Skip to main content
Erschienen in: Journal of Computational Neuroscience 2/2009

01.04.2009

Loss of phase-locking in non-weakly coupled inhibitory networks of type-I model neurons

verfasst von: Myongkeun Oh, Victor Matveev

Erschienen in: Journal of Computational Neuroscience | Ausgabe 2/2009

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Synchronization of excitable cells coupled by reciprocal inhibition is a topic of significant interest due to the important role that inhibitory synaptic interaction plays in the generation and regulation of coherent rhythmic activity in a variety of neural systems. While recent work revealed the synchronizing influence of inhibitory coupling on the dynamics of many networks, it is known that strong coupling can destabilize phase-locked firing. Here we examine the loss of synchrony caused by an increase in inhibitory coupling in networks of type-I Morris–Lecar model oscillators, which is characterized by a period-doubling cascade and leads to mode-locked states with alternation in the firing order of the two cells, as reported recently by Maran and Canavier (J Comput Nerosci, 2008) for a network of Wang-Buzsáki model neurons. Although alternating-order firing has been previously reported as a near-synchronous state, we show that the stable phase difference between the spikes of the two Morris–Lecar cells can constitute as much as 70% of the unperturbed oscillation period. Further, we examine the generality of this phenomenon for a class of type-I oscillators that are close to their excitation thresholds, and provide an intuitive geometric description of such “leap-frog” dynamics. In the Morris–Lecar model network, the alternation in the firing order arises under the condition of fast closing of K +  channels at hyperpolarized potentials, which leads to slow dynamics of membrane potential upon synaptic inhibition, allowing the presynaptic cell to advance past the postsynaptic cell in each cycle of the oscillation. Further, we show that non-zero synaptic decay time is crucial for the existence of leap-frog firing in networks of phase oscillators. However, we demonstrate that leap-frog spiking can also be obtained in pulse-coupled inhibitory networks of one-dimensional oscillators with a multi-branched phase domain, for instance in a network of quadratic integrate-and-fire model cells. Finally, for the case of a homogeneous network, we establish quantitative conditions on the phase resetting properties of each cell necessary for stable alternating-order spiking, complementing the analysis of Goel and Ermentrout (Physica D 163:191–216, 2002) of the order-preserving phase transition map.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
Zurück zum Zitat Acker, C. D., Kopell, N., & White, J. A. (2003). Synchronization of strongly coupled excitatory neurons: Relating network behavior to biophysics. Journal Comparative Neuroscience, 15, 71–90.CrossRef Acker, C. D., Kopell, N., & White, J. A. (2003). Synchronization of strongly coupled excitatory neurons: Relating network behavior to biophysics. Journal Comparative Neuroscience, 15, 71–90.CrossRef
Zurück zum Zitat Bose, A., Kopell, N., & Terman, D. (2000). Almost synchronous solutions for pairs of neurons coupled by excitation. Physica D, 140, 69–94.CrossRef Bose, A., Kopell, N., & Terman, D. (2000). Almost synchronous solutions for pairs of neurons coupled by excitation. Physica D, 140, 69–94.CrossRef
Zurück zum Zitat Bressloff, P. C., & Coombes, S. (1998). Desynchronization, mode locking, and bursting in strongly coupled integrate-and-fire oscillators. Physical Review Letters, 81, 2168–2171.CrossRef Bressloff, P. C., & Coombes, S. (1998). Desynchronization, mode locking, and bursting in strongly coupled integrate-and-fire oscillators. Physical Review Letters, 81, 2168–2171.CrossRef
Zurück zum Zitat Bressloff, P. C., & Coombes, S. (2000). Dynamics of strongly-coupled spiking neurons. Neural Computation, 12, 91–129.PubMedCrossRef Bressloff, P. C., & Coombes, S. (2000). Dynamics of strongly-coupled spiking neurons. Neural Computation, 12, 91–129.PubMedCrossRef
Zurück zum Zitat Brown, E., Moehlis, J., & Holmes, P. (2004). On the phase reduction and response dynamics of neural oscillator populations. Neural Computation, 16, 673–715.PubMedCrossRef Brown, E., Moehlis, J., & Holmes, P. (2004). On the phase reduction and response dynamics of neural oscillator populations. Neural Computation, 16, 673–715.PubMedCrossRef
