Skip to main content
Erschienen in: Journal of Computational Neuroscience 2/2009

01.04.2009

Virtual Retina: A biological retina model and simulator, with contrast gain control

verfasst von: Adrien Wohrer, Pierre Kornprobst

Erschienen in: Journal of Computational Neuroscience | Ausgabe 2/2009

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

We propose a new retina simulation software, called Virtual Retina, which transforms a video into spike trains. Our goal is twofold: Allow large scale simulations (up to 100,000 neurons) in reasonable processing times and keep a strong biological plausibility, taking into account implementation constraints. The underlying model includes a linear model of filtering in the Outer Plexiform Layer, a shunting feedback at the level of bipolar cells accounting for rapid contrast gain control, and a spike generation process modeling ganglion cells. We prove the pertinence of our software by reproducing several experimental measurements from single ganglion cells such as cat X and Y cells. This software will be an evolutionary tool for neuroscientists that need realistic large-scale input spike trains in subsequent treatments, and for educational purposes.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Fußnoten
1
Under INRIA CeCILL C open-source license, IDDN number IDDN.FR.001.210034.000.S.P.2007.000.31235.
 
3
Server address: http://​facets.​inria.​fr/​retina/​webservice.​html, also accessible directly from the software homepage.
 
4
Naturally, we do not claim here that all processing up to LGN is already done in the OPL! But functionally, the linear structure of our model is mostly encompassed in this first stage, plus the supplementary linear transient \(T_{w_\mathrm{G},\tau_\mathrm{G}}(t)\) in Eq. (14).
 
6
Heuristically, the {α} should correspond to concepts like ‘edges’, ‘textures’, etc. More rigorously, the {α} could be the different parameters of a well-chosen generative model for natural scenes (or movies).
 
Literatur
Zurück zum Zitat Baccus, S., & Meister, M. (2002). Fast and slow contrast adaptation in retinal circuitry. Neuron, 36(5), 909–919.PubMedCrossRef Baccus, S., & Meister, M. (2002). Fast and slow contrast adaptation in retinal circuitry. Neuron, 36(5), 909–919.PubMedCrossRef
Zurück zum Zitat Bálya, D., Roska, B., Roska, T., & Werblin, F. S. (2002). A CNN framework for modeling parallel processing in a mammalian retina. International Journal of Circuit Theory and Applications, 30(2–3), 363–393.CrossRef Bálya, D., Roska, B., Roska, T., & Werblin, F. S. (2002). A CNN framework for modeling parallel processing in a mammalian retina. International Journal of Circuit Theory and Applications, 30(2–3), 363–393.CrossRef
Zurück zum Zitat Barlow, H. B. (1953). Action potentials from the frog’s retina. Journal of Physiology, 119(1), 58–68.PubMed Barlow, H. B. (1953). Action potentials from the frog’s retina. Journal of Physiology, 119(1), 58–68.PubMed
Zurück zum Zitat Beaudoin, D. L., Borghuis, B. G., & Demb, J. B. (2007). Cellular basis for contrast gain control over the receptive field center of mammalian retinal ganglion cells. Journal of Neuroscience, 27, 2636–2645.PubMedCrossRef Beaudoin, D. L., Borghuis, B. G., & Demb, J. B. (2007). Cellular basis for contrast gain control over the receptive field center of mammalian retinal ganglion cells. Journal of Neuroscience, 27, 2636–2645.PubMedCrossRef
Zurück zum Zitat Bernadete, E. A., & Kaplan, E. (1999). Dynamics of primate P retinal ganglion cells: Responses to chromatic and achromatic stimuli. Journal of Physiology, 519(3), 775–790.CrossRef Bernadete, E. A., & Kaplan, E. (1999). Dynamics of primate P retinal ganglion cells: Responses to chromatic and achromatic stimuli. Journal of Physiology, 519(3), 775–790.CrossRef
Zurück zum Zitat Bernadete, E. A., Kaplan, E., & Knight, B. W. (1992). Contrast gain control in the primate retina: P cells are not X-like, some M cells are. Visual Neuroscience, 8(5), 483–486.CrossRef Bernadete, E. A., Kaplan, E., & Knight, B. W. (1992). Contrast gain control in the primate retina: P cells are not X-like, some M cells are. Visual Neuroscience, 8(5), 483–486.CrossRef
