Skip to main content

01.04.2009

The influence of sodium and potassium dynamics on excitability, seizures, and the stability of persistent states: I. Single neuron dynamics

verfasst von: John R. Cressman Jr., Ghanim Ullah, Jokubas Ziburkus, Steven J. Schiff, Ernest Barreto

Erschienen in: Journal of Computational Neuroscience | Ausgabe 2/2009

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In these companion papers, we study how the interrelated dynamics of sodium and potassium affect the excitability of neurons, the occurrence of seizures, and the stability of persistent states of activity. In this first paper, we construct a mathematical model consisting of a single conductance-based neuron together with intra- and extracellular ion concentration dynamics. We formulate a reduction of this model that permits a detailed bifurcation analysis, and show that the reduced model is a reasonable approximation of the full model. We find that competition between intrinsic neuronal currents, sodium-potassium pumps, glia, and diffusion can produce very slow and large-amplitude oscillations in ion concentrations similar to what is seen physiologically in seizures. Using the reduced model, we identify the dynamical mechanisms that give rise to these phenomena. These models reveal several experimentally testable predictions. Our work emphasizes the critical role of ion concentration homeostasis in the proper functioning of neurons, and points to important fundamental processes that may underlie pathological states such as epilepsy.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Fußnoten
1
Depending on the stability of the periodic orbit involved, Hopf bifurcations are classified as sub- or supercritical.
 
3
The stable and unstable periodic orbits involved in this scenario appear via a saddle-node bifurcation at a slightly smaller parameter value that is extremely close to that of the Hopf bifurcation. Thus, the sequence of bifurcations is not immediately apparent in Fig. 2. The abruptness of these transitions, and the difficulty in resolving them numerically, is due to the “canard” mechanism (Dumortier and Roussarie 1996; Wechselberger (2007)).
 
4
A canard similar to that described previously occurs here, so that the Hopf and the saddle-node bifurcations on the left sides of Figs. 3a and b occur in extremely narrow intervals of the parameter.
 
5
In Fig. 3a, the equilibrium curve does not extend all the way to zero because of the constant chloride leak current.
 
6
Note that oscillations may persist slightly outside of the RO, where a stable periodic orbit coexists with the stable equilibrium solution; see, for example, the right side of Fig. 3a.
 
