Skip to main content
Top
Published in: Journal of Materials Science: Materials in Electronics 14/2018

21-05-2018

Fast synthesis, structural, morphology with enhanced magnetic properties of cobalt doped nickel ferrite nanoscale

Author: Ali A. Ati

Published in: Journal of Materials Science: Materials in Electronics | Issue 14/2018

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

A series of cobalt substituted nickel ferrite nanoparticles with nominal compositions, Ni(1−x)Co(x)Fe2O4 (x = 0.0, 0.2, 0.4, 0.6, 0.8, 1.0) have been synthesized by gel process. The samples are characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), field emission scanning electron microscopy (FESEM) and vibrating sample magnetometer. The XRD spectra revealed that all the samples are of single phase spinel structure and the average size of nanocrystallite was calculated for a sample by the full width at half maximum (FWHM) of the strongest XRD peak. These sizes are small enough to achieve the suitable signal to noise ratio for the high density recording media. The lattice constant (a), X-ray density (ρ x ) and cell volume (V) are also calculated from XRD data. Experimental, theoretical lattice constant (aexp, ath), tetrahedral and octahedral radii (rA and rB), tetrahedral and octahedral bond length (dAx and dBx), tetrahedral edge (dAxE), shared octahedral edge (dBxE) and unshared octahedral edge (dBxEU) of the annealed Ni–Co ferrite nanoparticles increase with the increase in Co doping. Morphology of the samples was investigated by a FE-SEM. The FTIR spectra of the spinel phase calcinated at 600 °C exhibit two prominent fundamental absorption bands in the range of 350–610 cm−1 assigned to the intrinsic stretching vibrations of the metal at the tetrahedral and octahedral sites. The specific saturation magnetization (Ms), remanent magnetization (Mr) and the coercivity (Hc) of the spinel ferrites are further improved by the substitutions of Co+2 ions. The values of Ms for NiFe2O4 and CoFe2O4 are found to be 60.92 and 70.59 emu/g, respectively and Hc are in the range of 452.12–1026 Oe. The process is investigated with simultaneous thermogravimetric-differential thermal analysis (TG–DTA). The role played by the Co ions in improving the structural and magnetic properties are analyzed and understood. Our simple, economic and environmental friendly preparation method may contribute towards the controlled growth of high quality ferrite nanopowders and a potential candidate for recording media application.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference R. Singh Yadav, I. Kuřitka, J. Havlica, M. Hnatko, C. Alexander, J. Masilko, L. Kalina, M. Hajdúchová, J. Rusnak, V. Enev, Structural, magnetic, elastic, dielectric and electrical properties of hot-press sintered Co1–xZnxFe2O4 (x = 0.0, 0.5) spinel ferrite nanoparticles. J. Magn. Magn. Mater. 447, 48–57 (2018)CrossRef R. Singh Yadav, I. Kuřitka, J. Havlica, M. Hnatko, C. Alexander, J. Masilko, L. Kalina, M. Hajdúchová, J. Rusnak, V. Enev, Structural, magnetic, elastic, dielectric and electrical properties of hot-press sintered Co1–xZnxFe2O4 (x = 0.0, 0.5) spinel ferrite nanoparticles. J. Magn. Magn. Mater. 447, 48–57 (2018)CrossRef
2.
go back to reference F. Huixia, C. Baiyi, Z. Deyi, Z. Jianqiang, T. Lin, Preparation and characterization of the cobalt ferrite nano-particles by reverse coprecipitation. J. Magn. Magn. Mater. 356, 68–72 (2014)CrossRef F. Huixia, C. Baiyi, Z. Deyi, Z. Jianqiang, T. Lin, Preparation and characterization of the cobalt ferrite nano-particles by reverse coprecipitation. J. Magn. Magn. Mater. 356, 68–72 (2014)CrossRef
3.
go back to reference Z. Karimi, Y. Mohammadifar, H. Shokrollahi, S.K. Asl, G. Yousefi, L. Karimi, Magnetic and structural properties of nano sized Dy-doped cobalt ferrite synthesized by co-precipitation. J. Magn. Magn. Mater. 361, 150–156 (2014)CrossRef Z. Karimi, Y. Mohammadifar, H. Shokrollahi, S.K. Asl, G. Yousefi, L. Karimi, Magnetic and structural properties of nano sized Dy-doped cobalt ferrite synthesized by co-precipitation. J. Magn. Magn. Mater. 361, 150–156 (2014)CrossRef
4.
go back to reference A.A. Ati, Z. Othaman, A. Samavati, Influence of cobalt on structural and magnetic properties of nickel ferrite nanoparticles. J. Mol. Struct. 1052, 177–182 (2013)CrossRef A.A. Ati, Z. Othaman, A. Samavati, Influence of cobalt on structural and magnetic properties of nickel ferrite nanoparticles. J. Mol. Struct. 1052, 177–182 (2013)CrossRef
5.
go back to reference S.A. Seyyed Ebrahimi, S.M. Masoudpanah, H. Amiri, M. Yousefzadeh, Magnetic properties of MnZn ferrite nanoparticles obtained by SHS and sol–gel autocombustion techniques. Ceram. Int. 40, 6713–6718 (2014)CrossRef S.A. Seyyed Ebrahimi, S.M. Masoudpanah, H. Amiri, M. Yousefzadeh, Magnetic properties of MnZn ferrite nanoparticles obtained by SHS and sol–gel autocombustion techniques. Ceram. Int. 40, 6713–6718 (2014)CrossRef
6.
go back to reference W. Yang, X. Zhou, N. Zheng, X. Li, Z. Yuan, Electrochemical biosensors utilizing the electron transfer of hemoglobin immobilized on cobalt-substituted ferrite nanoparticles–chitosan film. Electrochim. Acta 56, 6588–6592 (2011)CrossRef W. Yang, X. Zhou, N. Zheng, X. Li, Z. Yuan, Electrochemical biosensors utilizing the electron transfer of hemoglobin immobilized on cobalt-substituted ferrite nanoparticles–chitosan film. Electrochim. Acta 56, 6588–6592 (2011)CrossRef
7.
