Skip to main content
Erschienen in: Journal of Computational Neuroscience 2/2009

01.04.2009

A neuronal network model of primary visual cortex explains spatial frequency selectivity

verfasst von: Wei Zhu, Michael Shelley, Robert Shapley

Erschienen in: Journal of Computational Neuroscience | Ausgabe 2/2009

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

We address how spatial frequency selectivity arises in Macaque primary visual cortex (V1) by simulating V1 with a large-scale network model consisting of O(104) excitatory and inhibitory integrate-and-fire neurons with realistic synaptic conductances. The new model introduces variability of the widths of subregions in V1 neuron receptive fields. As a consequence different model V1 neurons prefer different spatial frequencies. The model cortex has distributions of spatial frequency selectivity and of preference that resemble experimental findings from the real V1. Two main sources of spatial frequency selectivity in the model are the spatial arrangement of feedforward excitation, and cortical nonlinear suppression, a result of cortical inhibition.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Bardy, C., Huang, J. Y., Wang, C., FitzGibbon, T., & Dreher, B. (2006). ‘Simplification’ of responses of complex cells in cat striate cortex: Suppressive surrounds and ‘feedback’ inactivation. Journal of Physiology, 574, 731–750.PubMedCrossRef Bardy, C., Huang, J. Y., Wang, C., FitzGibbon, T., & Dreher, B. (2006). ‘Simplification’ of responses of complex cells in cat striate cortex: Suppressive surrounds and ‘feedback’ inactivation. Journal of Physiology, 574, 731–750.PubMedCrossRef
Zurück zum Zitat Beierlein, M., Gibson, J. R., & Connors, B. W. (2003). Two dynamically distinct inhibitory networks in layer 4 of the neocortex. Journal of Neurophysiology, 90, 2987–3000.PubMedCrossRef Beierlein, M., Gibson, J. R., & Connors, B. W. (2003). Two dynamically distinct inhibitory networks in layer 4 of the neocortex. Journal of Neurophysiology, 90, 2987–3000.PubMedCrossRef
Zurück zum Zitat Bredfeldt, C. E., & Ringach, D. L. (2002). Dynamics of spatial frequency tuning in macaque V1. Journal of Neuroscience, 22, 1976–1984.PubMed Bredfeldt, C. E., & Ringach, D. L. (2002). Dynamics of spatial frequency tuning in macaque V1. Journal of Neuroscience, 22, 1976–1984.PubMed
Zurück zum Zitat Cai, D., Tao, L., Shelley, M., & McLaughlin, D. (2004). An effective kinetic representation of fluctuation-driven neuronal networks with application to simple and complex cells in visual cortex. Proceedings of the National Academy of Science of the United States of America, 101, 7757–7762.CrossRef Cai, D., Tao, L., Shelley, M., & McLaughlin, D. (2004). An effective kinetic representation of fluctuation-driven neuronal networks with application to simple and complex cells in visual cortex. Proceedings of the National Academy of Science of the United States of America, 101, 7757–7762.CrossRef
Zurück zum Zitat Campbell, F. W., Cooper, G. F., & Enroth-Cugell, C. (1969). The spatial selectivity of the visual cells of the cat. Journal of Physiology, 203, 223–235.PubMed Campbell, F. W., Cooper, G. F., & Enroth-Cugell, C. (1969). The spatial selectivity of the visual cells of the cat. Journal of Physiology, 203, 223–235.PubMed
