Skip to main content
Erschienen in: Journal of Sol-Gel Science and Technology 3/2017

19.10.2016 | Original Paper: Sol-gel and hybrid materials for energy, environment and building applications

Impact of metal ions (Cr3+, Co2+, Ni2+, Cu2+ and Zn2+) substitution on the structural, magnetic and catalytic properties of substituted Co–Mn ferrites synthesized by sol–gel route

verfasst von: Manisha Dhiman, Santosh Bhukal, Bhupendra Chudasama, Sonal Singhal

Erschienen in: Journal of Sol-Gel Science and Technology | Ausgabe 3/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Manganese substituted cobalt ferrites (CoMn x Fe2−x O4, x = 0.2, 0.4, 0.6, 0.8 and 1.0) synthesized using sol gel autocombustion method were used as photocatalysts for the degradation of both cationic and anionic dyes i.e Safranine-O and Remazol Brilliant yellow. CoMn0.4Fe1.6O4 exhibited maximum photocatalytic activity among all the synthesized ferrites. To further study the effect of metal ion doping on catalytic performance, substitution with different metal ions (Cr3+, Co2+, Ni2+, Cu2+ and Zn2+) was done in CoMn0.4Fe1.6O4 lattice. The structural and magnetic properties of prepared samples were investigated using powder X-ray diffraction, Fourier transform infrared spectroscopy and vibrating sample magnetometer. The average crystallite size of the synthesized nanoparticles was observed to be in the range of 39–52 nm. The saturation magnetization of the samples was found to decrease with the introduction of all metal cations (except Co2+) in the Co–Mn lattice. The changes in the catalytic activity were tested for degradation of Safranine-O and Remazol Brilliant yellow. Amongst the synthesized CoMn0.4M x Fe1.6−x O4, Cu substituted Co–Mn ferrite exhibited maximum photocatalytic efficiency. All the magnetic nanoferrites were easily recovered by using an external magnet and could be reused without any remarkable change in catalytic efficiency.

Graphical Abstract

https://static-content.springer.com/image/art%3A10.1007%2Fs10971-016-4232-8/MediaObjects/10971_2016_4232_Figa_HTML.gif

