Skip to main content
Erschienen in: Journal of Computational Neuroscience 2/2009

01.04.2009

The influence of sodium and potassium dynamics on excitability, seizures, and the stability of persistent states: II. Network and glial dynamics

verfasst von: Ghanim Ullah, John R. Cressman Jr., Ernest Barreto, Steven J. Schiff

Erschienen in: Journal of Computational Neuroscience | Ausgabe 2/2009

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In these companion papers, we study how the interrelated dynamics of sodium and potassium affect the excitability of neurons, the occurrence of seizures, and the stability of persistent states of activity. We seek to study these dynamics with respect to the following compartments: neurons, glia, and extracellular space. We are particularly interested in the slower time-scale dynamics that determine overall excitability, and set the stage for transient episodes of persistent oscillations, working memory, or seizures. In this second of two companion papers, we present an ionic current network model composed of populations of Hodgkin–Huxley type excitatory and inhibitory neurons embedded within extracellular space and glia, in order to investigate the role of micro-environmental ionic dynamics on the stability of persistent activity. We show that these networks reproduce seizure-like activity if glial cells fail to maintain the proper micro-environmental conditions surrounding neurons, and produce several experimentally testable predictions. Our work suggests that the stability of persistent states to perturbation is set by glial activity, and that how the response to such perturbations decays or grows may be a critical factor in a variety of disparate transient phenomena such as working memory, burst firing in neonatal brain or spinal cord, up states, seizures, and cortical oscillations.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Amzica, F., Massimini, M., & Manfridi, A. (2002). Spatial buffering during slow and paroxysmal sleep oscillations in cortical networks of glial cells in vivo. Journal of Neuroscience, 22(3), 1042–1053.PubMed Amzica, F., Massimini, M., & Manfridi, A. (2002). Spatial buffering during slow and paroxysmal sleep oscillations in cortical networks of glial cells in vivo. Journal of Neuroscience, 22(3), 1042–1053.PubMed
Zurück zum Zitat Bazhenov, M., Timofeev, I., Steriade, M., & Sejnowski, T. J. (2004). Potassium model for slow (2–3 Hz) in vivo neocortical paroxysmal oscillations. Journal of Neurophysiology, 92, 1116–1132.PubMedCrossRef Bazhenov, M., Timofeev, I., Steriade, M., & Sejnowski, T. J. (2004). Potassium model for slow (2–3 Hz) in vivo neocortical paroxysmal oscillations. Journal of Neurophysiology, 92, 1116–1132.PubMedCrossRef
Zurück zum Zitat Bikson, M., Hahn, P. J., Fox, J. E., & Jefferys, J. G. R. (2003). Depolarization block of neurons during maintenance of electrographic seizures. Journal of Neurophysiology, 90(4), 2402–2408.PubMedCrossRef Bikson, M., Hahn, P. J., Fox, J. E., & Jefferys, J. G. R. (2003). Depolarization block of neurons during maintenance of electrographic seizures. Journal of Neurophysiology, 90(4), 2402–2408.PubMedCrossRef
Zurück zum Zitat Chub, N., Mentis, Z. G., & O’Donovan, J. M. (2006). Chloride-sensitive MEQ fluorescence in chick embryo motoneurons following manipulations of chloride and during spontaneous network activity. Journal of Neurophysiology, 95, 323–330.PubMedCrossRef Chub, N., Mentis, Z. G., & O’Donovan, J. M. (2006). Chloride-sensitive MEQ fluorescence in chick embryo motoneurons following manipulations of chloride and during spontaneous network activity. Journal of Neurophysiology, 95, 323–330.PubMedCrossRef
Zurück zum Zitat Compte, A., Brunel, N., Goldman-Rakic, P. S., & Wang, X. J. (2000). Synaptic mechanisms and network dynamics underlying spatial working memory in a cortical network model. Cerebral Cortex, 10(9), 910–923.PubMedCrossRef Compte, A., Brunel, N., Goldman-Rakic, P. S., & Wang, X. J. (2000). Synaptic mechanisms and network dynamics underlying spatial working memory in a cortical network model. Cerebral Cortex, 10(9), 910–923.PubMedCrossRef
Zurück zum Zitat Cressman, J. R., Ullah, G., Ziburkus, J., Schiff, S. J., & Barreto, E. (2009). The influence of sodium and potassium dynamics on excitability, seizures, and the stability of persistent states: I. Single neuron dynamics. Journal of Computational Neuroscience. doi:10.1007/s10827-008-0132-4. Cressman, J. R., Ullah, G., Ziburkus, J., Schiff, S. J., & Barreto, E. (2009). The influence of sodium and potassium dynamics on excitability, seizures, and the stability of persistent states: I. Single neuron dynamics. Journal of Computational Neuroscience. doi:10.​1007/​s10827-008-0132-4.