Zurück zum Zitat Chance, F. S., Nelson, S. B., & Abbott, L. F. (1999). Complex cells as cortically amplified simple cells. Nature Neuroscience, 2(3), 277–282.PubMedCrossRef Chance, F. S., Nelson, S. B., & Abbott, L. F. (1999). Complex cells as cortically amplified simple cells. Nature Neuroscience, 2(3), 277–282.PubMedCrossRef
Zurück zum Zitat Dayan, P., & Abbott, L. (2001). Theoretical neuroscience. Cambridge: MIT. Dayan, P., & Abbott, L. (2001). Theoretical neuroscience. Cambridge: MIT.
Zurück zum Zitat DeAngelis, G., Ohzawa, I., & Freeman, R. D. (1995). Receptive-field dynamics in the central visual pathways. Trends in Neuroscience, 18, 451–458.CrossRef DeAngelis, G., Ohzawa, I., & Freeman, R. D. (1995). Receptive-field dynamics in the central visual pathways. Trends in Neuroscience, 18, 451–458.CrossRef
Zurück zum Zitat DeAngelis, G. C., Ghose, G. M., Ohzawa, I., & Freeman, R. D. (1999). Functional micro-organization of primary visual cortex: Receptive field analysis of nearby neurons. Journal of Neuroscience, 19, 4046–4064.PubMed DeAngelis, G. C., Ghose, G. M., Ohzawa, I., & Freeman, R. D. (1999). Functional micro-organization of primary visual cortex: Receptive field analysis of nearby neurons. Journal of Neuroscience, 19, 4046–4064.PubMed
Zurück zum Zitat Derrington, A. M., & Lennie, P. (1984). Spatial and temporal contrast sensitivities of neurones in lateral geniculate nucleus of macaque. Journal of Physiology, 357, 219–240.PubMed Derrington, A. M., & Lennie, P. (1984). Spatial and temporal contrast sensitivities of neurones in lateral geniculate nucleus of macaque. Journal of Physiology, 357, 219–240.PubMed
Zurück zum Zitat DeValois, R. L., Albrecht, D. G., & Thorell, L. G. (1982). Spatial frequency selectivity of cells in macaque cortex. Vision Research, 22, 545–549.CrossRef DeValois, R. L., Albrecht, D. G., & Thorell, L. G. (1982). Spatial frequency selectivity of cells in macaque cortex. Vision Research, 22, 545–549.CrossRef
Zurück zum Zitat DeValois, R. L., & DeValois, K. K. (1988). Spatial vision. New York: Oxford University Press. DeValois, R. L., & DeValois, K. K. (1988). Spatial vision. New York: Oxford University Press.
Zurück zum Zitat Enroth-Cugell, C., & Robson, J. (1966). The contrast sensitivity of retinal ganglion cells of the cat. Journal of Physiology, 187, 517–552.PubMed Enroth-Cugell, C., & Robson, J. (1966). The contrast sensitivity of retinal ganglion cells of the cat. Journal of Physiology, 187, 517–552.PubMed
Zurück zum Zitat Finn, I. M., Priebe, N. J., & Ferster, D. (2007). The emergence of contrast-invariant orientation tuning in simple cells of cat visual cortex. Neuron, 54, 137–152.PubMedCrossRef Finn, I. M., Priebe, N. J., & Ferster, D. (2007). The emergence of contrast-invariant orientation tuning in simple cells of cat visual cortex. Neuron, 54, 137–152.PubMedCrossRef
Zurück zum Zitat Gibson, J., Beierlein, M., & Connors, B. (1999). Two networks of electrically coupled inhibitory neurons in neocortex. Nature, 402, 75–79.PubMedCrossRef Gibson, J., Beierlein, M., & Connors, B. (1999). Two networks of electrically coupled inhibitory neurons in neocortex. Nature, 402, 75–79.PubMedCrossRef
Zurück zum Zitat Holmgren, C., Harkany, T., Svennenfors, B., & Zilberter, Y. (2003). Pyramidal cell communication within local networks in layer 2/3 of rat neocortex. Journal of Physiology, 551, 139–153.PubMedCrossRef Holmgren, C., Harkany, T., Svennenfors, B., & Zilberter, Y. (2003). Pyramidal cell communication within local networks in layer 2/3 of rat neocortex. Journal of Physiology, 551, 139–153.PubMedCrossRef
