedCrossRef van de Leemput, J., Chandran, J., Knight, M., Holtzclaw, L., Scholz, S., Cookson, M., et al. (2007). Deletion at ITPR1 underlies ataxia in mice and spinocerebellar ataxia 15 in humans. PLoS Genetics, 3, e108.PubMedCrossRef
go back to reference Wang, S., Denk, W., & Häusser, M. (2000). Coincidence detection in single dendritic spines mediated by calcium release. Nature Neuroscience, 3, 1266–1273.PubMedCrossRef Wang, S., Denk, W., & Häusser, M. (2000). Coincidence detection in single dendritic spines mediated by calcium release. Nature Neuroscience, 3, 1266–1273.PubMedCrossRef
go back to reference Watanabe, M. (2008). Molecular mechanisms governing competitive synaptic wiring in cerebellar Purkinje cells. The Tohoku Journal of Experimental Medicine, 214, 175–190.PubMedCrossRef Watanabe, M. (2008). Molecular mechanisms governing competitive synaptic wiring in cerebellar Purkinje cells. The Tohoku Journal of Experimental Medicine, 214, 175–190.PubMedCrossRef
Metadata
Title
Virtual NEURON: a strategy for merged biochemical and electrophysiological modeling
Authors
Sherry-Ann Brown
Ion I. Moraru
James C. Schaff
Leslie M. Loew
Publication date
01-10-2011
Publisher
Springer US
Published in
Journal of Computational Neuroscience / Issue 2/2011
Print ISSN: 0929-5313
Electronic ISSN: 1573-6873
DOI
https://doi.org/10.1007/s10827-011-0317-0

Other articles of this Issue 2/2011

Journal of Computational Neuroscience 2/2011 Go to the issue

Premium Partner