Literatur
Zurück zum Zitat Amzica, F., Massimini, M., & Manfridi, A. (2002). A spatial buffering during slow and paroxysmal sleep oscillations in cortical networks of glial cells in vivo. The Journal of Neuroscience, 22, 1042–1053.PubMed Amzica, F., Massimini, M., & Manfridi, A. (2002). A spatial buffering during slow and paroxysmal sleep oscillations in cortical networks of glial cells in vivo. The Journal of Neuroscience, 22, 1042–1053.PubMed
Zurück zum Zitat Cressman, J. R., Ullah, G., Ziburkus, J., Schiff, S. J., & Barreto, E. (2008). Ion concentration dynamics: mechanisms for bursting and seizing. BMC Neuroscience, 9(Suppl 1), O9. doi:10.1186/1471-2202-9-S1-O9.CrossRef Cressman, J. R., Ullah, G., Ziburkus, J., Schiff, S. J., & Barreto, E. (2008). Ion concentration dynamics: mechanisms for bursting and seizing. BMC Neuroscience, 9(Suppl 1), O9. doi:10.​1186/​1471-2202-9-S1-O9.CrossRef
Zurück zum Zitat Dumortier, F., & Roussarie, R. (1996). Canard cycles and center manifolds. Memoirs of the American Mathematical Society, 121(577), 1–100. Dumortier, F., & Roussarie, R. (1996). Canard cycles and center manifolds. Memoirs of the American Mathematical Society, 121(577), 1–100.
Zurück zum Zitat Ermentrout, G. B. (2002). Simulating, Analyzing, and Animating Dynamical Systems: A Guide to XPPAUT for Researchers and Students. Philadelphia: Society for Industrial and Applied Mathematics. Ermentrout, G. B. (2002). Simulating, Analyzing, and Animating Dynamical Systems: A Guide to XPPAUT for Researchers and Students. Philadelphia: Society for Industrial and Applied Mathematics.
Zurück zum Zitat Frankenhaeuser, B., & Hodgkin, A. L. (1956). The after-effects of impulses in the giant nerve fibers of loligo. The Journal of Physiology, 131, 341–376.PubMed Frankenhaeuser, B., & Hodgkin, A. L. (1956). The after-effects of impulses in the giant nerve fibers of loligo. The Journal of Physiology, 131, 341–376.PubMed
Zurück zum Zitat Frohlich, F., Timofeev, I., Sejnowski, T. J., & Bazhenov, M. (2008). Extracellular potassium dynamics and epileptogenesis. In: I. Soltesz, & K. Staley (eds.), Computational Neuroscience in Epilepsy (p. 419). Frohlich, F., Timofeev, I., Sejnowski, T. J., & Bazhenov, M. (2008). Extracellular potassium dynamics and epileptogenesis. In: I. Soltesz, & K. Staley (eds.), Computational Neuroscience in Epilepsy (p. 419).
Zurück zum Zitat Gluckman, B. J., Nguyen, H., Weinstein, S. L., & Schiff, S. J. (2001). Adaptive electric field control of epileptic seizures. The Journal of Neuroscience, 21(2), 590–600.PubMed Gluckman, B. J., Nguyen, H., Weinstein, S. L., & Schiff, S. J. (2001). Adaptive electric field control of epileptic seizures. The Journal of Neuroscience, 21(2), 590–600.PubMed
Zurück zum Zitat Heinemann, U., Lux, H. D., & Gutnick, M. J. (1977). Extracellular free calcium and potassium during paroxysmal activity in the cerebral cortex of the cat. Experimental Brain Research, 27, 237–243. doi:10.1007/BF00235500.CrossRef Heinemann, U., Lux, H. D., & Gutnick, M. J. (1977). Extracellular free calcium and potassium during paroxysmal activity in the cerebral cortex of the cat. Experimental Brain Research, 27, 237–243. doi:10.​1007/​BF00235500.CrossRef
Zurück zum Zitat Hodgkin, A. L., & Huxley, A. F. (1952). A quantitative description of membrane current and its application to conduction and excitation in nerve. The Journal of Physiology, 117, 500–544.PubMed Hodgkin, A. L., & Huxley, A. F. (1952). A quantitative description of membrane current and its application to conduction and excitation in nerve. The Journal of Physiology, 117, 500–544.PubMed
Zurück zum Zitat Jensen, M. S., & Yaari, Y. (1997). Role of intrinsic burs firing, potassium accumulation, and electrical coupling in the elevated potassium model of hippocampal epilepsy. Journal of Neurophysiology, 77, 1224–1233.PubMed Jensen, M. S., & Yaari, Y. (1997). Role of intrinsic burs firing, potassium accumulation, and electrical coupling in the elevated potassium model of hippocampal epilepsy. Journal of Neurophysiology, 77, 1224–1233.PubMed
Zurück zum Zitat Kager, H., Wadman, W. J., & Somjen, G. G. (2000). Simulated seizures and spreading depression in a neuron model incorporating interstitial space and ion concentrations. Journal of Neurophysiology, 84, 495–512.PubMed Kager, H., Wadman, W. J., & Somjen, G. G. (2000). Simulated seizures and spreading depression in a neuron model incorporating interstitial space and ion concentrations. Journal of Neurophysiology, 84, 495–512.PubMed
Zurück zum Zitat Kuschinsky, W., Wahl, M., Bosse, O., & Thurau, K. (1972). The dependency of the pial arterial and arteriolar resistance on the perivascular H+ and K+ conconcentrations. A micropuncture Study. European Neurology, 6(1), 92–5.CrossRef Kuschinsky, W., Wahl, M., Bosse, O., & Thurau, K. (1972). The dependency of the pial arterial and arteriolar resistance on the perivascular H+ and K+ conconcentrations. A micropuncture Study. European Neurology, 6(1), 92–5.CrossRef