go back to reference A.V. Raut, R.S. Barkule, D.R. Shengule, K.M. Jadhav, Synthesis, structural investigation and magnetic properties of Zn2+ substituted cobalt ferrite nanoparticles prepared by the sol–gel auto-combustion technique. J. Magn. Magn. Mater. 358, 87–92. (2014) A.V. Raut, R.S. Barkule, D.R. Shengule, K.M. Jadhav, Synthesis, structural investigation and magnetic properties of Zn2+ substituted cobalt ferrite nanoparticles prepared by the sol–gel auto-combustion technique. J. Magn. Magn. Mater. 358, 87–92. (2014)
8.
go back to reference T. Tangcharoen, A. Ruangphanit, W. Pecharapa, Structural and magnetic properties of nanocrystalline zinc-doped metal ferrites (metal = Ni; Mn; Cu) prepared by sol–gel combustion method. Ceram. Int. 39(Supplement 1), S239–S243 (2013) T. Tangcharoen, A. Ruangphanit, W. Pecharapa, Structural and magnetic properties of nanocrystalline zinc-doped metal ferrites (metal = Ni; Mn; Cu) prepared by sol–gel combustion method. Ceram. Int. 39(Supplement 1), S239–S243 (2013)
9.
go back to reference S.A. Seyyed Ebrahimi, S.M. Masoudpanah, Effects of pH and citric acid content on the structure and magnetic properties of MnZn ferrite nanoparticles synthesized by a sol–gel autocombustion method. J. Magn. Magn. Mater. 357, 77–81 (2014)CrossRef S.A. Seyyed Ebrahimi, S.M. Masoudpanah, Effects of pH and citric acid content on the structure and magnetic properties of MnZn ferrite nanoparticles synthesized by a sol–gel autocombustion method. J. Magn. Magn. Mater. 357, 77–81 (2014)CrossRef
10.
go back to reference A. Goyal, S. Bansal, S. Singhal, Facile reduction of nitrophenols: comparative catalytic efficiency of MFe2O4 (M = Ni, Cu, Zn) nano ferrites. Int. J. Hydrog. Energy 39, 4895–4908 (2014)CrossRef A. Goyal, S. Bansal, S. Singhal, Facile reduction of nitrophenols: comparative catalytic efficiency of MFe2O4 (M = Ni, Cu, Zn) nano ferrites. Int. J. Hydrog. Energy 39, 4895–4908 (2014)CrossRef
11.
go back to reference X. Liu, J. Wang, L.-M. Gan, S.-C. Ng, Improving the magnetic properties of hydrothermally synthesized barium ferrite. J. Magn. Magn. Mater. 195, 452–459 (1999)CrossRef X. Liu, J. Wang, L.-M. Gan, S.-C. Ng, Improving the magnetic properties of hydrothermally synthesized barium ferrite. J. Magn. Magn. Mater. 195, 452–459 (1999)CrossRef
12.
go back to reference X. Wu, W. Wu, L. Qin, K. Wang, S. Ou, K. Zhou, Y. Fan, Structure and magnetic properties evolution of nickel–zinc ferrite with lanthanum substitution. J. Magn. Magn. Mater. 379, 232–238 (2015)CrossRef X. Wu, W. Wu, L. Qin, K. Wang, S. Ou, K. Zhou, Y. Fan, Structure and magnetic properties evolution of nickel–zinc ferrite with lanthanum substitution. J. Magn. Magn. Mater. 379, 232–238 (2015)CrossRef
13.
go back to reference H. Bayrakdar, O. Yalçın, S. Vural, K. Esmer, Effect of different doping on the structural, morphological and magnetic properties for Cu doped nanoscale spinel type ferrites. J. Magn. Magn. Mater. 343, 86–91 (2013)CrossRef H. Bayrakdar, O. Yalçın, S. Vural, K. Esmer, Effect of different doping on the structural, morphological and magnetic properties for Cu doped nanoscale spinel type ferrites. J. Magn. Magn. Mater. 343, 86–91 (2013)CrossRef
14.
go back to reference X. Cao, J. Meng, F. Mi, Z. Zhang, J. Sun, Preparation and magnetic property investigation of a nickel spinel ferrite-coated tetrapod-like ZnO composite. Solid State Commun. 151, 678–682 (2011)CrossRef X. Cao, J. Meng, F. Mi, Z. Zhang, J. Sun, Preparation and magnetic property investigation of a nickel spinel ferrite-coated tetrapod-like ZnO composite. Solid State Commun. 151, 678–682 (2011)CrossRef
15.
go back to reference Q.J. Han, D.H. Ji, G.D. Tang, Z.Z. Li, X. Hou, W.H. Qi, S.R. Liu, R.R. Bian, Estimating the cation distributions in the spinel ferrites Cu0.5–xNi0.5ZnxFe2O4 (0.0 ≤ x ≤ 0.5). J. Magn. Magn. Mater. 324, 1975–1981 (2012)CrossRef Q.J. Han, D.H. Ji, G.D. Tang, Z.Z. Li, X. Hou, W.H. Qi, S.R. Liu, R.R. Bian, Estimating the cation distributions in the spinel ferrites Cu0.5–xNi0.5ZnxFe2O4 (0.0 ≤ x ≤ 0.5). J. Magn. Magn. Mater. 324, 1975–1981 (2012)CrossRef
16.
go back to reference M. Dhiman, S. Bhukal, B. Chudasama, S. Singhal, Impact of metal ions (Cr3+, Co2+, Ni2+, Cu2+ and Zn2+) substitution on the structural, magnetic and catalytic properties of substituted Co–Mn ferrites synthesized by sol–gel route. J. Sol–Gel. Sci. Technol. 81, 831–843 (2017)CrossRef M. Dhiman, S. Bhukal, B. Chudasama, S. Singhal, Impact of metal ions (Cr3+, Co2+, Ni2+, Cu2+ and Zn2+) substitution on the structural, magnetic and catalytic properties of substituted Co–Mn ferrites synthesized by sol–gel route. J. Sol–Gel. Sci. Technol. 81, 831–843 (2017)CrossRef
17.
go back to reference J.M. Byrne, V. Coker, S. Moise, P. Wincott, D. Vaughan, F. Tuna, E. Arenholz, G. van der Laan, R. Pattrick, J. Lloyd, Controlled cobalt doping in biogenic magnetite nanoparticles. J. R. Soc. Interface 10, 20130134 (2013)CrossRef J.M. Byrne, V. Coker, S. Moise, P. Wincott, D. Vaughan, F. Tuna, E. Arenholz, G. van der Laan, R. Pattrick, J. Lloyd, Controlled cobalt doping in biogenic magnetite nanoparticles. J. R. Soc. Interface 10, 20130134 (2013)CrossRef
18.