Zurück zum Zitat Durstewitz, D., Seamans, J. K., & Sejnowski, T. J. (2000). Neurocomputational models of working memory. Nature Neuroscience, 3, 1184–1191.PubMedCrossRef Durstewitz, D., Seamans, J. K., & Sejnowski, T. J. (2000). Neurocomputational models of working memory. Nature Neuroscience, 3, 1184–1191.PubMedCrossRef
Zurück zum Zitat Fellin, T., Gomez-Gonzalo, M., Gobbo, S., Carmignoto, G., & Haydon, P. G. (2006). Astrocytic glutamate is not necessary for the generation of epileptiform neuronal activity in hippocampal slices. Journal of Neuroscience, 26(36), 9312–9322.PubMedCrossRef Fellin, T., Gomez-Gonzalo, M., Gobbo, S., Carmignoto, G., & Haydon, P. G. (2006). Astrocytic glutamate is not necessary for the generation of epileptiform neuronal activity in hippocampal slices. Journal of Neuroscience, 26(36), 9312–9322.PubMedCrossRef
Zurück zum Zitat Fisher, R. S., Pedley, T. A., & Prince, D. A. (1976). Kinetics of potassium movement in norman cortex. Brain Research, 101(2), 223–237.PubMedCrossRef Fisher, R. S., Pedley, T. A., & Prince, D. A. (1976). Kinetics of potassium movement in norman cortex. Brain Research, 101(2), 223–237.PubMedCrossRef
Zurück zum Zitat Forster, D. (1990). Hydrodynamic fluctuations, broken symmetry, and correlation. Boulder: Westview. Forster, D. (1990). Hydrodynamic fluctuations, broken symmetry, and correlation. Boulder: Westview.
Zurück zum Zitat Frohlich, F., Timofeev, I., Sejnowski, T. J., & Bazhenov, M. (2008). Extracellular potassium dynamics and epileptogenesis. In I. Soltesz, & K. Staley (Eds.), Computational neuroscience in epilepsy. Amsterdam: Academic. Frohlich, F., Timofeev, I., Sejnowski, T. J., & Bazhenov, M. (2008). Extracellular potassium dynamics and epileptogenesis. In I. Soltesz, & K. Staley (Eds.), Computational neuroscience in epilepsy. Amsterdam: Academic.
Zurück zum Zitat Fujiwara-Tsukamoto, Y., Isomura, Y., Kaneda, K., & Takada, M. (2004). Synaptic interactions between pyramidal cells and interneuron subtypes during seizure-like activity in the rat hippocampus. Journal of Physiology, 557(3), 961–979.PubMedCrossRef Fujiwara-Tsukamoto, Y., Isomura, Y., Kaneda, K., & Takada, M. (2004). Synaptic interactions between pyramidal cells and interneuron subtypes during seizure-like activity in the rat hippocampus. Journal of Physiology, 557(3), 961–979.PubMedCrossRef
Zurück zum Zitat Funahashi, S., Bruce, C. J., & Goldman-Rakic, P. S. (1989). Mnemonic coding of visual space in the monkey’s dorsolateral prefrontal cortex. Journal of Neurophysiology, 61(2), 331–349.PubMed Funahashi, S., Bruce, C. J., & Goldman-Rakic, P. S. (1989). Mnemonic coding of visual space in the monkey’s dorsolateral prefrontal cortex. Journal of Neurophysiology, 61(2), 331–349.PubMed
Zurück zum Zitat Fuster, J. M. (1995). Memory in the cerebral cortex. Cambridge: MIT. Fuster, J. M. (1995). Memory in the cerebral cortex. Cambridge: MIT.