Zurück zum Zitat Canavier, C. C., Baxter, D. A., Clark, J. W., & Byrne, J. H. (1999). Control of multistability in ring circuits of oscillators. Biological Cybernetics, 80, 87–102.CrossRef Canavier, C. C., Baxter, D. A., Clark, J. W., & Byrne, J. H. (1999). Control of multistability in ring circuits of oscillators. Biological Cybernetics, 80, 87–102.CrossRef
Zurück zum Zitat Ermentrout, G. B. (1996). Type I membranes, phase resetting curves, and synchrony. Neural Computation, 8, 979–1001.PubMedCrossRef Ermentrout, G. B. (1996). Type I membranes, phase resetting curves, and synchrony. Neural Computation, 8, 979–1001.PubMedCrossRef
Zurück zum Zitat Ermentrout, G. B., & Kopell, N. (1984). Frequency plateaus in a chain of weakly coupled oscillators. SIAM Journal on Mathematical Analysis, 15, 215–237.CrossRef Ermentrout, G. B., & Kopell, N. (1984). Frequency plateaus in a chain of weakly coupled oscillators. SIAM Journal on Mathematical Analysis, 15, 215–237.CrossRef
Zurück zum Zitat Ermentrout, G. B., & Kopell, N. (1990). Oscillator death in systems of coupled neural oscillators. SIAM Journal on Applied Mathematics, 50, 125–146.CrossRef Ermentrout, G. B., & Kopell, N. (1990). Oscillator death in systems of coupled neural oscillators. SIAM Journal on Applied Mathematics, 50, 125–146.CrossRef
Zurück zum Zitat Ermentrout, G. B., & Kopell, N. (1991). Multiple pulse interactions and averaging in systems of coupled neural oscillators. Journal of Mathematical Biology, 29, 195–217.CrossRef Ermentrout, G. B., & Kopell, N. (1991). Multiple pulse interactions and averaging in systems of coupled neural oscillators. Journal of Mathematical Biology, 29, 195–217.CrossRef
Zurück zum Zitat Glass, L., Guevara, M. R., Belair, J., & Shrier, A. (1984). Global bifurcations of a periodically forced biological oscillator. Physical Review, A 29, 1348–1357.CrossRef Glass, L., Guevara, M. R., Belair, J., & Shrier, A. (1984). Global bifurcations of a periodically forced biological oscillator. Physical Review, A 29, 1348–1357.CrossRef
Zurück zum Zitat Goel, P., & Ermentrout, G. B. (2002). Synchrony, stability, and firing patterns in pulse-coupled oscillators. Physica D, 163, 191–216.CrossRef Goel, P., & Ermentrout, G. B. (2002). Synchrony, stability, and firing patterns in pulse-coupled oscillators. Physica D, 163, 191–216.CrossRef
Zurück zum Zitat Golubitsky, M., Stewart, I., Buono, P. L., & Collins, J. J. (1999). Symmetry in locomotor central pattern generators and animal gaits. Nature, 401, 693–695.PubMedCrossRef Golubitsky, M., Stewart, I., Buono, P. L., & Collins, J. J. (1999). Symmetry in locomotor central pattern generators and animal gaits. Nature, 401, 693–695.PubMedCrossRef
Zurück zum Zitat Golubitsky, M., Josic, K., & Shea-Brown, E. (2006). Winding numbers and average frequencies in phase oscillator networks. Journal of Nonlinear Science, 16, 201–231.CrossRef Golubitsky, M., Josic, K., & Shea-Brown, E. (2006). Winding numbers and average frequencies in phase oscillator networks. Journal of Nonlinear Science, 16, 201–231.CrossRef
Zurück zum Zitat Hansel, D., Mato, G., & Meunier, C. (1995). Synchrony in excitatory neural networks. Neural Computation, 7, 307–337.PubMedCrossRef Hansel, D., Mato, G., & Meunier, C. (1995). Synchrony in excitatory neural networks. Neural Computation, 7, 307–337.PubMedCrossRef
Zurück zum Zitat Hoppensteadt, F. C., & Izhikevich, E. M. (1997). Weakly connected neural networks. New York: Springer. Hoppensteadt, F. C., & Izhikevich, E. M. (1997). Weakly connected neural networks. New York: Springer.
Zurück zum Zitat Izhikevich, E. M. (2000). Phase equations for relaxation oscillators. SIAM Journal on Applied Mathematics, 60, 1789–1805.CrossRef Izhikevich, E. M. (2000). Phase equations for relaxation oscillators. SIAM Journal on Applied Mathematics, 60, 1789–1805.CrossRef
Zurück zum Zitat Izhikevich, E. M. (2006). Dynamics systems in neuroscience: The geometry of excitability and bursting. Chapter 10: Synchronization. Cambridge: MIT. Izhikevich, E. M. (2006). Dynamics systems in neuroscience: The geometry of excitability and bursting. Chapter 10: Synchronization. Cambridge: MIT.