go back to reference A. Zapata, G. Herrera, Effect of zinc concentration on the microstructure and relaxation frequency of Mn–Zn ferrites synthesized by solid state reaction. Ceram. Int. 39, 7853–7860 (2013)CrossRef A. Zapata, G. Herrera, Effect of zinc concentration on the microstructure and relaxation frequency of Mn–Zn ferrites synthesized by solid state reaction. Ceram. Int. 39, 7853–7860 (2013)CrossRef
19.
go back to reference Y. Cedeño-Mattei, O. Perales-Pérez, O.N.C. Uwakweh, Effect of high-energy ball milling time on structural and magnetic properties of nanocrystalline cobalt ferrite powders. J. Magn. Magn. Mater. 341, 17–24 (2013)CrossRef Y. Cedeño-Mattei, O. Perales-Pérez, O.N.C. Uwakweh, Effect of high-energy ball milling time on structural and magnetic properties of nanocrystalline cobalt ferrite powders. J. Magn. Magn. Mater. 341, 17–24 (2013)CrossRef
20.
go back to reference M.H. Mahmoud, H.H. Hamdeh, J.C. Ho, M.J. O’Shea, J.C. Walker, Mössbauer studies of manganese ferrite fine particles processed by ball-milling. J. Magn. Magn. Mater. 220, 139–146 (2000)CrossRef M.H. Mahmoud, H.H. Hamdeh, J.C. Ho, M.J. O’Shea, J.C. Walker, Mössbauer studies of manganese ferrite fine particles processed by ball-milling. J. Magn. Magn. Mater. 220, 139–146 (2000)CrossRef
21.
go back to reference R. Ali, M.A. Khan, A. Mahmood, A.H. Chughtai, A. Sultan, M. Shahid, M. Ishaq, M.F. Warsi, Structural, magnetic and dielectric behavior of Mg1–xCaxNiyFe2–yO4 nano-ferrites synthesized by the micro-emulsion method. Ceram. Int. 40, 3841–3846 (2014)CrossRef R. Ali, M.A. Khan, A. Mahmood, A.H. Chughtai, A. Sultan, M. Shahid, M. Ishaq, M.F. Warsi, Structural, magnetic and dielectric behavior of Mg1–xCaxNiyFe2–yO4 nano-ferrites synthesized by the micro-emulsion method. Ceram. Int. 40, 3841–3846 (2014)CrossRef
22.
go back to reference J. Huo, M. Wei, Characterization and magnetic properties of nanocrystalline nickel ferrite synthesized by hydrothermal method. Mater. Lett. 63, 1183–1184 (2009)CrossRef J. Huo, M. Wei, Characterization and magnetic properties of nanocrystalline nickel ferrite synthesized by hydrothermal method. Mater. Lett. 63, 1183–1184 (2009)CrossRef
23.
go back to reference L. Zhao, H. Zhang, Y. Xing, S. Song, S. Yu, W. Shi, X. Guo, J. Yang, Y. Lei, F. Cao, Studies on the magnetism of cobalt ferrite nanocrystals synthesized by hydrothermal method. J. Solid State Chem. 181, 245–252 (2008)CrossRef L. Zhao, H. Zhang, Y. Xing, S. Song, S. Yu, W. Shi, X. Guo, J. Yang, Y. Lei, F. Cao, Studies on the magnetism of cobalt ferrite nanocrystals synthesized by hydrothermal method. J. Solid State Chem. 181, 245–252 (2008)CrossRef
24.
go back to reference S. Hajarpour, A. Honarbakhsh Raouf, K. Gheisari, Structural evolution and magnetic properties of nanocrystalline magnesium–zinc soft ferrites synthesized by glycine–nitrate combustion process. J. Magn. Magn. Mater. 363, 21–25 (2014)CrossRef S. Hajarpour, A. Honarbakhsh Raouf, K. Gheisari, Structural evolution and magnetic properties of nanocrystalline magnesium–zinc soft ferrites synthesized by glycine–nitrate combustion process. J. Magn. Magn. Mater. 363, 21–25 (2014)CrossRef
25.
go back to reference A.A. Ati, Z. Othaman, A. Samavati, F.Y. Doust, Structural and magnetic properties of Co–Al substituted Ni ferrites synthesized by co-precipitation method. J. Mol. Struct. 1058, 136–141 (2014)CrossRef A.A. Ati, Z. Othaman, A. Samavati, F.Y. Doust, Structural and magnetic properties of Co–Al substituted Ni ferrites synthesized by co-precipitation method. J. Mol. Struct. 1058, 136–141 (2014)CrossRef
26.
go back to reference A.K. Nikumbh, R.A. Pawar, D.V. Nighot, G.S. Gugale, M.D. Sangale, M.B. Khanvilkar, A.V. Nagawade, Structural, electrical, magnetic and dielectric properties of rare-earth substituted cobalt ferrites nanoparticles synthesized by the co-precipitation method. J. Magn. Magn. Mater. 355, 201–209 (2014)CrossRef A.K. Nikumbh, R.A. Pawar, D.V. Nighot, G.S. Gugale, M.D. Sangale, M.B. Khanvilkar, A.V. Nagawade, Structural, electrical, magnetic and dielectric properties of rare-earth substituted cobalt ferrites nanoparticles synthesized by the co-precipitation method. J. Magn. Magn. Mater. 355, 201–209 (2014)CrossRef
27.
go back to reference A. Hussain, T. Abbas, S.B. Niazi, Preparation of Ni1–xMnxFe2O4 ferrites by sol–gel method and study of their cation distribution. Ceram. Int. 39, 1221–1225 (2013)CrossRef A. Hussain, T. Abbas, S.B. Niazi, Preparation of Ni1–xMnxFe2O4 ferrites by sol–gel method and study of their cation distribution. Ceram. Int. 39, 1221–1225 (2013)CrossRef
28.
go back to reference M. Mozaffari, J. Amighian, E. Darsheshdar, Magnetic and structural studies of nickel-substituted cobalt ferrite nanoparticles, synthesized by the sol–gel method. J. Magn. Magn. Mater. 350, 19–22 (2014)CrossRef M. Mozaffari, J. Amighian, E. Darsheshdar, Magnetic and structural studies of nickel-substituted cobalt ferrite nanoparticles, synthesized by the sol–gel method. J. Magn. Magn. Mater. 350, 19–22 (2014)CrossRef
29.