Zurück zum Zitat Berry, M. J., Warland, D. K., & Meister, M. (1997). The structure and precision of retinal spike trains. Proceedings of the National Academy of Sciences of the United States of America, 94, 5411–5416.PubMedCrossRef Berry, M. J., Warland, D. K., & Meister, M. (1997). The structure and precision of retinal spike trains. Proceedings of the National Academy of Sciences of the United States of America, 94, 5411–5416.PubMedCrossRef
Zurück zum Zitat Bonin, V., Mante, V., & Carandini, M. (2005). The suppressive field of neurons in lateral geniculate nucleus. Journal of Neuroscience, 25(47), 10844–10856, November.PubMedCrossRef Bonin, V., Mante, V., & Carandini, M. (2005). The suppressive field of neurons in lateral geniculate nucleus. Journal of Neuroscience, 25(47), 10844–10856, November.PubMedCrossRef
Zurück zum Zitat Cai, D., Deangelis, G. C., & Freeman, D. (1997). Spatiotemporal receptive field organization in the lateral geniculate nucleus of cats and kittens. Journal of Neurophysiology, 78(2), 1045–1061, August.PubMed Cai, D., Deangelis, G. C., & Freeman, D. (1997). Spatiotemporal receptive field organization in the lateral geniculate nucleus of cats and kittens. Journal of Neurophysiology, 78(2), 1045–1061, August.PubMed
Zurück zum Zitat Carandini, M., Demb, J. B., Mante, V., Tollhurst, D. J., Dan, Y., Olshausen, B. A., et al. (2005). Do we know what the early visual system does? Journal of Neuroscience, 25(46), 10577–10597, November.PubMedCrossRef Carandini, M., Demb, J. B., Mante, V., Tollhurst, D. J., Dan, Y., Olshausen, B. A., et al. (2005). Do we know what the early visual system does? Journal of Neuroscience, 25(46), 10577–10597, November.PubMedCrossRef
Zurück zum Zitat Chichilnisky, E. J. (2001). A simple white noise analysis of neuronal light responses. Network: Computation in Neural Systems, 12, 199–213.CrossRef Chichilnisky, E. J. (2001). A simple white noise analysis of neuronal light responses. Network: Computation in Neural Systems, 12, 199–213.CrossRef
Zurück zum Zitat Chichilnisky, E. J., & Kalmar, R. S. (2002). Functional asymmetries in ON and OFF ganglion cells of primate retina. Journal of Neuroscience, 22(7), 2737–2747, April.PubMed Chichilnisky, E. J., & Kalmar, R. S. (2002). Functional asymmetries in ON and OFF ganglion cells of primate retina. Journal of Neuroscience, 22(7), 2737–2747, April.PubMed
Zurück zum Zitat Connaughton, V. P., & Maguire, G. (1998). Differential expression of voltage-gated K+ and Ca2+ currents in bipolar cells in the zebrafish retinal slice. European Journal of Neuroscience, 10(4), 1350–1362, April.PubMedCrossRef Connaughton, V. P., & Maguire, G. (1998). Differential expression of voltage-gated K+ and Ca2+ currents in bipolar cells in the zebrafish retinal slice. European Journal of Neuroscience, 10(4), 1350–1362, April.PubMedCrossRef
Zurück zum Zitat Croner, L. J., & Kaplan, E. (1995). Receptive fields of P and M ganglion cells across the primate retina. Vision Research, 35(1), 7–24, January.PubMedCrossRef Croner, L. J., & Kaplan, E. (1995). Receptive fields of P and M ganglion cells across the primate retina. Vision Research, 35(1), 7–24, January.PubMedCrossRef
Zurück zum Zitat Dacey, D., Packer, O. S., Diller, L., Brainard, D., Peterson, B., & Lee, B. (2000). Center surround receptive field structure of cone bipolar cells in primate retina. Vision Research, 40, 1801–1811.PubMedCrossRef Dacey, D., Packer, O. S., Diller, L., Brainard, D., Peterson, B., & Lee, B. (2000). Center surround receptive field structure of cone bipolar cells in primate retina. Vision Research, 40, 1801–1811.PubMedCrossRef