Zurück zum Zitat Hubel, D. H., & Wiesel, T. N. (1962). Receptive fields, binocular interaction and function architecture in the cat’s visual cortex. Journal of Physiology, 160, 106–154.PubMed Hubel, D. H., & Wiesel, T. N. (1962). Receptive fields, binocular interaction and function architecture in the cat’s visual cortex. Journal of Physiology, 160, 106–154.PubMed
Zurück zum Zitat Issa, N. P., Trepel, C., & Stryker, M. P. (2000). Spatial frequency maps in cat visual cortex. Journal of Neuroscience, 20, 8504–8514.PubMed Issa, N. P., Trepel, C., & Stryker, M. P. (2000). Spatial frequency maps in cat visual cortex. Journal of Neuroscience, 20, 8504–8514.PubMed
Zurück zum Zitat Koch, C. (1999). Biophysics of computation. Oxford: Oxford University Press. Koch, C. (1999). Biophysics of computation. Oxford: Oxford University Press.
Zurück zum Zitat Kuffler, S. K. (1953). Discharge patterns and functional organization of mammalian retina. Journal of Neurophysiology, 16, 37–68.PubMed Kuffler, S. K. (1953). Discharge patterns and functional organization of mammalian retina. Journal of Neurophysiology, 16, 37–68.PubMed
Zurück zum Zitat Lauritzen, T. Z., & Miller, K. D. (2003). Different roles for simple-cell and complex-cell inhibition in V1. Journal of Neuroscience, 23(32), 10201–10213.PubMed Lauritzen, T. Z., & Miller, K. D. (2003). Different roles for simple-cell and complex-cell inhibition in V1. Journal of Neuroscience, 23(32), 10201–10213.PubMed
Zurück zum Zitat McLaughlin, D., Shapley, R., Shelley, M., & Wielaard, J. (2000). A neuronal network model of sharpening and dynamics of orientation tuning in an input layer of macaque primary visual cortex. Proceedings of the National Academy of Science of the United States of America, 97, 8087–8092.CrossRef McLaughlin, D., Shapley, R., Shelley, M., & Wielaard, J. (2000). A neuronal network model of sharpening and dynamics of orientation tuning in an input layer of macaque primary visual cortex. Proceedings of the National Academy of Science of the United States of America, 97, 8087–8092.CrossRef
Zurück zum Zitat Mechler, F., & Ringach, D. L. (2002). On the classification of simple and complex cells. Vision Research, 42, 1017–1033.PubMedCrossRef Mechler, F., & Ringach, D. L. (2002). On the classification of simple and complex cells. Vision Research, 42, 1017–1033.PubMedCrossRef
Zurück zum Zitat Movshon, J. A., Thompson, I. D., & Tolhurst, D. J. (1978). Spatial and temporal contrast sensitivity of neurons in areas 17 and 18 of the cat’s visual cortex. Journal of Physiology, 283, 101–120.PubMed Movshon, J. A., Thompson, I. D., & Tolhurst, D. J. (1978). Spatial and temporal contrast sensitivity of neurons in areas 17 and 18 of the cat’s visual cortex. Journal of Physiology, 283, 101–120.PubMed
Zurück zum Zitat Murthy, A., & Humphrey, A. L. (1999). Inhibitory contributions to spatiotemporal receptive-field structure and direction selectivity in simple cells of cat area 17. Journal of Neurophysiology, 81, 1212–1224.PubMed Murthy, A., & Humphrey, A. L. (1999). Inhibitory contributions to spatiotemporal receptive-field structure and direction selectivity in simple cells of cat area 17. Journal of Neurophysiology, 81, 1212–1224.PubMed
Zurück zum Zitat Priebe, N. J., Mechler, F., Carandini, M., & Ferster, D. (2004). The contribution of spike threshold to the dichotomy of cortical simple and complex cells. Nature Neuroscience, 7, 1113–1122.PubMedCrossRef Priebe, N. J., Mechler, F., Carandini, M., & Ferster, D. (2004). The contribution of spike threshold to the dichotomy of cortical simple and complex cells. Nature Neuroscience, 7, 1113–1122.PubMedCrossRef