go back to reference K. Jalaiah, K. Vijaya Babu, Structural, magnetic and electrical properties of nickel doped Mn–Zn spinel ferrite synthesized by sol-gel method. J. Magn. Magn. Mater. 423, 275–280 (2017)CrossRef K. Jalaiah, K. Vijaya Babu, Structural, magnetic and electrical properties of nickel doped Mn–Zn spinel ferrite synthesized by sol-gel method. J. Magn. Magn. Mater. 423, 275–280 (2017)CrossRef
30.
go back to reference G.V. Duong, N. Hanh, D.V. Linh, R. Groessinger, P. Weinberger, E. Schafler, M. Zehetbauer, Monodispersed nanocrystalline Co1–xZnxFe2O4 particles by forced hydrolysis: Synthesis and characterization. J. Magn. Magn. Mater. 311, 46–50 (2007)CrossRef G.V. Duong, N. Hanh, D.V. Linh, R. Groessinger, P. Weinberger, E. Schafler, M. Zehetbauer, Monodispersed nanocrystalline Co1–xZnxFe2O4 particles by forced hydrolysis: Synthesis and characterization. J. Magn. Magn. Mater. 311, 46–50 (2007)CrossRef
31.
go back to reference N. Ballot, F. Schoenstein, S. Mercone, T. Chauveau, O. Brinza, N. Jouini, Reduction under hydrogen of ferrite MFe2O4 (M: Fe, Co, Ni) nanoparticles obtained by hydrolysis in polyol medium: A novel route to elaborate CoFe2, Fe and Ni3Fe nanoparticles. J. Alloy. Compd. 536(Supplement 1), S381–S385 (2012) N. Ballot, F. Schoenstein, S. Mercone, T. Chauveau, O. Brinza, N. Jouini, Reduction under hydrogen of ferrite MFe2O4 (M: Fe, Co, Ni) nanoparticles obtained by hydrolysis in polyol medium: A novel route to elaborate CoFe2, Fe and Ni3Fe nanoparticles. J. Alloy. Compd. 536(Supplement 1), S381–S385 (2012)
32.
go back to reference D. Chen, C.-Y. Mei, L.-H. Yao, H.-M. Jin, G.-R. Qian, Z.-P. Xu, Flash fixation of heavy metals from two industrial wastes into ferrite by microwave hydrothermal co-treatment. J. Hazard. Mater. 192, 1675–1682 (2011)CrossRef D. Chen, C.-Y. Mei, L.-H. Yao, H.-M. Jin, G.-R. Qian, Z.-P. Xu, Flash fixation of heavy metals from two industrial wastes into ferrite by microwave hydrothermal co-treatment. J. Hazard. Mater. 192, 1675–1682 (2011)CrossRef
33.
go back to reference Y.Y. Meng, Z.W. Liu, H.C. Dai, H.Y. Yu, D.C. Zeng, S. Shukla, R.V. Ramanujan, Structure and magnetic properties of Mn(Zn)Fe2–xRExO4 ferrite nano-powders synthesized by co-precipitation and refluxing method. Powder Technol. 229, 270–275 (2012)CrossRef Y.Y. Meng, Z.W. Liu, H.C. Dai, H.Y. Yu, D.C. Zeng, S. Shukla, R.V. Ramanujan, Structure and magnetic properties of Mn(Zn)Fe2–xRExO4 ferrite nano-powders synthesized by co-precipitation and refluxing method. Powder Technol. 229, 270–275 (2012)CrossRef
34.
go back to reference S. Balaji, R. Kalai Selvan, L. John Berchmans, S. Angappan, K. Subramanian, C.O. Augustin, Combustion synthesis and characterization of Sn4+ substituted nanocrystalline NiFe2O4. Mater. Sci. Eng. 119, 119–124 (2005)CrossRef S. Balaji, R. Kalai Selvan, L. John Berchmans, S. Angappan, K. Subramanian, C.O. Augustin, Combustion synthesis and characterization of Sn4+ substituted nanocrystalline NiFe2O4. Mater. Sci. Eng. 119, 119–124 (2005)CrossRef
35.
go back to reference M.F.F. Lelis, J.D. Fabris, W.N. Mussel, A.Y. Takeuchi, Preparation and characterization of Nickel-and cobalt-doped magnetites. Mater. Res. 6, 145–150 (2003)CrossRef M.F.F. Lelis, J.D. Fabris, W.N. Mussel, A.Y. Takeuchi, Preparation and characterization of Nickel-and cobalt-doped magnetites. Mater. Res. 6, 145–150 (2003)CrossRef
36.
go back to reference N. Kasapoğlu, A. Baykal, Y. Köseoğlu, M.S. Toprak, Microwave-assisted combustion synthesis of CoFe2O4 with urea, and its magnetic characterization. Scripta Mater. 57, 441–444 (2007)CrossRef N. Kasapoğlu, A. Baykal, Y. Köseoğlu, M.S. Toprak, Microwave-assisted combustion synthesis of CoFe2O4 with urea, and its magnetic characterization. Scripta Mater. 57, 441–444 (2007)CrossRef
37.
go back to reference Y. Köseoğlu, A. Baykal, F. Gözüak, H. Kavas, Structural and magnetic properties of CoxZn1–xFe2O4 nanocrystals synthesized by microwave method. Polyhedron 28, 2887–2892 (2009)CrossRef Y. Köseoğlu, A. Baykal, F. Gözüak, H. Kavas, Structural and magnetic properties of CoxZn1–xFe2O4 nanocrystals synthesized by microwave method. Polyhedron 28, 2887–2892 (2009)CrossRef
38.
go back to reference M. Hashim, S. Alimuddin, B.H. Kumar, S.E. Koo, E.M. Shirsath, J. Mohammed, R.K. Shah, H.K. Kotnala, H. Choi, R. Chung, Kumar, Structural, electrical and magnetic properties of Co–Cu ferrite nanoparticles. J. Alloy. Compd. 518, 11–18 (2012)CrossRef M. Hashim, S. Alimuddin, B.H. Kumar, S.E. Koo, E.M. Shirsath, J. Mohammed, R.K. Shah, H.K. Kotnala, H. Choi, R. Chung, Kumar, Structural, electrical and magnetic properties of Co–Cu ferrite nanoparticles. J. Alloy. Compd. 518, 11–18 (2012)CrossRef
39.