Zurück zum Zitat Izhikevich, E. M., & Kuramoto, Y. (2006). Weakly coupled oscillators. Encyclopedia of Mathematical Physics, Elsevier, 5, 448.CrossRef Izhikevich, E. M., & Kuramoto, Y. (2006). Weakly coupled oscillators. Encyclopedia of Mathematical Physics, Elsevier, 5, 448.CrossRef
Zurück zum Zitat Jones, S. R., Pinto, D., Kaper, T., & Kopell, N. (2000). Alpha-frequency rhythms desynchronize over long cortical distances: A modelling study. Journal Computational Neuroscience, 9, 271–291.CrossRef Jones, S. R., Pinto, D., Kaper, T., & Kopell, N. (2000). Alpha-frequency rhythms desynchronize over long cortical distances: A modelling study. Journal Computational Neuroscience, 9, 271–291.CrossRef
Zurück zum Zitat Kopell, N. (1988). Toward a theory of modeling central pattern generators. In A. H. Cohen, S. Rossignol, & S. Grillner (Eds.), Neural control of rhythms. New York: Wiley. Kopell, N. (1988). Toward a theory of modeling central pattern generators. In A. H. Cohen, S. Rossignol, & S. Grillner (Eds.), Neural control of rhythms. New York: Wiley.
Zurück zum Zitat Kopell, N., Ermentrout, G. B., Whittington, M., & Traub, R. D. (2000). Gamma rhythms and beta rhythms have different synchronization properties. Proceedings of the National Academy of Sciences of United States America, 97, 1867–1872.CrossRef Kopell, N., Ermentrout, G. B., Whittington, M., & Traub, R. D. (2000). Gamma rhythms and beta rhythms have different synchronization properties. Proceedings of the National Academy of Sciences of United States America, 97, 1867–1872.CrossRef
Zurück zum Zitat Kopell, N., & Ermentrout, G. B. (2002). Mechanisms of phase-locking and frequency control in pairs of coupled neural oscillators. In B. Fiedler (Ed.), Handbook on Dynamical Systems: Toward Applications. New York: Elsevier. Kopell, N., & Ermentrout, G. B. (2002). Mechanisms of phase-locking and frequency control in pairs of coupled neural oscillators. In B. Fiedler (Ed.), Handbook on Dynamical Systems: Toward Applications. New York: Elsevier.
Zurück zum Zitat Kuramoto, Y. (1984). Chemical oscillations, waves, and turbulence. Berlin: Springer. Kuramoto, Y. (1984). Chemical oscillations, waves, and turbulence. Berlin: Springer.
Zurück zum Zitat Maran, S. K., & Canavier, C. C. (2008). Using phase resetting to predict 1:1 and 2:2 locking in two neuron networks in which firing order is not always preserved. Journal of Computational Neroscience, 24, 37–55. Maran, S. K., & Canavier, C. C. (2008). Using phase resetting to predict 1:1 and 2:2 locking in two neuron networks in which firing order is not always preserved. Journal of Computational Neroscience, 24, 37–55.
Zurück zum Zitat Mirollo, R. E., & Strogatz, S. H. (1990). Synchronization of pulse-coupled biological oscillators. SIAM Journal of Applied Mathemaics, 50, 1645–1662.CrossRef Mirollo, R. E., & Strogatz, S. H. (1990). Synchronization of pulse-coupled biological oscillators. SIAM Journal of Applied Mathemaics, 50, 1645–1662.CrossRef
Zurück zum Zitat Morris, C., & Lecar, H. (1981). Voltage oscillations in the barnacle giant muscle fiber. Biophysical Journal, 35, 193–213.PubMedCrossRef Morris, C., & Lecar, H. (1981). Voltage oscillations in the barnacle giant muscle fiber. Biophysical Journal, 35, 193–213.PubMedCrossRef
Zurück zum Zitat Netoff, T. I., Banks, M. I., Dorval, A. D., Acker, C. D., Haas, J. S., Kopell, N., et al. (2005). Synchronization in hybrid neuronal networks of the hippocampal formation. Journal of Neurophysiology, 93, 1197–1208.PubMedCrossRef Netoff, T. I., Banks, M. I., Dorval, A. D., Acker, C. D., Haas, J. S., Kopell, N., et al. (2005). Synchronization in hybrid neuronal networks of the hippocampal formation. Journal of Neurophysiology, 93, 1197–1208.PubMedCrossRef
Zurück zum Zitat Oprisan, S. A., & Canavier, C. C. (2001). Stability analysis of rings of pulse-coupled oscillators: The effect of phase resetting in the second cycle after the pulse is important at synchrony and for long pulses. Journal of Difference. Equations and Dynamical Systems, 9, 243–258. Oprisan, S. A., & Canavier, C. C. (2001). Stability analysis of rings of pulse-coupled oscillators: The effect of phase resetting in the second cycle after the pulse is important at synchrony and for long pulses. Journal of Difference. Equations and Dynamical Systems, 9, 243–258.