Zurück zum Zitat Dacey, D., & Petersen, M. (1992). Dendritic field size and morphology of midget and parasol ganglion cells of the human retina. Proceedings of the National Academy of Sciences, 89, 9666–9670.CrossRef Dacey, D., & Petersen, M. (1992). Dendritic field size and morphology of midget and parasol ganglion cells of the human retina. Proceedings of the National Academy of Sciences, 89, 9666–9670.CrossRef
Zurück zum Zitat Delorme, A., Gautrais, J., VanRullen, R., & Thorpe, S. J. (1999). Spikenet: A simulator for modeling large networks of integrate and fire neurons. Neurocomputing, 26, 989–996.CrossRef Delorme, A., Gautrais, J., VanRullen, R., & Thorpe, S. J. (1999). Spikenet: A simulator for modeling large networks of integrate and fire neurons. Neurocomputing, 26, 989–996.CrossRef
Zurück zum Zitat Demb, J. B., Zaghloul, K., Haarsma, L., & Sterling, P. (2001). Bipolar cells contribute to nonlinear spatial summation in the brisk-transient (Y) ganglion cell in mammalian retina. Journal of Neuroscience, 21(19), 7447–7454, October.PubMed Demb, J. B., Zaghloul, K., Haarsma, L., & Sterling, P. (2001). Bipolar cells contribute to nonlinear spatial summation in the brisk-transient (Y) ganglion cell in mammalian retina. Journal of Neuroscience, 21(19), 7447–7454, October.PubMed
Zurück zum Zitat Dhingra, N. K., & Smith, R. G. (2004). Spike generator limits efficiency of information transfer in a retinal ganglion cell. Journal of Neuroscience, 24, 2914–2922.PubMedCrossRef Dhingra, N. K., & Smith, R. G. (2004). Spike generator limits efficiency of information transfer in a retinal ganglion cell. Journal of Neuroscience, 24, 2914–2922.PubMedCrossRef
Zurück zum Zitat Enroth-Cugell, C., & Freeman, A. W. (1987). The receptive-field spatial structure of cat retinal Y cells. Journal of Physiology, 384(1), 49–79.PubMed Enroth-Cugell, C., & Freeman, A. W. (1987). The receptive-field spatial structure of cat retinal Y cells. Journal of Physiology, 384(1), 49–79.PubMed
Zurück zum Zitat Enroth-Cugell, C., & Robson, J. G. (1966). The contrast sensitivity of retinal ganglion cells of the cat. Journal of Physiology, 187, 517–552.PubMed Enroth-Cugell, C., & Robson, J. G. (1966). The contrast sensitivity of retinal ganglion cells of the cat. Journal of Physiology, 187, 517–552.PubMed
Zurück zum Zitat Enroth-Cugell, C., Robson, J. G., Schweitzer-Tong, D. E., & Watson, A. B. (1983). Spatio-temporal interactions in cat retinal ganglion cells showing linear spatial summation. Journal of Physiology, 341, 279–307.PubMed Enroth-Cugell, C., Robson, J. G., Schweitzer-Tong, D. E., & Watson, A. B. (1983). Spatio-temporal interactions in cat retinal ganglion cells showing linear spatial summation. Journal of Physiology, 341, 279–307.PubMed
Zurück zum Zitat Euler, T., & Masland, R. H. (2000). Light-evoked responses of bipolar cells in a mammalian retina. Journal of Neurophysiology, 83(4), 1817–1829, April.PubMed Euler, T., & Masland, R. H. (2000). Light-evoked responses of bipolar cells in a mammalian retina. Journal of Neurophysiology, 83(4), 1817–1829, April.PubMed
Zurück zum Zitat Flores-Herr, N., Protti, D. A., & Wässle, H. (2001). Synaptic currents generating the inhibitory surround of ganglion cells in the mammalian retina. Journal of Neuroscience, 21(13), 4852–4863, July.PubMed Flores-Herr, N., Protti, D. A., & Wässle, H. (2001). Synaptic currents generating the inhibitory surround of ganglion cells in the mammalian retina. Journal of Neuroscience, 21(13), 4852–4863, July.PubMed
Zurück zum Zitat Gazeres, N., Borg-Graham, L., & Fregnac, Y. (1998). A phenomenological model of visually evoked spike trains in cat geniculate nonlagged X-cells. Visual Neuroscience, 15, 1157–1174.PubMedCrossRef Gazeres, N., Borg-Graham, L., & Fregnac, Y. (1998). A phenomenological model of visually evoked spike trains in cat geniculate nonlagged X-cells. Visual Neuroscience, 15, 1157–1174.PubMedCrossRef
Zurück zum Zitat Gonzalez, R. C., & Woods, R. E. (1992). Digital image processing, 3rd edn. Redwood City: Addison Wesley. Gonzalez, R. C., & Woods, R. E. (1992). Digital image processing, 3rd edn. Redwood City: Addison Wesley.