Zurück zum Zitat Gutkin, B. S., Laing, C. R., Colby, C. L., Chow, C. C., & Ermentrout, G. B. (2001). Turning on and off with excitation: the role of spike-timing asynchrony and synchrony in sustained neural activity. Journal of Computational Neuroscience, 11(2), 121–134.PubMedCrossRef Gutkin, B. S., Laing, C. R., Colby, C. L., Chow, C. C., & Ermentrout, G. B. (2001). Turning on and off with excitation: the role of spike-timing asynchrony and synchrony in sustained neural activity. Journal of Computational Neuroscience, 11(2), 121–134.PubMedCrossRef
Zurück zum Zitat Heinemann, U., Gabriel, S., Jauch, R., Schulze, K., Kivi, A., Eilers, A., et al. (2000). Alterations of glial cell function in temporal lobe epilepsy. Epilepsia, 41(Suppl. 6), S185–S189.PubMedCrossRef Heinemann, U., Gabriel, S., Jauch, R., Schulze, K., Kivi, A., Eilers, A., et al. (2000). Alterations of glial cell function in temporal lobe epilepsy. Epilepsia, 41(Suppl. 6), S185–S189.PubMedCrossRef
Zurück zum Zitat Hinterkeuser, S., Schroder, W., Hager, G., Seifert, G., Blumcke, I., Elger, C. E., et al. (2000). Astrocytes in the hippocampus of patients with temporal lobe epilepsy display changes in potassium conductances. European Journal of Neuroscience, 12(6), 2087–2096.PubMedCrossRef Hinterkeuser, S., Schroder, W., Hager, G., Seifert, G., Blumcke, I., Elger, C. E., et al. (2000). Astrocytes in the hippocampus of patients with temporal lobe epilepsy display changes in potassium conductances. European Journal of Neuroscience, 12(6), 2087–2096.PubMedCrossRef
Zurück zum Zitat Huang, X., Troy, W. C., Yang, Q., Ma, H., Laing, C. R., Schiff, S. J., et al. (2004). Spiral waves in disinhibited mammalian neocortex. Journal of Neuroscience, 24, 9897–9902.PubMedCrossRef Huang, X., Troy, W. C., Yang, Q., Ma, H., Laing, C. R., Schiff, S. J., et al. (2004). Spiral waves in disinhibited mammalian neocortex. Journal of Neuroscience, 24, 9897–9902.PubMedCrossRef
Zurück zum Zitat Kager, H., Wadman, J. W., & Somjen, G. G. (2000). Simulated seizures and spreading depression in a neuron model incorporating interstitial space and ion concentrations. Journal of Neurophysiology, 84, 495–512.PubMed Kager, H., Wadman, J. W., & Somjen, G. G. (2000). Simulated seizures and spreading depression in a neuron model incorporating interstitial space and ion concentrations. Journal of Neurophysiology, 84, 495–512.PubMed
Zurück zum Zitat Kager, H., Wadman, J. W., & Somjen, G. G. (2007). Seizure-like afterdischarges simulated in a model neuron. Journal of Computational Neuroscience, 22, 105–128.PubMedCrossRef Kager, H., Wadman, J. W., & Somjen, G. G. (2007). Seizure-like afterdischarges simulated in a model neuron. Journal of Computational Neuroscience, 22, 105–128.PubMedCrossRef
Zurück zum Zitat Kang, N., Xu, J., Xu, Q., Nedergaard, M., & Kang, J. (2005). Astrocytic glutamate release-induced transient depolarization and epileptiform discharges in hippocampal CA1 pyramidal neurons. Journal of Neurophysiology, 94(6), 4121–4130.PubMedCrossRef Kang, N., Xu, J., Xu, Q., Nedergaard, M., & Kang, J. (2005). Astrocytic glutamate release-induced transient depolarization and epileptiform discharges in hippocampal CA1 pyramidal neurons. Journal of Neurophysiology, 94(6), 4121–4130.PubMedCrossRef
Zurück zum Zitat Konnerth, A., Heinemann, U., & Yaari, Y. (1984). Slow transmission of neural activity in hippocampal area CA1 in absence of active chemical synapses. Nature, 307, 69–71.PubMedCrossRef Konnerth, A., Heinemann, U., & Yaari, Y. (1984). Slow transmission of neural activity in hippocampal area CA1 in absence of active chemical synapses. Nature, 307, 69–71.PubMedCrossRef