go back to reference S. Anjum, S. Hameed, F. Bashir, Microstructural, structural, magnetic and optical properties of antimony doped cobalt spinel ferrites. Mater. Today, 2, 5329–5336 (2015) S. Anjum, S. Hameed, F. Bashir, Microstructural, structural, magnetic and optical properties of antimony doped cobalt spinel ferrites. Mater. Today, 2, 5329–5336 (2015)
40.
go back to reference V. Vinila, R. Jacob, A. Mony, H.G. Nair, S. Issac, S. Rajan, A.S. Nair, J. Isac, XRD studies on nano crystalline ceramic superconductor PbSrCaCuO at different treating temperatures. Cryst. Struct. Theor. Appl. 3, 1 (2014) V. Vinila, R. Jacob, A. Mony, H.G. Nair, S. Issac, S. Rajan, A.S. Nair, J. Isac, XRD studies on nano crystalline ceramic superconductor PbSrCaCuO at different treating temperatures. Cryst. Struct. Theor. Appl. 3, 1 (2014)
41.
go back to reference M. Hashim, S. Kumar, B. Koo, S.E. Shirsath, E. Mohammed, J. Shah, R. Kotnala, H. Choi, H. Chung, R. Kumar, Structural, electrical and magnetic properties of Co–Cu ferrite nanoparticles. J. Alloy. Compd. 518, 11–18 (2012)CrossRef M. Hashim, S. Kumar, B. Koo, S.E. Shirsath, E. Mohammed, J. Shah, R. Kotnala, H. Choi, H. Chung, R. Kumar, Structural, electrical and magnetic properties of Co–Cu ferrite nanoparticles. J. Alloy. Compd. 518, 11–18 (2012)CrossRef
42.
go back to reference S. Nasir, A.S. Saleemi, Z. Fatima tuz, M. Anis-ur-Rehman, Enhancement in dielectric and magnetic properties of Ni–Zn ferrites prepared by sol–gel method. J. Alloy. Compd. 572, 170–174 (2013)CrossRef S. Nasir, A.S. Saleemi, Z. Fatima tuz, M. Anis-ur-Rehman, Enhancement in dielectric and magnetic properties of Ni–Zn ferrites prepared by sol–gel method. J. Alloy. Compd. 572, 170–174 (2013)CrossRef
43.
go back to reference S. Yan, J. Yin, E. Zhou, Study on the synthesis of NiZnCu ferrite nanoparticles by PVA sol–gel method and their magnetic properties. J. Alloy. Compd. 450, 417–420 (2008)CrossRef S. Yan, J. Yin, E. Zhou, Study on the synthesis of NiZnCu ferrite nanoparticles by PVA sol–gel method and their magnetic properties. J. Alloy. Compd. 450, 417–420 (2008)CrossRef
44.
go back to reference I. Szczygieł, K. Winiarska, A. Bieńko, K. Suracka, D. Gaworska-Koniarek, The effect of the sol–gel autocombustion synthesis conditions on the Mn–Zn ferrite magnetic properties. J. Alloy. Compd. 604, 1–7 (2014)CrossRef I. Szczygieł, K. Winiarska, A. Bieńko, K. Suracka, D. Gaworska-Koniarek, The effect of the sol–gel autocombustion synthesis conditions on the Mn–Zn ferrite magnetic properties. J. Alloy. Compd. 604, 1–7 (2014)CrossRef
45.
go back to reference M.A. Gabal, S.S. Ata-Allah, Effect of diamagnetic substitution on the structural, electrical and magnetic properties of CoFe2O4. Mater. Chem. Phys. 85, 104–112 (2004)CrossRef M.A. Gabal, S.S. Ata-Allah, Effect of diamagnetic substitution on the structural, electrical and magnetic properties of CoFe2O4. Mater. Chem. Phys. 85, 104–112 (2004)CrossRef
46.
go back to reference N. Kasapoglu, B. Birsöz, A. Baykal, Y. Köseoglu, M.S. Toprak, Synthesis and magnetic properties of octahedral ferrite NiχCo1–χFe2O4 nanocrystals. Cent. Eur. J. Chem. 5, 570–580 (2007) N. Kasapoglu, B. Birsöz, A. Baykal, Y. Köseoglu, M.S. Toprak, Synthesis and magnetic properties of octahedral ferrite NiχCo1–χFe2O4 nanocrystals. Cent. Eur. J. Chem. 5, 570–580 (2007)
47.
go back to reference S. Dabagh, A.A. Ati, S. Ghoshal, S. Zare, R. Rosnan, A.S. Jbara, Z. Othaman, Cu2+ and Al3+ co-substituted cobalt ferrite: structural analysis, morphology and magnetic properties. Bull. Mater. Sci. 39, 1029–1037 (2016)CrossRef S. Dabagh, A.A. Ati, S. Ghoshal, S. Zare, R. Rosnan, A.S. Jbara, Z. Othaman, Cu2+ and Al3+ co-substituted cobalt ferrite: structural analysis, morphology and magnetic properties. Bull. Mater. Sci. 39, 1029–1037 (2016)CrossRef
48.
go back to reference S.N. Kane, M. Satalkar, Correlation between magnetic properties and cationic distribution of Zn0.85–xNixMg0.05Cu0.1Fe2O4 nano spinel ferrite: effect of Ni doping. J. Mater. Sci. 52, 3467–3477 (2017)CrossRef S.N. Kane, M. Satalkar, Correlation between magnetic properties and cationic distribution of Zn0.85–xNixMg0.05Cu0.1Fe2O4 nano spinel ferrite: effect of Ni doping. J. Mater. Sci. 52, 3467–3477 (2017)CrossRef
49.
go back to reference K. Khan, A. Maqsood, M. Anis-ur-Rehman, M.A. Malik, M. Akram, Structural, dielectric, and magnetic characterization of nanocrystalline Ni–Co ferrites. J. Supercond. Novel Magn. 25, 2707–2711 (2012)CrossRef K. Khan, A. Maqsood, M. Anis-ur-Rehman, M.A. Malik, M. Akram, Structural, dielectric, and magnetic characterization of nanocrystalline Ni–Co ferrites. J. Supercond. Novel Magn. 25, 2707–2711 (2012)CrossRef
50.