Zurück zum Zitat Hartveit, E., & Heggelund, P. (1994). Response variability of single cells in the dorsal lateral geniculate nucleus of the cat. Comparison with retinal input and effect of brain stem stimulation. Journal of Neurophysiology, 72(3), 1278–1289.PubMed Hartveit, E., & Heggelund, P. (1994). Response variability of single cells in the dorsal lateral geniculate nucleus of the cat. Comparison with retinal input and effect of brain stem stimulation. Journal of Neurophysiology, 72(3), 1278–1289.PubMed
Zurück zum Zitat Hennig, M. H., Funke, K., & Wörgötter, F. (2002). The influence of different retinal subcircuits on the nonlinearity of ganglion cell behavior. Journal of Neuroscience, 22(19), 8726–8738, October.PubMed Hennig, M. H., Funke, K., & Wörgötter, F. (2002). The influence of different retinal subcircuits on the nonlinearity of ganglion cell behavior. Journal of Neuroscience, 22(19), 8726–8738, October.PubMed
Zurück zum Zitat Herault, J. (1996). A model of colour processing in the retina of vertebrates: From photoreceptors to colour opposition and colour constancy phenomena. Neurocomputing, 12, 113–129.CrossRef Herault, J. (1996). A model of colour processing in the retina of vertebrates: From photoreceptors to colour opposition and colour constancy phenomena. Neurocomputing, 12, 113–129.CrossRef
Zurück zum Zitat Hérault, J., & Durette, B. (2007). Modeling visual perception for image processing. In F. Sandoval, A. Prieto, J. Cabestany, M. Gra na, (Eds.), Computational and ambient intelligence : 9th international work-conference on artificial neural networks, IWANN 2007 (pp. 662–675). Springer. Hérault, J., & Durette, B. (2007). Modeling visual perception for image processing. In F. Sandoval, A. Prieto, J. Cabestany, M. Gra na, (Eds.), Computational and ambient intelligence : 9th international work-conference on artificial neural networks, IWANN 2007 (pp. 662–675). Springer.
Zurück zum Zitat Hochstein, S., & Shapley, R. M. (1976). Linear and nonlinear spatial subunits in Y cat retinal ganglion cells. Journal of Physiology, 262, 265–284.PubMed Hochstein, S., & Shapley, R. M. (1976). Linear and nonlinear spatial subunits in Y cat retinal ganglion cells. Journal of Physiology, 262, 265–284.PubMed
Zurück zum Zitat Jacobs, A. L., & Werblin, F. S. (1998). Spatiotemporal patterns at the retinal output. Journal of Neurophysiology, 80(1), 447–451, July.PubMed Jacobs, A. L., & Werblin, F. S. (1998). Spatiotemporal patterns at the retinal output. Journal of Neurophysiology, 80(1), 447–451, July.PubMed
Zurück zum Zitat Kaplan, E., & Bernadete, E. (2001). The dynamics of primate retinal ganglion cells. Progress in Brain Research, 134, 1–18.CrossRef Kaplan, E., & Bernadete, E. (2001). The dynamics of primate retinal ganglion cells. Progress in Brain Research, 134, 1–18.CrossRef
Zurück zum Zitat Kara, P., Reinagel, P., & Reid, R. C. (2000). Low response variability in simultaneously recorded retinal, thalamic, and cortical neurons. Neuron, 27(3), 635–646. Poisson, retina, spike variability.PubMedCrossRef Kara, P., Reinagel, P., & Reid, R. C. (2000). Low response variability in simultaneously recorded retinal, thalamic, and cortical neurons. Neuron, 27(3), 635–646. Poisson, retina, spike variability.PubMedCrossRef
Zurück zum Zitat Keat, J., Reinagel, P., Reid, R. C., & Meister, M. (2001). Predicting every spike: A model for the responses of visual neurons. Neuron, 30, 803–817.PubMedCrossRef Keat, J., Reinagel, P., Reid, R. C., & Meister, M. (2001). Predicting every spike: A model for the responses of visual neurons. Neuron, 30, 803–817.PubMedCrossRef