Zurück zum Zitat Leinekugel, X., Khazipov, R., Cannon, R., Hirase, H., Ben-Ari, Y., & Buzsaki, G. (2002). Correlated bursts of activity in the neonatal hippocampus in vivo. Science, 298(5575), 2049–2052.CrossRef Leinekugel, X., Khazipov, R., Cannon, R., Hirase, H., Ben-Ari, Y., & Buzsaki, G. (2002). Correlated bursts of activity in the neonatal hippocampus in vivo. Science, 298(5575), 2049–2052.CrossRef
Zurück zum Zitat Marder, E., & Prinz, A. A. (2002). Modulating stability in neuron and network function: The role of activity in homeostasis. BioEssays, 24, 1145–1154.PubMedCrossRef Marder, E., & Prinz, A. A. (2002). Modulating stability in neuron and network function: The role of activity in homeostasis. BioEssays, 24, 1145–1154.PubMedCrossRef
Zurück zum Zitat Mason, A., & Larkman, A. (1990). Correlations between morphology and electrophysiology of pyramidal neurons in slices of rat visual cortex. II. Electrophysiology. Journal of Neuroscience, 10(5), 1415–1428.PubMed Mason, A., & Larkman, A. (1990). Correlations between morphology and electrophysiology of pyramidal neurons in slices of rat visual cortex. II. Electrophysiology. Journal of Neuroscience, 10(5), 1415–1428.PubMed
Zurück zum Zitat Mazel, T., Simonova, Z., & Sykova, E. (1998). Diffusion heterogeneity and anisotropy in rat hippocampus. Neuroreport, 9(7), 1299–1304.PubMedCrossRef Mazel, T., Simonova, Z., & Sykova, E. (1998). Diffusion heterogeneity and anisotropy in rat hippocampus. Neuroreport, 9(7), 1299–1304.PubMedCrossRef
Zurück zum Zitat McBain, C. J., Traynelis, S. F., & Dingledine, R. (1990). Regional variation of extracellular space in the hippocampus. Science, 249(4969), 674–677.PubMedCrossRef McBain, C. J., Traynelis, S. F., & Dingledine, R. (1990). Regional variation of extracellular space in the hippocampus. Science, 249(4969), 674–677.PubMedCrossRef
Zurück zum Zitat McCormick, D. A., Shu, Y., Hasenstaub, A., Sanchez-Vives, M., Badoual, M., & Bal, T. (2003). Persistent cortical activity: Mechanisms of generation and effects on neuronal excitability. Cerebral Cortex, 13, 1219–1231.PubMedCrossRef McCormick, D. A., Shu, Y., Hasenstaub, A., Sanchez-Vives, M., Badoual, M., & Bal, T. (2003). Persistent cortical activity: Mechanisms of generation and effects on neuronal excitability. Cerebral Cortex, 13, 1219–1231.PubMedCrossRef
Zurück zum Zitat Miller, E. K., Erickson, C. A., & Desimone, R. (1996). Neural mechanisms of visual working memory in prefrontal cortex of the macaque. Journal of Neuroscience, 16(16), 5154–5167.PubMed Miller, E. K., Erickson, C. A., & Desimone, R. (1996). Neural mechanisms of visual working memory in prefrontal cortex of the macaque. Journal of Neuroscience, 16(16), 5154–5167.PubMed
Zurück zum Zitat Miller, P., Brody, C. D., Romo, R., & Wang, X. J. (2003). A recurrent network model of somatosensory parametric working memory in the prefrontal cortex. Cerebral Cortex, 13, 1208–1218.PubMedCrossRef Miller, P., Brody, C. D., Romo, R., & Wang, X. J. (2003). A recurrent network model of somatosensory parametric working memory in the prefrontal cortex. Cerebral Cortex, 13, 1208–1218.PubMedCrossRef
Zurück zum Zitat Murray, J. D. (2003). Mathematical Biology II: Spatial models and biomedical applications. New York: Springer. Murray, J. D. (2003). Mathematical Biology II: Spatial models and biomedical applications. New York: Springer.