Zurück zum Zitat Lauger, P. (1991). Electrogenic ion pumps. Sunderland, MA: Sinauer. Lauger, P. (1991). Electrogenic ion pumps. Sunderland, MA: Sinauer.
Zurück zum Zitat Mason, A., & Larkman, A. (1990). Correlations between morphology and electrophysiology of pyramidal neurons in slices of rat visual cortex. II. Electrophysiology. The Journal of Neuroscience, 10(5), 1415–1428.PubMed Mason, A., & Larkman, A. (1990). Correlations between morphology and electrophysiology of pyramidal neurons in slices of rat visual cortex. II. Electrophysiology. The Journal of Neuroscience, 10(5), 1415–1428.PubMed
Zurück zum Zitat McBain, C. J. (1994). Hippocampal inhibitory neuron activity in the elevated potassium model of epilepsy. Journal of Neurophysiology, 72, 2853–2863.PubMed McBain, C. J. (1994). Hippocampal inhibitory neuron activity in the elevated potassium model of epilepsy. Journal of Neurophysiology, 72, 2853–2863.PubMed
Zurück zum Zitat McCulloch, J., Edvinsson, L., & Watt P. (1982). Comparison of the effects of potassium and pH on the caliber of cerebral veins and arteries. Pflugers Archiv, 393(1), 95–8PubMedCrossRef McCulloch, J., Edvinsson, L., & Watt P. (1982). Comparison of the effects of potassium and pH on the caliber of cerebral veins and arteries. Pflugers Archiv, 393(1), 95–8PubMedCrossRef
Zurück zum Zitat Rinzel, J. (1985). Excitation dynamics: insights from simplified membrane models. Federation Proceedings, 44, 2944–2946.PubMed Rinzel, J. (1985). Excitation dynamics: insights from simplified membrane models. Federation Proceedings, 44, 2944–2946.PubMed
Zurück zum Zitat Rinzel, J., & Ermentrout, B. (1989). Analysis of neuronal excitability and oscillations, in “Methods in neuronal modeling: From synapses to networks”, Koch, C., & Segev, I. MIT Press, revised (1998). Rinzel, J., & Ermentrout, B. (1989). Analysis of neuronal excitability and oscillations, in “Methods in neuronal modeling: From synapses to networks”, Koch, C., & Segev, I. MIT Press, revised (1998).
Zurück zum Zitat Rutecki, P. A., Lebeda, F. J., & Johnston, D. (1985). Epileptiform activity induced by changes in extracellular potassium in hippocampus. Journal of Neurophysiology, 54, 1363–1374.PubMed Rutecki, P. A., Lebeda, F. J., & Johnston, D. (1985). Epileptiform activity induced by changes in extracellular potassium in hippocampus. Journal of Neurophysiology, 54, 1363–1374.PubMed
Zurück zum Zitat Somjen, G. G. (2004). Ions in the Brain. New York: Oxford University Press. Somjen, G. G. (2004). Ions in the Brain. New York: Oxford University Press.
Zurück zum Zitat Strogatz, S. H. (1994). Nonlinear Dynamics and Chaos. MA: Addison-Wesley, Reading. Strogatz, S. H. (1994). Nonlinear Dynamics and Chaos. MA: Addison-Wesley, Reading.
Zurück zum Zitat Traynelis, S. F., & Dingledine, R. (1988). Potassium-induced spontaneous electrographic seizures in the rat hippocampal slice. Journal of Neurophysiology, 59, 259–276.PubMed Traynelis, S. F., & Dingledine, R. (1988). Potassium-induced spontaneous electrographic seizures in the rat hippocampal slice. Journal of Neurophysiology, 59, 259–276.PubMed
Zurück zum Zitat Ullah, G., Cressman, J. R., Barreto, E., & Schiff, S. J. (2009). The influence of sodium and potassium dynamics on excitability, seizures, and the stability of persistent states: II. Network and glial dynamics. Journal of Computational Neuroscience doi:10.1007/s10827-008-0130-6. Ullah, G., Cressman, J. R., Barreto, E., & Schiff, S. J. (2009). The influence of sodium and potassium dynamics on excitability, seizures, and the stability of persistent states: II. Network and glial dynamics. Journal of Computational Neuroscience doi:10.​1007/​s10827-008-0130-6.
Zurück zum Zitat Wang, X. J. (1999). Synaptic basis of cortical persistent activity: the importance of NMDA receptors to working memory. The Journal of Neuroscience, 19(21), 9587–9603.PubMed Wang, X. J. (1999). Synaptic basis of cortical persistent activity: the importance of NMDA receptors to working memory. The Journal of Neuroscience, 19(21), 9587–9603.PubMed
Zurück zum Zitat Wechselberger, M. (2007). Scholarpedia, 2(4), 1356. Wechselberger, M. (2007). Scholarpedia, 2(4), 1356.
Metadaten
Titel
The influence of sodium and potassium dynamics on excitability, seizures, and the stability of persistent states: I. Single neuron dynamics
verfasst von
John R. Cressman Jr.
Ghanim Ullah
Jokubas Ziburkus
Steven J. Schiff
Ernest Barreto
Publikationsdatum
01.04.2009
Verlag
Springer US
Erschienen in
Journal of Computational Neuroscience / Ausgabe 2/2009
Print ISSN: 0929-5313
Elektronische ISSN: 1573-6873
DOI
https://doi.org/10.1007/s10827-008-0132-4

Premium Partner