Zurück zum Zitat Kenyon, G. T., & Marshak, D. W. (1998). Gap junctions with amacrine cells provide a feedback pathway for ganglion cells within the retina. Proceedings of the Royal Society B, 265(1399), 919–925, May.PubMedCrossRef Kenyon, G. T., & Marshak, D. W. (1998). Gap junctions with amacrine cells provide a feedback pathway for ganglion cells within the retina. Proceedings of the Royal Society B, 265(1399), 919–925, May.PubMedCrossRef
Zurück zum Zitat Kenyon, G. T., Theiler, J., George, J. S., Travis, B. J., & Marshak, D. W. (2004). Correlated firing improves stimulus discrimination in a retinal model. Neural Computation, 16, 2261–2291.PubMedCrossRef Kenyon, G. T., Theiler, J., George, J. S., Travis, B. J., & Marshak, D. W. (2004). Correlated firing improves stimulus discrimination in a retinal model. Neural Computation, 16, 2261–2291.PubMedCrossRef
Zurück zum Zitat Kim, K. J., & Rieke, F. (2001). Temporal contrast adaptation in the input and output signals of salamander retinal ganglion cells. Journal of Neuroscience, 21(1), 287–299, January.PubMed Kim, K. J., & Rieke, F. (2001). Temporal contrast adaptation in the input and output signals of salamander retinal ganglion cells. Journal of Neuroscience, 21(1), 287–299, January.PubMed
Zurück zum Zitat Kim, K. J., & Rieke, F. (2003). Slow Na+ inactivation and variance adaptation in salamander retinal ganglion cells. Journal of Neuroscience, 23(4), 1506–1516, February.PubMed Kim, K. J., & Rieke, F. (2003). Slow Na+ inactivation and variance adaptation in salamander retinal ganglion cells. Journal of Neuroscience, 23(4), 1506–1516, February.PubMed
Zurück zum Zitat Kuffler, S. W. (1953). Discharge patterns and functional organization of mammalian retina. Journal of Neurophysiology, 16, 37–68.PubMed Kuffler, S. W. (1953). Discharge patterns and functional organization of mammalian retina. Journal of Neurophysiology, 16, 37–68.PubMed
Zurück zum Zitat Lamb, T. D. (1976). Spatial properties of horizontal cell responses in the turtle retina. Journal of Physiology, 263(2), 239–55.PubMed Lamb, T. D. (1976). Spatial properties of horizontal cell responses in the turtle retina. Journal of Physiology, 263(2), 239–55.PubMed
Zurück zum Zitat Lesica, N. A., & Stanley, G. B. (2004). Encoding of natural scene movies by tonic and burst spikes in the lateral geniculate nucleus. Journal of Neuroscience, 24(47), 10731–10740.PubMedCrossRef Lesica, N. A., & Stanley, G. B. (2004). Encoding of natural scene movies by tonic and burst spikes in the lateral geniculate nucleus. Journal of Neuroscience, 24(47), 10731–10740.PubMedCrossRef
Zurück zum Zitat Lohmiller, W., & Slotine, J. J. (1998). On contraction analysis for non-linear systems. Automatica, 34(6), 683–696, June.CrossRef Lohmiller, W., & Slotine, J. J. (1998). On contraction analysis for non-linear systems. Automatica, 34(6), 683–696, June.CrossRef
Zurück zum Zitat McMahon, M. J., Lankheet, M. J. M., Lennie, P., & Williams, D. R. (2000). Fine structure of parvocellular receptive fields in the primate fovea revealed by laser interferometry. Journal of Neuroscience, 20(5), 2043–2053, March.PubMed McMahon, M. J., Lankheet, M. J. M., Lennie, P., & Williams, D. R. (2000). Fine structure of parvocellular receptive fields in the primate fovea revealed by laser interferometry. Journal of Neuroscience, 20(5), 2043–2053, March.PubMed