Zurück zum Zitat Nadkarni, S., & Jung, P. (2003). Spontaneous oscillations of dressed neurons: A new mechanism for epilepsy? Physical Review Letters, 91(268101), 1–4. Nadkarni, S., & Jung, P. (2003). Spontaneous oscillations of dressed neurons: A new mechanism for epilepsy? Physical Review Letters, 91(268101), 1–4.
Zurück zum Zitat Netoff, T. I., & Schiff, S. J. (2002). Decreased neuronal synchronization during experimental seizures. Journal of Neuroscience, 22, 7297–7307.PubMed Netoff, T. I., & Schiff, S. J. (2002). Decreased neuronal synchronization during experimental seizures. Journal of Neuroscience, 22, 7297–7307.PubMed
Zurück zum Zitat Oberheim, N. A., Tian, G. F., Han, X., Peng, W., Takano, T., Ransom, B., et al. (2008). Loss of astrocytic domain organization in the epileptic brain. Journal of Neuroscience, 28(13), 3264–3276.PubMedCrossRef Oberheim, N. A., Tian, G. F., Han, X., Peng, W., Takano, T., Ransom, B., et al. (2008). Loss of astrocytic domain organization in the epileptic brain. Journal of Neuroscience, 28(13), 3264–3276.PubMedCrossRef
Zurück zum Zitat Parpura, V., & Haydon, P. G. (2000). Physiological astrocytic calcium levels stimulate glutamate release to modulate adjacent neurons. Proceedings of the National Academy of Sciences of the United States of America, 97, 8629–8634.PubMedCrossRef Parpura, V., & Haydon, P. G. (2000). Physiological astrocytic calcium levels stimulate glutamate release to modulate adjacent neurons. Proceedings of the National Academy of Sciences of the United States of America, 97, 8629–8634.PubMedCrossRef
Zurück zum Zitat Parpura, V., Basarsky, T. A., Liu, F., Jeftinija, K., Jeftinija, S., & Haydon, P. G. (1994). Glutamate-mediated astrocyte–neuron signalling. Nature, 369(6483), 744–747.PubMedCrossRef Parpura, V., Basarsky, T. A., Liu, F., Jeftinija, K., Jeftinija, S., & Haydon, P. G. (1994). Glutamate-mediated astrocyte–neuron signalling. Nature, 369(6483), 744–747.PubMedCrossRef
Zurück zum Zitat Perez-Velazquez, J. L., & Carlen, P. L. (1999). Synchronization of GABAergic interneuronal networks during seizure-like activity in the rat horizontal hippocampal slice. European Journal of Neuroscience, 11, 4110–4118.CrossRef Perez-Velazquez, J. L., & Carlen, P. L. (1999). Synchronization of GABAergic interneuronal networks during seizure-like activity in the rat horizontal hippocampal slice. European Journal of Neuroscience, 11, 4110–4118.CrossRef