Zurück zum Zitat Ringach, D. L. (2002). Spatial structure and symmetry of simple-cell receptive fields in macaque primary visual cortex. Journal of Neurophysiology, 88, 455–463.PubMed Ringach, D. L. (2002). Spatial structure and symmetry of simple-cell receptive fields in macaque primary visual cortex. Journal of Neurophysiology, 88, 455–463.PubMed
Zurück zum Zitat Ringach, D. L., Shapley, R. M., & Hawken, M. J. (2002a). Orientation selectivity in macaque V1: Diversity and laminar dependence. Journal of Neuroscience, 22(13), 5639–5651.PubMed Ringach, D. L., Shapley, R. M., & Hawken, M. J. (2002a). Orientation selectivity in macaque V1: Diversity and laminar dependence. Journal of Neuroscience, 22(13), 5639–5651.PubMed
Zurück zum Zitat Ringach, D. L., Bredfeldt, C. E., Hawken, M., & Shapley, R. (2002b). Suppression of neural responses to non-optimal stimuli correlates with tuning selectivity in macaque V1. Journal of Neurophysiology, 87, 1018–1027.PubMed Ringach, D. L., Bredfeldt, C. E., Hawken, M., & Shapley, R. (2002b). Suppression of neural responses to non-optimal stimuli correlates with tuning selectivity in macaque V1. Journal of Neurophysiology, 87, 1018–1027.PubMed
Zurück zum Zitat Robson, J. G. (1975). Receptive fields. In K. DeValois & R. DeValois (Eds.), “Seeing” handbook of perception. New York: Academic. Robson, J. G. (1975). Receptive fields. In K. DeValois & R. DeValois (Eds.), “Seeing” handbook of perception. New York: Academic.
Zurück zum Zitat Rodieck, R. W. (1965). Quantitative analysis of cat retinal gangalion cell response to visual stimuli. Vision Research, 5, 583–601.PubMedCrossRef Rodieck, R. W. (1965). Quantitative analysis of cat retinal gangalion cell response to visual stimuli. Vision Research, 5, 583–601.PubMedCrossRef
Zurück zum Zitat Sato, H., Katsuyama, N., Tamura, H., Hata, Y., & Tsumoto, T. (1996). Mechanisms underlying orientation selectivity of neurons in the primary visual cortex of the macaque. Journal of Physiology, 494, 757–771.PubMed Sato, H., Katsuyama, N., Tamura, H., Hata, Y., & Tsumoto, T. (1996). Mechanisms underlying orientation selectivity of neurons in the primary visual cortex of the macaque. Journal of Physiology, 494, 757–771.PubMed
Zurück zum Zitat Shelley, M., McLaughlin, D., Shapley, R., & Wielaard, J. (2002). States of high conductance in a large-scale model of the visual cortex. Journal of Computational Neuroscience, 13, 93–109.PubMedCrossRef Shelley, M., McLaughlin, D., Shapley, R., & Wielaard, J. (2002). States of high conductance in a large-scale model of the visual cortex. Journal of Computational Neuroscience, 13, 93–109.PubMedCrossRef
Zurück zum Zitat Sirovich, L. & Uglesich, R. (2004). The organization of orientation and spatial frequency in primary visual cortex. Proceedings of the National Academy of Science of the United States of America, 101, 16941–16946.CrossRef Sirovich, L. & Uglesich, R. (2004). The organization of orientation and spatial frequency in primary visual cortex. Proceedings of the National Academy of Science of the United States of America, 101, 16941–16946.CrossRef