Zurück zum Zitat Oprisan, S. A., & Canavier, C. C. (2002). The influence of limit cycle topology on the phase resetting curve. Neural Computation, 14, 1027–1057.PubMedCrossRef Oprisan, S. A., & Canavier, C. C. (2002). The influence of limit cycle topology on the phase resetting curve. Neural Computation, 14, 1027–1057.PubMedCrossRef
Zurück zum Zitat Oprisan, S. A., Prinz, A. A., & Canavier, C. C. (2004). Phase resetting and phase locking in hybrid circuits of one model and one biological neuron. Biophysical Journal, 87, 2283–2298.PubMedCrossRef Oprisan, S. A., Prinz, A. A., & Canavier, C. C. (2004). Phase resetting and phase locking in hybrid circuits of one model and one biological neuron. Biophysical Journal, 87, 2283–2298.PubMedCrossRef
Zurück zum Zitat Peskin, C. S. (1975). Mathematical aspects of heart physiology. New York: New York University Courant Institute of Mathematical Sciences. Peskin, C. S. (1975). Mathematical aspects of heart physiology. New York: New York University Courant Institute of Mathematical Sciences.
Zurück zum Zitat Rinzel, J., & Ermentrout, B. (1998). Analysis of neural excitability and oscillations. In C. Koch & I. Segev (Eds.), Methods in neuronal modeling: From ions to networks (2nd edn). Cambridge: MIT. Rinzel, J., & Ermentrout, B. (1998). Analysis of neural excitability and oscillations. In C. Koch & I. Segev (Eds.), Methods in neuronal modeling: From ions to networks (2nd edn). Cambridge: MIT.
Zurück zum Zitat Rubin, J., & Terman, D. (2000). Geometric analysis of population rhythms in synaptically coupled neuronal networks. Neural Computation, 12, 597–645PubMedCrossRef Rubin, J., & Terman, D. (2000). Geometric analysis of population rhythms in synaptically coupled neuronal networks. Neural Computation, 12, 597–645PubMedCrossRef
Zurück zum Zitat Sato, Y. D., & Shiino, M. (2007). Generalization of coupled spiking models and effects of the width of an action potential on synchronization phenomena. Physical Review E, 75, 011909.CrossRef Sato, Y. D., & Shiino, M. (2007). Generalization of coupled spiking models and effects of the width of an action potential on synchronization phenomena. Physical Review E, 75, 011909.CrossRef
Zurück zum Zitat Somers, D., & Kopell, N. (1993). Rapid synchronization through fast threshold modulation. Biological Cybernetics, 68, 393–407.PubMedCrossRef Somers, D., & Kopell, N. (1993). Rapid synchronization through fast threshold modulation. Biological Cybernetics, 68, 393–407.PubMedCrossRef
Zurück zum Zitat van Vreeswijk, C., Abbott, L. F., & Ermentrout, B. (1994). When inhibition not excitation synchronizes neural firing. Journal of Computational Neuroscience, 1, 313–321.PubMedCrossRef van Vreeswijk, C., Abbott, L. F., & Ermentrout, B. (1994). When inhibition not excitation synchronizes neural firing. Journal of Computational Neuroscience, 1, 313–321.PubMedCrossRef
Zurück zum Zitat Wang, X. J., Buzsáki, G. (1996). Gamma oscillation by synaptic inhibition in a hippocampal interneuronal network model. Journal of Neuroscience, 16, 6402–6413.PubMed Wang, X. J., Buzsáki, G. (1996). Gamma oscillation by synaptic inhibition in a hippocampal interneuronal network model. Journal of Neuroscience, 16, 6402–6413.PubMed
Zurück zum Zitat White, J. A., Chow, C. C., Ritt, J., Soto-Trevino, C., & Kopell, N. (1998). Dynamics in heterogeneous, mutually inhibited neurons. Journal of Computational Neuroscience, 5, 5–16.PubMedCrossRef White, J. A., Chow, C. C., Ritt, J., Soto-Trevino, C., & Kopell, N. (1998). Dynamics in heterogeneous, mutually inhibited neurons. Journal of Computational Neuroscience, 5, 5–16.PubMedCrossRef
Zurück zum Zitat Winfree, A. T. (2001). The geometry of biological time (2nd edn). New York: Springer. Winfree, A. T. (2001). The geometry of biological time (2nd edn). New York: Springer.
Metadaten
Titel
Loss of phase-locking in non-weakly coupled inhibitory networks of type-I model neurons
verfasst von
Myongkeun Oh
Victor Matveev
Publikationsdatum
01.04.2009
Verlag
Springer US
Erschienen in
Journal of Computational Neuroscience / Ausgabe 2/2009
Print ISSN: 0929-5313
Elektronische ISSN: 1573-6873
DOI
https://doi.org/10.1007/s10827-008-0112-8

Weitere Artikel der Ausgabe 2/2009

Journal of Computational Neuroscience 2/2009 Zur Ausgabe

Premium Partner