go back to reference M. Hashim, S.E. Alimuddin, S.S. Shirsath, R.K. Meena, S. Kotnala, P. Kumar, R.B. Bhatt, R. Jotania, Kumar, Study of structural and magnetic properties of (Co–Cu)Fe2O4/PANI composites. Mater. Chem. Phys. 141, 406–415 (2013)CrossRef M. Hashim, S.E. Alimuddin, S.S. Shirsath, R.K. Meena, S. Kotnala, P. Kumar, R.B. Bhatt, R. Jotania, Kumar, Study of structural and magnetic properties of (Co–Cu)Fe2O4/PANI composites. Mater. Chem. Phys. 141, 406–415 (2013)CrossRef
51.
go back to reference I. Ahmad, T. Abbas, M.U. Islam, A. Maqsood, Study of cation distribution for Cu–Co nanoferrites synthesized by the sol–gel method. Ceram. Int. 39, 6735–6741 (2013)CrossRef I. Ahmad, T. Abbas, M.U. Islam, A. Maqsood, Study of cation distribution for Cu–Co nanoferrites synthesized by the sol–gel method. Ceram. Int. 39, 6735–6741 (2013)CrossRef
52.
go back to reference R.D. Waldron, Infrared spectra of ferrites. Phys. Rev. 99, 1727–1735 (1955)CrossRef R.D. Waldron, Infrared spectra of ferrites. Phys. Rev. 99, 1727–1735 (1955)CrossRef
53.
go back to reference S.R. Kulal, S.S. Khetre, P.N. Jagdale, V.M. Gurame, D.P. Waghmode, G.B. Kolekar, S.R. Sabale, S.R. Bamane, Synthesis of Dy doped Co–Zn ferrite by sol–gel auto combustion method and its characterization. Mater. Lett. 84, 169–172 (2012)CrossRef S.R. Kulal, S.S. Khetre, P.N. Jagdale, V.M. Gurame, D.P. Waghmode, G.B. Kolekar, S.R. Sabale, S.R. Bamane, Synthesis of Dy doped Co–Zn ferrite by sol–gel auto combustion method and its characterization. Mater. Lett. 84, 169–172 (2012)CrossRef
54.
go back to reference A.K. Ghatage, S.C. Choudhari, S.A. Patil, S.K. Paranjpe, X-ray, infrared and magnetic studies of chromium substituted nickel ferrite. J. Mater. Sci. Lett. 15, 1548–1550 (1996)CrossRef A.K. Ghatage, S.C. Choudhari, S.A. Patil, S.K. Paranjpe, X-ray, infrared and magnetic studies of chromium substituted nickel ferrite. J. Mater. Sci. Lett. 15, 1548–1550 (1996)CrossRef
55.
go back to reference M. Hashim, S. Alimuddin, S.E. Kumar, R.K. Shirsath, J. Kotnala, R. Shah, Kumar, Synthesis and characterizations of Ni2+ substituted cobalt ferrite nanoparticles. Mater. Chem. Phys. 139, 364–374 (2013)CrossRef M. Hashim, S. Alimuddin, S.E. Kumar, R.K. Shirsath, J. Kotnala, R. Shah, Kumar, Synthesis and characterizations of Ni2+ substituted cobalt ferrite nanoparticles. Mater. Chem. Phys. 139, 364–374 (2013)CrossRef
56.
go back to reference R.G. Snyder, S.L. Hsu, S. Krimm, Vibrational spectra in the CH stretching region and the structure of the polymethylene chain. Spectrochim. Acta A 34, 395–406 (1978)CrossRef R.G. Snyder, S.L. Hsu, S. Krimm, Vibrational spectra in the CH stretching region and the structure of the polymethylene chain. Spectrochim. Acta A 34, 395–406 (1978)CrossRef
57.
go back to reference V. Sepelak, K. Tkacova, A. Rykov, Rietveld analysis of mechanically activated powdered zinc ferrite. Cryst. Res. Technol. 28, 53–56 (1993)CrossRef V. Sepelak, K. Tkacova, A. Rykov, Rietveld analysis of mechanically activated powdered zinc ferrite. Cryst. Res. Technol. 28, 53–56 (1993)CrossRef
58.
go back to reference E. Manova, B. Kunev, D. Paneva, I. Mitov, L. Petrov, C. Estournes, C. D’Orléan, J.-L. Rehspringer, M. Kurmoo, Mechano-synthesis, characterization, and magnetic properties of nanoparticles of cobalt ferrite, CoFe2O4. Chem. Mater. 16, 5689–5696 (2004)CrossRef E. Manova, B. Kunev, D. Paneva, I. Mitov, L. Petrov, C. Estournes, C. D’Orléan, J.-L. Rehspringer, M. Kurmoo, Mechano-synthesis, characterization, and magnetic properties of nanoparticles of cobalt ferrite, CoFe2O4. Chem. Mater. 16, 5689–5696 (2004)CrossRef
59.
go back to reference J. Zhang, J. Shi, M. Gong, Synthesis of magnetic nickel spinel ferrite nanospheres by a reverse emulsion-assisted hydrothermal process. J. Solid State Chem. 182, 2135–2140 (2009)CrossRef J. Zhang, J. Shi, M. Gong, Synthesis of magnetic nickel spinel ferrite nanospheres by a reverse emulsion-assisted hydrothermal process. J. Solid State Chem. 182, 2135–2140 (2009)CrossRef
60.
go back to reference U. Lüders, A. Barthélémy, M. Bibes, K. Bouzehouane, S. Fusil, E. Jacquet, J.P. Contour, J.F. Bobo, J. Fontcuberta, A. Fert, NiFe2O4: a versatile spinel material brings new opportunities for spintronics. Adv. Mater. 18, 1733–1736 (2006)CrossRef U. Lüders, A. Barthélémy, M. Bibes, K. Bouzehouane, S. Fusil, E. Jacquet, J.P. Contour, J.F. Bobo, J. Fontcuberta, A. Fert, NiFe2O4: a versatile spinel material brings new opportunities for spintronics. Adv. Mater. 18, 1733–1736 (2006)CrossRef
61.
go back to reference M. Sertkol, Y. Köseoğlu, A. Baykal, H. Kavas, M.S. Toprak, Synthesis and magnetic characterization of Zn0.7Ni0.3Fe2O4 nanoparticles via microwave-assisted combustion route. J. Magn. Magn. Mater. 322, 866–871 (2010)CrossRef M. Sertkol, Y. Köseoğlu, A. Baykal, H. Kavas, M.S. Toprak, Synthesis and magnetic characterization of Zn0.7Ni0.3Fe2O4 nanoparticles via microwave-assisted combustion route. J. Magn. Magn. Mater. 322, 866–871 (2010)CrossRef
62.