Zurück zum Zitat McMahon, M. J., Packer, O. S., & Dacey, D. M. (2004). The classical receptive field surround of primate Parasol ganglion cells is mediated primarily by a non-GABAergic pathway. Journal of Neuroscience, 24(15), 3736–3745, April.PubMedCrossRef McMahon, M. J., Packer, O. S., & Dacey, D. M. (2004). The classical receptive field surround of primate Parasol ganglion cells is mediated primarily by a non-GABAergic pathway. Journal of Neuroscience, 24(15), 3736–3745, April.PubMedCrossRef
Zurück zum Zitat Mahowald, M. A., & Mead, C. (1991). The silicon retina. Scientific American, 264(5), 76–82.PubMedCrossRef Mahowald, M. A., & Mead, C. (1991). The silicon retina. Scientific American, 264(5), 76–82.PubMedCrossRef
Zurück zum Zitat Manookin, M., & Demb, J. (2006). Presynaptic mechanism for slow contrast adaptation in mammalian retinal ganglion cells. Neuron, 50(3), 453–464.PubMedCrossRef Manookin, M., & Demb, J. (2006). Presynaptic mechanism for slow contrast adaptation in mammalian retinal ganglion cells. Neuron, 50(3), 453–464.PubMedCrossRef
Zurück zum Zitat Mao, B. U. Q., Macleish, P. R., & Victor, J. D. (1998). The intrinsic dynamics of retinal bipolar cells isolated from tiger salamander. Visual Neuroscience, 15(3), 425–438.PubMedCrossRef Mao, B. U. Q., Macleish, P. R., & Victor, J. D. (1998). The intrinsic dynamics of retinal bipolar cells isolated from tiger salamander. Visual Neuroscience, 15(3), 425–438.PubMedCrossRef
Zurück zum Zitat Marmarelis, P. Z., & Naka, K. (1972). White-noise analysis of a neuron chain, an application of the Wiener theory. Science, 175(4027), 1276–1278, March.PubMedCrossRef Marmarelis, P. Z., & Naka, K. (1972). White-noise analysis of a neuron chain, an application of the Wiener theory. Science, 175(4027), 1276–1278, March.PubMedCrossRef
Zurück zum Zitat Martinez-Conde, S., Macknik, S. L., & Hubel, D. H. (2004). The role of fixational eye movements in visual perception. Nature Reviews Neuroscience, 5, 229–240.PubMedCrossRef Martinez-Conde, S., Macknik, S. L., & Hubel, D. H. (2004). The role of fixational eye movements in visual perception. Nature Reviews Neuroscience, 5, 229–240.PubMedCrossRef
Zurück zum Zitat Masland, R. (2001). The fundamental plan of the retina. Nature Neuroscience, 4(9), 877–886, September.PubMedCrossRef Masland, R. (2001). The fundamental plan of the retina. Nature Neuroscience, 4(9), 877–886, September.PubMedCrossRef
Zurück zum Zitat Naka, K. I., & Rushton, W. A. (1967). The generation and spread of s-potentials in fish (cyprinidae). Journal of Physiology, 192(2), 437–61, September.PubMed Naka, K. I., & Rushton, W. A. (1967). The generation and spread of s-potentials in fish (cyprinidae). Journal of Physiology, 192(2), 437–61, September.PubMed
Zurück zum Zitat Nawy, S. (2000). Regulation of the On bipolar cell mGluR6 pathway by Ca2+. Journal of Neuroscience, 20(12), 4471.PubMed Nawy, S. (2000). Regulation of the On bipolar cell mGluR6 pathway by Ca2+. Journal of Neuroscience, 20(12), 4471.PubMed
Zurück zum Zitat Neuenschwander, S., & Singer, W. (1996). Long-range synchronization of oscillatory light responses in the cat retina and lateral geniculate nucleus. Nature, 379(6567), 728–732, February.PubMedCrossRef Neuenschwander, S., & Singer, W. (1996). Long-range synchronization of oscillatory light responses in the cat retina and lateral geniculate nucleus. Nature, 379(6567), 728–732, February.PubMedCrossRef