Zurück zum Zitat Pinto, D. J., Patrick, S. L., Huang, W. C., & Connors, B. W. (2005). Initiation, propagation, and termination of epileptiform activity in rodent neocortex in vitro involve distinct mechanisms. Journal of Neuroscience, 25(36), 8131–8140.PubMedCrossRef Pinto, D. J., Patrick, S. L., Huang, W. C., & Connors, B. W. (2005). Initiation, propagation, and termination of epileptiform activity in rodent neocortex in vitro involve distinct mechanisms. Journal of Neuroscience, 25(36), 8131–8140.PubMedCrossRef
Zurück zum Zitat Rainer, G., Asaad, W. F., & Miller, E. K. (1998). Memory fields of neurons in the primate prefrontal cortex. Proceedings of the National Academy of Sciences of the United States of America, 95, 15008–15013.PubMedCrossRef Rainer, G., Asaad, W. F., & Miller, E. K. (1998). Memory fields of neurons in the primate prefrontal cortex. Proceedings of the National Academy of Sciences of the United States of America, 95, 15008–15013.PubMedCrossRef
Zurück zum Zitat Romo, R., Brody, C. D., Hernandez, A., & Lemus, L. (1999). Neuronal correlates of parametric working memory in the prefrontal cortex. Nature, 399(6735), 470–473.PubMedCrossRef Romo, R., Brody, C. D., Hernandez, A., & Lemus, L. (1999). Neuronal correlates of parametric working memory in the prefrontal cortex. Nature, 399(6735), 470–473.PubMedCrossRef
Zurück zum Zitat Sanchez-Vives, M. V., & McCormick, D. A. (2000). Cellular and network mechanisms of rhythmic recurrent activity in neocortex. Nature Neuroscience, 3, 1027–1034.PubMedCrossRef Sanchez-Vives, M. V., & McCormick, D. A. (2000). Cellular and network mechanisms of rhythmic recurrent activity in neocortex. Nature Neuroscience, 3, 1027–1034.PubMedCrossRef
Zurück zum Zitat Schiff, S. J., Sauer, T., Kumar, R., & Weinstein, S. L. (2005). Neuronal spatiotemporal pattern discrimination: The dynamical evolution of seizures. NeuroImage, 28, 1043–1055.PubMedCrossRef Schiff, S. J., Sauer, T., Kumar, R., & Weinstein, S. L. (2005). Neuronal spatiotemporal pattern discrimination: The dynamical evolution of seizures. NeuroImage, 28, 1043–1055.PubMedCrossRef
Zurück zum Zitat Shu, Y., Hasenstaub, A., & McCormick, D. A. (2003). Turning on and off recurrent balanced cortical activity. Nature, 423(6937), 288–293.PubMedCrossRef Shu, Y., Hasenstaub, A., & McCormick, D. A. (2003). Turning on and off recurrent balanced cortical activity. Nature, 423(6937), 288–293.PubMedCrossRef
Zurück zum Zitat Soltesz, I., & Staley, K. (2008). Computational neuroscience in epilepsy. Amsterdam: Academic. Soltesz, I., & Staley, K. (2008). Computational neuroscience in epilepsy. Amsterdam: Academic.
Zurück zum Zitat Somjen, G. G. (2004). Ions in the brain: normal function, seizures, and stoke. Oxford: Oxford University Press. Somjen, G. G. (2004). Ions in the brain: normal function, seizures, and stoke. Oxford: Oxford University Press.