go back to reference E. Manova, T. Tsoncheva, C. Estournès, D. Paneva, K. Tenchev, I. Mitov, L. Petrov, Nanosized iron and iron–cobalt spinel oxides as catalysts for methanol decomposition. Appl. Catal. A 300, 170–180 (2006)CrossRef E. Manova, T. Tsoncheva, C. Estournès, D. Paneva, K. Tenchev, I. Mitov, L. Petrov, Nanosized iron and iron–cobalt spinel oxides as catalysts for methanol decomposition. Appl. Catal. A 300, 170–180 (2006)CrossRef
63.
go back to reference G. Li, Y. Jiang, K. Huang, P. Ding, J. Chen, Preparation and properties of magnetic Fe3O4–chitosan nanoparticles. J. Alloy. Compd. 466, 451–456 (2008)CrossRef G. Li, Y. Jiang, K. Huang, P. Ding, J. Chen, Preparation and properties of magnetic Fe3O4–chitosan nanoparticles. J. Alloy. Compd. 466, 451–456 (2008)CrossRef
64.
go back to reference J. Zhi, Y. Wang, Y. Lu, J. Ma, G. Luo, In situ preparation of magnetic chitosan/Fe3O4 composite nanoparticles in tiny pools of water-in-oil microemulsion. React. Funct. Polym. 66, 1552–1558 (2006)CrossRef J. Zhi, Y. Wang, Y. Lu, J. Ma, G. Luo, In situ preparation of magnetic chitosan/Fe3O4 composite nanoparticles in tiny pools of water-in-oil microemulsion. React. Funct. Polym. 66, 1552–1558 (2006)CrossRef
65.
go back to reference C. Chinnasamy, A. Narayanasamy, N. Ponpandian, K. Chattopadhyay, K. Shinoda, B. Jeyadevan, K. Tohji, K. Nakatsuka, T. Furubayashi, I. Nakatani, Mixed spinel structure in nanocrystalline NiFe2O4. Phys. Rev. B 63, 184108 (2001)CrossRef C. Chinnasamy, A. Narayanasamy, N. Ponpandian, K. Chattopadhyay, K. Shinoda, B. Jeyadevan, K. Tohji, K. Nakatsuka, T. Furubayashi, I. Nakatani, Mixed spinel structure in nanocrystalline NiFe2O4. Phys. Rev. B 63, 184108 (2001)CrossRef
66.
go back to reference M. Rajendran, R.C. Pullar, A.K. Bhattacharya, D. Das, S.N. Chintalapudi, C.K. Majumdar, Magnetic properties of nanocrystalline CoFe2O4 powders prepared at room temperature: variation with crystallite size. J. Magn. Magn. Mater. 232, 71–83 (2001)CrossRef M. Rajendran, R.C. Pullar, A.K. Bhattacharya, D. Das, S.N. Chintalapudi, C.K. Majumdar, Magnetic properties of nanocrystalline CoFe2O4 powders prepared at room temperature: variation with crystallite size. J. Magn. Magn. Mater. 232, 71–83 (2001)CrossRef
67.
go back to reference S. Maensiri, C. Masingboon, B. Boonchom, S. Seraphin, A simple route to synthesize nickel ferrite (NiFe2O4) nanoparticles using egg white. Scripta Mater. 56, 797–800 (2007)CrossRef S. Maensiri, C. Masingboon, B. Boonchom, S. Seraphin, A simple route to synthesize nickel ferrite (NiFe2O4) nanoparticles using egg white. Scripta Mater. 56, 797–800 (2007)CrossRef
68.
go back to reference M.N. Ashiq, F. Naz, M.A. Malana, R.S. Gohar, Z. Ahmad, Role of Co–Cr substitution on the structural, electrical and magnetic properties of nickel nano-ferrites synthesized by the chemical co-precipitation method. Mater. Res. Bull. 47, 683–686 (2012)CrossRef M.N. Ashiq, F. Naz, M.A. Malana, R.S. Gohar, Z. Ahmad, Role of Co–Cr substitution on the structural, electrical and magnetic properties of nickel nano-ferrites synthesized by the chemical co-precipitation method. Mater. Res. Bull. 47, 683–686 (2012)CrossRef
69.
go back to reference S. Shakoor, M.N. Ashiq, M.A. Malana, A. Mahmood, M.F. Warsi, M. Najam-ul-Haq, N. Karamat, Electrical, dielectric and magnetic characterization of Bi–Cr substituted M-type strontium hexaferrite nanomaterials. J. Magn. Magn. Mater. 362, 110–114 (2014)CrossRef S. Shakoor, M.N. Ashiq, M.A. Malana, A. Mahmood, M.F. Warsi, M. Najam-ul-Haq, N. Karamat, Electrical, dielectric and magnetic characterization of Bi–Cr substituted M-type strontium hexaferrite nanomaterials. J. Magn. Magn. Mater. 362, 110–114 (2014)CrossRef
70.
go back to reference L. Avazpour, M.A. Zandi khajeh, M.R. Toroghinejad, H. Shokrollahi, Synthesis of single-phase cobalt ferrite nanoparticles via a novel EDTA/EG precursor-based route and their magnetic properties. J. Alloy. Compd. 637, 497–503 (2015)CrossRef L. Avazpour, M.A. Zandi khajeh, M.R. Toroghinejad, H. Shokrollahi, Synthesis of single-phase cobalt ferrite nanoparticles via a novel EDTA/EG precursor-based route and their magnetic properties. J. Alloy. Compd. 637, 497–503 (2015)CrossRef
71.
go back to reference M.A. Malana, R.B. Qureshi, M.N. Ashiq, M.F. Ehsan, Synthesis, structural, magnetic and dielectric characterizations of molybdenum doped calcium strontium M-type hexaferrites. Ceram. Int. 42, 2686–2692 (2016)CrossRef M.A. Malana, R.B. Qureshi, M.N. Ashiq, M.F. Ehsan, Synthesis, structural, magnetic and dielectric characterizations of molybdenum doped calcium strontium M-type hexaferrites. Ceram. Int. 42, 2686–2692 (2016)CrossRef
72.