Zurück zum Zitat Nirenberg, S., & Meister, M. (1997). The light response of retinal ganglion cells is truncated by a displaced amacrine circuit. Neuron, 18, 637–650.PubMedCrossRef Nirenberg, S., & Meister, M. (1997). The light response of retinal ganglion cells is truncated by a displaced amacrine circuit. Neuron, 18, 637–650.PubMedCrossRef
Zurück zum Zitat O’Brien, B. J., Isayama, T., Richardson, R., & Berson, D. M. (2002). Intrinsic physiological properties of cat retinal ganglion cells. Journal of Physiology, 538(3), 787–802.PubMedCrossRef O’Brien, B. J., Isayama, T., Richardson, R., & Berson, D. M. (2002). Intrinsic physiological properties of cat retinal ganglion cells. Journal of Physiology, 538(3), 787–802.PubMedCrossRef
Zurück zum Zitat Polans, A., Baehr, W., & Palczewski, K. (1996). Turned on by Ca2 + ! The physiology and pathology of Ca2 + -binding proteins in the retina. Trends in Neurosciences, 19(12), 547–554, December.PubMedCrossRef Polans, A., Baehr, W., & Palczewski, K. (1996). Turned on by Ca2 + ! The physiology and pathology of Ca2 + -binding proteins in the retina. Trends in Neurosciences, 19(12), 547–554, December.PubMedCrossRef
Zurück zum Zitat Raviola, E., & Gilula, N. B. (1973). Gap junctions between photoreceptor cells in the vertebrate retina. Proceedings of the National Academy of Sciences, 70(6), 1677–1681, June.CrossRef Raviola, E., & Gilula, N. B. (1973). Gap junctions between photoreceptor cells in the vertebrate retina. Proceedings of the National Academy of Sciences, 70(6), 1677–1681, June.CrossRef
Zurück zum Zitat Rieke, F. (2001). Temporal contrast adaptation in salamander bipolar cells. Journal of Neuroscience, 21(23), 9445–9454, December.PubMed Rieke, F. (2001). Temporal contrast adaptation in salamander bipolar cells. Journal of Neuroscience, 21(23), 9445–9454, December.PubMed
Zurück zum Zitat Roska, B., & Werblin, F. (2001). Vertical interactions across ten parallel, stacked representations in the mammalian retina. Nature, 410, 583–7, March.PubMedCrossRef Roska, B., & Werblin, F. (2001). Vertical interactions across ten parallel, stacked representations in the mammalian retina. Nature, 410, 583–7, March.PubMedCrossRef
Zurück zum Zitat Van Rullen, R., & Thorpe, S. (2001). Rate coding versus temporal order coding: What the retina ganglion cells tell the visual cortex. Neural Computing, 13(6), 1255–1283.CrossRef Van Rullen, R., & Thorpe, S. (2001). Rate coding versus temporal order coding: What the retina ganglion cells tell the visual cortex. Neural Computing, 13(6), 1255–1283.CrossRef
Zurück zum Zitat Schnapf, J. L., Nunn, B. J., Meister, M., & Baylor, D. A. (1990). Visual transduction in cones of the monkey macaca fascicularis. Journal of Physiology, 427(1), 681–713.PubMed Schnapf, J. L., Nunn, B. J., Meister, M., & Baylor, D. A. (1990). Visual transduction in cones of the monkey macaca fascicularis. Journal of Physiology, 427(1), 681–713.PubMed
Zurück zum Zitat Shapley, R. M., & Victor, J. D. (1978). The effect of contrast on the transfer properties of cat retinal ganglion cells. Journal of Physiology, 285(1), 275–298.PubMed Shapley, R. M., & Victor, J. D. (1978). The effect of contrast on the transfer properties of cat retinal ganglion cells. Journal of Physiology, 285(1), 275–298.PubMed
Zurück zum Zitat Shiells, R. A., & Falk, G. (1999). A rise in intracellular Ca2+ underlies light adaptation in dogfish retinal ‘on’ bipolar cells. Journal of Physiology, 514(2), 343–350.PubMedCrossRef Shiells, R. A., & Falk, G. (1999). A rise in intracellular Ca2+ underlies light adaptation in dogfish retinal ‘on’ bipolar cells. Journal of Physiology, 514(2), 343–350.PubMedCrossRef