Zurück zum Zitat Tao, L., Shelley, M., McLaughlin, D., & Shapley, R. (2004). An egalitarian network model for the emergence of simple and complex cells in visual cortex. Proceedings of the National Academy of Science of the United States of America, 101(1), 366–371.CrossRef Tao, L., Shelley, M., McLaughlin, D., & Shapley, R. (2004). An egalitarian network model for the emergence of simple and complex cells in visual cortex. Proceedings of the National Academy of Science of the United States of America, 101(1), 366–371.CrossRef
Zurück zum Zitat Tao, L., Cai, D., McLaughlin, D., Shelley, M., & Shapley, R. (2006). Orientation selectivity in visual cortex by fluctuation-controlled criticality. Proceedings of the National Academy of Science of the United States of America, 103, 12911–12916.CrossRef Tao, L., Cai, D., McLaughlin, D., Shelley, M., & Shapley, R. (2006). Orientation selectivity in visual cortex by fluctuation-controlled criticality. Proceedings of the National Academy of Science of the United States of America, 103, 12911–12916.CrossRef
Zurück zum Zitat Troyer, T. W., Krukowski, A. E., Priebe, N. J., & Miller, K. D. (1998). Contrast-invariant orientation tuning in cat visual cortex: Thalamocortical input tuning and correlation-based intracortical connectivity. Journal of Neuroscience, 18, 5908–5927.PubMed Troyer, T. W., Krukowski, A. E., Priebe, N. J., & Miller, K. D. (1998). Contrast-invariant orientation tuning in cat visual cortex: Thalamocortical input tuning and correlation-based intracortical connectivity. Journal of Neuroscience, 18, 5908–5927.PubMed
Zurück zum Zitat von der Heydt, R., Peterhans, E., & Dsteler, M. R. (1992). Periodic-pattern-selective cells in monkey visual cortex. Journal of Neuroscience, 12, 1416–1434.PubMed von der Heydt, R., Peterhans, E., & Dsteler, M. R. (1992). Periodic-pattern-selective cells in monkey visual cortex. Journal of Neuroscience, 12, 1416–1434.PubMed
Zurück zum Zitat Wielaard, D. J., Shelley, M., McLaughlin, D., & Shapley, R. (2001). How simple cells are made in a nonlinear network model of the visual cortex. Journal of Neuroscience, 21, 5203–5211.PubMed Wielaard, D. J., Shelley, M., McLaughlin, D., & Shapley, R. (2001). How simple cells are made in a nonlinear network model of the visual cortex. Journal of Neuroscience, 21, 5203–5211.PubMed
Zurück zum Zitat Xing, D., Ringach, D., Shapley, R., & Hawken, M. (2004). Correlation of local and global orientation and spatial frequency tuning in macaque V1. Journal of Physiology, 557, 923–933.PubMedCrossRef Xing, D., Ringach, D., Shapley, R., & Hawken, M. (2004). Correlation of local and global orientation and spatial frequency tuning in macaque V1. Journal of Physiology, 557, 923–933.PubMedCrossRef
Zurück zum Zitat Yoshimura, Y., & Callaway, E. M. (2005). Fine-scale specificity of cortical networks depends on inhibitory cell type and connectivity. Nature Neuroscience, 8, 1552–1559.PubMedCrossRef Yoshimura, Y., & Callaway, E. M. (2005). Fine-scale specificity of cortical networks depends on inhibitory cell type and connectivity. Nature Neuroscience, 8, 1552–1559.PubMedCrossRef
Metadaten
Titel
A neuronal network model of primary visual cortex explains spatial frequency selectivity
verfasst von
Wei Zhu
Michael Shelley
Robert Shapley
Publikationsdatum
01.04.2009
Verlag
Springer US
Erschienen in
Journal of Computational Neuroscience / Ausgabe 2/2009
Print ISSN: 0929-5313
Elektronische ISSN: 1573-6873
DOI
https://doi.org/10.1007/s10827-008-0110-x

Weitere Artikel der Ausgabe 2/2009

Journal of Computational Neuroscience 2/2009 Zur Ausgabe

Premium Partner