go back to reference A. Hannour, D. Vincent, F. Kahlouche, A. Tchangoulian, S. Neveu, V. Dupuis, Self-biased cobalt ferrite nanocomposites for microwave applications. J. Magn. Magn. Mater. 353, 29–33 (2014)CrossRef A. Hannour, D. Vincent, F. Kahlouche, A. Tchangoulian, S. Neveu, V. Dupuis, Self-biased cobalt ferrite nanocomposites for microwave applications. J. Magn. Magn. Mater. 353, 29–33 (2014)CrossRef
73.
go back to reference A. Poorbafrani, E. Kiani, Enhanced microwave absorption properties in cobalt–zinc ferrite based nanocomposites. J. Magn. Magn. Mater. 416, 10–14 (2016)CrossRef A. Poorbafrani, E. Kiani, Enhanced microwave absorption properties in cobalt–zinc ferrite based nanocomposites. J. Magn. Magn. Mater. 416, 10–14 (2016)CrossRef
74.
go back to reference A. Pradeep, P. Priyadharsini, G. Chandrasekaran, Production of single phase nano size NiFe2O4 particles using sol–gel auto combustion route by optimizing the preparation conditions. Mater. Chem. Phys. 112, 572–576 (2008)CrossRef A. Pradeep, P. Priyadharsini, G. Chandrasekaran, Production of single phase nano size NiFe2O4 particles using sol–gel auto combustion route by optimizing the preparation conditions. Mater. Chem. Phys. 112, 572–576 (2008)CrossRef
75.
go back to reference A. Alarifi, N.M. Deraz, S. Shaban, Structural, morphological and magnetic properties of NiFe2O4 nano-particles. J. Alloy. Compd. 486, 501–506 (2009)CrossRef A. Alarifi, N.M. Deraz, S. Shaban, Structural, morphological and magnetic properties of NiFe2O4 nano-particles. J. Alloy. Compd. 486, 501–506 (2009)CrossRef
76.
go back to reference M.J. Iqbal, M.N. Ashiq, P. Hernandez-Gomez, J.M. Munoz, Magnetic, physical and electrical properties of Zr–Ni-substituted co-precipitated strontium hexaferrite nanoparticles. Scripta Mater. 57, 1093–1096 (2007)CrossRef M.J. Iqbal, M.N. Ashiq, P. Hernandez-Gomez, J.M. Munoz, Magnetic, physical and electrical properties of Zr–Ni-substituted co-precipitated strontium hexaferrite nanoparticles. Scripta Mater. 57, 1093–1096 (2007)CrossRef
77.
go back to reference Y. Köseoğlu, M. Bay, M. Tan, A. Baykal, H. Sözeri, R. Topkaya, N. Akdoğan, Magnetic and dielectric properties of Mn0.2Ni0.8Fe2O4 nanoparticles synthesized by PEG-assisted hydrothermal method. J. Nanopart. Res. 13, 2235–2244 (2011)CrossRef Y. Köseoğlu, M. Bay, M. Tan, A. Baykal, H. Sözeri, R. Topkaya, N. Akdoğan, Magnetic and dielectric properties of Mn0.2Ni0.8Fe2O4 nanoparticles synthesized by PEG-assisted hydrothermal method. J. Nanopart. Res. 13, 2235–2244 (2011)CrossRef
78.
go back to reference Y. Wang, J. Ding, J. Yi, B. Liu, T. Yu, Z. Shen, High-coercivity Co-ferrite thin films on (100)-SiO2 substrate. Appl. Phys. Lett. 84, 2596–2598 (2004)CrossRef Y. Wang, J. Ding, J. Yi, B. Liu, T. Yu, Z. Shen, High-coercivity Co-ferrite thin films on (100)-SiO2 substrate. Appl. Phys. Lett. 84, 2596–2598 (2004)CrossRef
79.
go back to reference P.D. Thang, G. Rijnders, D.H.A. Blank, Stress-induced magnetic anisotropy of CoFe2O4 thin films using pulsed laser deposition. J. Magn. Magn. Mater. 310, 2621–2623 (2007)CrossRef P.D. Thang, G. Rijnders, D.H.A. Blank, Stress-induced magnetic anisotropy of CoFe2O4 thin films using pulsed laser deposition. J. Magn. Magn. Mater. 310, 2621–2623 (2007)CrossRef
80.
go back to reference M.K. Shobana, S. Sankar, V. Rajendran, Characterization of Co0.5Mn0.5Fe2O4 nanoparticles. Mater. Chem. Phys. 113, 10–13 (2009)CrossRef M.K. Shobana, S. Sankar, V. Rajendran, Characterization of Co0.5Mn0.5Fe2O4 nanoparticles. Mater. Chem. Phys. 113, 10–13 (2009)CrossRef
81.
go back to reference I. Panneer Muthuselvam, R.N. Bhowmik, Mechanical alloyed Ho3+ doping in CoFe2O4 spinel ferrite and understanding of magnetic nanodomains. J. Magn. Magn. Mater. 322, 767–776 (2010)CrossRef I. Panneer Muthuselvam, R.N. Bhowmik, Mechanical alloyed Ho3+ doping in CoFe2O4 spinel ferrite and understanding of magnetic nanodomains. J. Magn. Magn. Mater. 322, 767–776 (2010)CrossRef
82.
go back to reference J.-H. Nam, Y.-H. Joo, J.-H. Lee, J.H. Chang, J.H. Cho, M.P. Chun, B.I. Kim, Preparation of NiZn-ferrite nanofibers by electrospinning for DNA separation. J. Magn. Magn. Mater. 321, 1389–1392 (2009)CrossRef J.-H. Nam, Y.-H. Joo, J.-H. Lee, J.H. Chang, J.H. Cho, M.P. Chun, B.I. Kim, Preparation of NiZn-ferrite nanofibers by electrospinning for DNA separation. J. Magn. Magn. Mater. 321, 1389–1392 (2009)CrossRef
Metadata
Title
Fast synthesis, structural, morphology with enhanced magnetic properties of cobalt doped nickel ferrite nanoscale
Author
Ali A. Ati
Publication date
21-05-2018
Publisher
Springer US
Published in
Journal of Materials Science: Materials in Electronics / Issue 14/2018
Print ISSN: 0957-4522
Electronic ISSN: 1573-482X
DOI
https://doi.org/10.1007/s10854-018-9305-8

Other articles of this Issue 14/2018

Journal of Materials Science: Materials in Electronics 14/2018 Go to the issue