Zurück zum Zitat Tian, G. F., Azmi, H., Takano, T., Xu, Q., Peng, W., Lin, J., et al. (2005). An astrocytic basis of epilepsy. Nature Medicine, 11(9), 973–981.PubMed Tian, G. F., Azmi, H., Takano, T., Xu, Q., Peng, W., Lin, J., et al. (2005). An astrocytic basis of epilepsy. Nature Medicine, 11(9), 973–981.PubMed
Zurück zum Zitat Trevelyan, A. J., Sussillo, D., Watson, B. O., & Yuste, R. (2006). Modular propagation of epileptiform activity: Evidence for an inhibitory veto in neocortex. Journal of Neuroscience, 26(48), 12447–12455.PubMedCrossRef Trevelyan, A. J., Sussillo, D., Watson, B. O., & Yuste, R. (2006). Modular propagation of epileptiform activity: Evidence for an inhibitory veto in neocortex. Journal of Neuroscience, 26(48), 12447–12455.PubMedCrossRef
Zurück zum Zitat Turrigiano, G. G. (2008). The self-tuning neuron: Synaptic scaling of excitatory synapses. Cell, 135, 422–435.PubMedCrossRef Turrigiano, G. G. (2008). The self-tuning neuron: Synaptic scaling of excitatory synapses. Cell, 135, 422–435.PubMedCrossRef
Zurück zum Zitat Van Vreeswijk, C., & Sompolinsky, H. (1996). Chaos in neuronal networks with balanced excitatory and inhibitory activity. Science, 274(5293), 1724–1726.PubMedCrossRef Van Vreeswijk, C., & Sompolinsky, H. (1996). Chaos in neuronal networks with balanced excitatory and inhibitory activity. Science, 274(5293), 1724–1726.PubMedCrossRef
Zurück zum Zitat Vogels, T. P., Rajan, K., & Abbott, L. F. (2005). Neural network dynamics. Annual Review of Neuroscience, 28, 357–376.PubMedCrossRef Vogels, T. P., Rajan, K., & Abbott, L. F. (2005). Neural network dynamics. Annual Review of Neuroscience, 28, 357–376.PubMedCrossRef
Zurück zum Zitat Wang, X. J. (1998). Calcium coding and adaptive temporal computation in cortical pyramidal neurons. Journal of Neurophysiology, 79(3), 1549–1566.PubMed Wang, X. J. (1998). Calcium coding and adaptive temporal computation in cortical pyramidal neurons. Journal of Neurophysiology, 79(3), 1549–1566.PubMed
Zurück zum Zitat Wang, X. J. (1999). Synaptic basis of cortical persistent activity: the importance of NMDA receptors to working memory. Journal of Neuroscience, 19(21), 9587–9603.PubMed Wang, X. J. (1999). Synaptic basis of cortical persistent activity: the importance of NMDA receptors to working memory. Journal of Neuroscience, 19(21), 9587–9603.PubMed
Zurück zum Zitat Wang, X. J. (2003). Persistent neuronal activity: Experiments and theory. Cerebral Cortex, 13, 1123.PubMedCrossRef Wang, X. J. (2003). Persistent neuronal activity: Experiments and theory. Cerebral Cortex, 13, 1123.PubMedCrossRef
Zurück zum Zitat Ziburkus, J., Cressman, J. R., Barreto, E., & Schiff, S. J. (2006). Interneuron and pyramidal cell interplay during in vitro seizure-like events. Journal of Neurophysiology, 95, 3948–3954.PubMedCrossRef Ziburkus, J., Cressman, J. R., Barreto, E., & Schiff, S. J. (2006). Interneuron and pyramidal cell interplay during in vitro seizure-like events. Journal of Neurophysiology, 95, 3948–3954.PubMedCrossRef
Metadaten
Titel
The influence of sodium and potassium dynamics on excitability, seizures, and the stability of persistent states: II. Network and glial dynamics
verfasst von
Ghanim Ullah
John R. Cressman Jr.
Ernest Barreto
Steven J. Schiff
Publikationsdatum
01.04.2009
Verlag
Springer US
Erschienen in
Journal of Computational Neuroscience / Ausgabe 2/2009
Print ISSN: 0929-5313
Elektronische ISSN: 1573-6873
DOI
https://doi.org/10.1007/s10827-008-0130-6

Weitere Artikel der Ausgabe 2/2009

Journal of Computational Neuroscience 2/2009 Zur Ausgabe

Premium Partner