Zurück zum Zitat Solomon, S. G., Peirce, J. W., Dhruv, N. T., & Lennie, P. (2004). Profound contrast adaptation early in the visual pathway. Neuron, 42, 155–162, April.PubMedCrossRef Solomon, S. G., Peirce, J. W., Dhruv, N. T., & Lennie, P. (2004). Profound contrast adaptation early in the visual pathway. Neuron, 42, 155–162, April.PubMedCrossRef
Zurück zum Zitat Tan, S., Dale, J., & Johnston, A. (2003). Performance of three recursive algorithms for fast space-variant gaussian filtering. Real-Time Imaging, 9, 215–228.CrossRef Tan, S., Dale, J., & Johnston, A. (2003). Performance of three recursive algorithms for fast space-variant gaussian filtering. Real-Time Imaging, 9, 215–228.CrossRef
Zurück zum Zitat Valeton, J. M., & Van Norren, D. (1983). Light adaptation of primate cones : An analysis based on extracellular data. Vision Research, 23(12), 1539–1547.PubMedCrossRef Valeton, J. M., & Van Norren, D. (1983). Light adaptation of primate cones : An analysis based on extracellular data. Vision Research, 23(12), 1539–1547.PubMedCrossRef
Zurück zum Zitat van Hateren, J. H., & Lamb, T. D. (2006). The photocurrent response of human cones is fast and monophasic. BMC Neuroscience, 7(1), 34–41.PubMedCrossRef van Hateren, J. H., & Lamb, T. D. (2006). The photocurrent response of human cones is fast and monophasic. BMC Neuroscience, 7(1), 34–41.PubMedCrossRef
Zurück zum Zitat van Hateren, J. H., Rüttiger, L., Sun, H., & Lee, B. B. (2002). Processing of natural temporal stimuli by macaque retinal ganglion cells. Journal of Neuroscience, 22(22), 9945–9960.PubMed van Hateren, J. H., Rüttiger, L., Sun, H., & Lee, B. B. (2002). Processing of natural temporal stimuli by macaque retinal ganglion cells. Journal of Neuroscience, 22(22), 9945–9960.PubMed
Zurück zum Zitat Victor, J. D. (1987). The dynamics of the cat retinal X cell centre. Journal of Physiology, 386(1), 219–246.PubMed Victor, J. D. (1987). The dynamics of the cat retinal X cell centre. Journal of Physiology, 386(1), 219–246.PubMed
Zurück zum Zitat Werblin, F. S., & Dowling, J. E. (1969). Organization of the retina of the mudpuppy. Journal of Neurophysiology, 32(3), 339–355.PubMed Werblin, F. S., & Dowling, J. E. (1969). Organization of the retina of the mudpuppy. Journal of Neurophysiology, 32(3), 339–355.PubMed
Zurück zum Zitat Wohrer, A. (2007). Mathematical study of a neural gain control mechanism. Research report 6327, INRIA. Wohrer, A. (2007). Mathematical study of a neural gain control mechanism. Research report 6327, INRIA.
Zurück zum Zitat Wohrer, A. (2008a). Model and large-scale simulator of a biological retina with contrast gain control. PhD thesis, University of Nice Sophia-Antipolis. Wohrer, A. (2008a). Model and large-scale simulator of a biological retina with contrast gain control. PhD thesis, University of Nice Sophia-Antipolis.
Zurück zum Zitat Wohrer, A. (2008b). The vertebrate retina: A functional review. Research Report 6532, INRIA, May. Wohrer, A. (2008b). The vertebrate retina: A functional review. Research Report 6532, INRIA, May.
Metadaten
Titel
Virtual Retina: A biological retina model and simulator, with contrast gain control
verfasst von
Adrien Wohrer
Pierre Kornprobst
Publikationsdatum
01.04.2009
Verlag
Springer US
Erschienen in
Journal of Computational Neuroscience / Ausgabe 2/2009
Print ISSN: 0929-5313
Elektronische ISSN: 1573-6873
DOI
https://doi.org/10.1007/s10827-008-0108-4

Weitere Artikel der Ausgabe 2/2009

Journal of Computational Neuroscience 2/2009 Zur Ausgabe

Premium Partner