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Azar ARJ, Mohebbi S (2015) Novel magnetic nanomaterials: Synthesis, characterization and study of their catalytic application. Mater Chem Phys 168:85–94CrossRef Azar ARJ, Mohebbi S (2015) Novel magnetic nanomaterials: Synthesis, characterization and study of their catalytic application. Mater Chem Phys 168:85–94CrossRef
2.
Zurück zum Zitat Badruddoza AZM, Shawon ZBZ, Rahman MT, Hao KW, Hidajat K, Uddin MS (2013) Ionically modified magnetic nanomaterials for arsenic and chromium removal from water. Chem Eng J 225:607–615CrossRef Badruddoza AZM, Shawon ZBZ, Rahman MT, Hao KW, Hidajat K, Uddin MS (2013) Ionically modified magnetic nanomaterials for arsenic and chromium removal from water. Chem Eng J 225:607–615CrossRef
3.
Zurück zum Zitat Oh JK, Park JM (2011) Iron oxide-based superparamagnetic polymeric nanomaterials: design, preparation, and biomedical application. Prog Polym Sci 36:168–189CrossRef Oh JK, Park JM (2011) Iron oxide-based superparamagnetic polymeric nanomaterials: design, preparation, and biomedical application. Prog Polym Sci 36:168–189CrossRef
4.
Zurück zum Zitat Kumar CSSR, Mohammad F (2011) Magnetic nanomaterials for hyperthermia-based therapy and controlled drug delivery. Adv Drug Deliv Rev 63:789–808CrossRef Kumar CSSR, Mohammad F (2011) Magnetic nanomaterials for hyperthermia-based therapy and controlled drug delivery. Adv Drug Deliv Rev 63:789–808CrossRef
5.
Zurück zum Zitat Nazir S, Hussain T, Ayub A, Rashid U, MacRobert AJ (2014) Nanomaterials in combating cancer: therapeutic applications and developments. Nanomed Nanotechnol 10:19–34CrossRef Nazir S, Hussain T, Ayub A, Rashid U, MacRobert AJ (2014) Nanomaterials in combating cancer: therapeutic applications and developments. Nanomed Nanotechnol 10:19–34CrossRef
6.
Zurück zum Zitat Stergiou CA, Litsardakis G (2016) Y-type hexagonal ferrites for microwave absorber and antenna applications. J Magn Magn Mater 405:54–61CrossRef Stergiou CA, Litsardakis G (2016) Y-type hexagonal ferrites for microwave absorber and antenna applications. J Magn Magn Mater 405:54–61CrossRef
7.
Zurück zum Zitat Rehman MA, Yusoff I, Alias Y (2015) Fluoride adsorption by doped and un-doped magnetic ferrites CuCexFe2-xO4: preparation, characterization, optimization and modeling for effectual remediation technologies. J Hazard Mater 299:316–324CrossRef Rehman MA, Yusoff I, Alias Y (2015) Fluoride adsorption by doped and un-doped magnetic ferrites CuCexFe2-xO4: preparation, characterization, optimization and modeling for effectual remediation technologies. J Hazard Mater 299:316–324CrossRef
8.
Zurück zum Zitat Aravind G, Raghasudha M, Ravinder D (2015) Electrical transport properties of nano crystalline LieNi ferrites. J Materiomics 1:348–356CrossRef Aravind G, Raghasudha M, Ravinder D (2015) Electrical transport properties of nano crystalline LieNi ferrites. J Materiomics 1:348–356CrossRef
9.
Zurück zum Zitat Mukhtar MW, Irfan M, Ahmad I, Ali I, Akhtar MN, Khan MA, Abbas G, Rana MU, Ali A, Ahmad M (2015) Synthesis and properties of Pr-substituted MgZn ferrites for core materials and high frequency applications. J Magn Magn Mater 381:173–178CrossRef Mukhtar MW, Irfan M, Ahmad I, Ali I, Akhtar MN, Khan MA, Abbas G, Rana MU, Ali A, Ahmad M (2015) Synthesis and properties of Pr-substituted MgZn ferrites for core materials and high frequency applications. J Magn Magn Mater 381:173–178CrossRef
10.
Zurück zum Zitat Evdou A, Zaspalis V, Nalbandian L (2016) Ferrites as redox catalysts for chemical looping processes. Fuel 165:367–378CrossRef Evdou A, Zaspalis V, Nalbandian L (2016) Ferrites as redox catalysts for chemical looping processes. Fuel 165:367–378CrossRef
11.
Zurück zum Zitat Wu X, Yan S, Liu W, Feng Z, Chen Y, Harris VG (2016) Influence of particle size on the magnetic spectrum of NiCuZn ferrites for electromagnetic shielding applications. J Magn Magn Mater 401:1093–1096CrossRef Wu X, Yan S, Liu W, Feng Z, Chen Y, Harris VG (2016) Influence of particle size on the magnetic spectrum of NiCuZn ferrites for electromagnetic shielding applications. J Magn Magn Mater 401:1093–1096CrossRef
12.
Zurück zum Zitat Cai X, Wang J, Li B, Wu A, Xu B, Wang B, Gao H, Yu L, Li Z (2016) Microwave absorption properties of LiZn ferrites hollow microspheres doped with La and Mg by self-reactive quenching technology. J Alloys Compd 657:608–615CrossRef Cai X, Wang J, Li B, Wu A, Xu B, Wang B, Gao H, Yu L, Li Z (2016) Microwave absorption properties of LiZn ferrites hollow microspheres doped with La and Mg by self-reactive quenching technology. J Alloys Compd 657:608–615CrossRef
13.
Zurück zum Zitat Ali MB, Maalam KE, Moussaoui HE, Mounkachi O, Hamedoun M, Masrour R, Hlil EK, Benyoussef A (2016) Effect of zinc concentration on the structural and magnetic properties of mixed Co–Zn ferrites nanoparticles synthesized by sol/gel method. J Magn Magn Mater 398:20–25CrossRef Ali MB, Maalam KE, Moussaoui HE, Mounkachi O, Hamedoun M, Masrour R, Hlil EK, Benyoussef A (2016) Effect of zinc concentration on the structural and magnetic properties of mixed Co–Zn ferrites nanoparticles synthesized by sol/gel method. J Magn Magn Mater 398:20–25CrossRef
14.
Zurück zum Zitat Akhtar MN, Sulong AB, Ahmad M, Khan MA, Ali A, Islam MU (2016) Impacts of Gd-Ce on the structural, morphological and magnetic properties of garnet nanocrystalline ferrites synthesized via sol-gel route. J Alloys Compd 660:486–495CrossRef Akhtar MN, Sulong AB, Ahmad M, Khan MA, Ali A, Islam MU (2016) Impacts of Gd-Ce on the structural, morphological and magnetic properties of garnet nanocrystalline ferrites synthesized via sol-gel route. J Alloys Compd 660:486–495CrossRef
15.
Zurück zum Zitat Kalendová A, Rysánek P, Nechvílová K (2015) Investigation of the anticorrosion efficiency of ferrites Mg1−xZnxFe2O4 with different particle morphology and chemical composition inepoxy-ester resin-based coatings. Prog Org Coat 86:147–163CrossRef Kalendová A, Rysánek P, Nechvílová K (2015) Investigation of the anticorrosion efficiency of ferrites Mg1−xZnxFe2O4 with different particle morphology and chemical composition inepoxy-ester resin-based coatings. Prog Org Coat 86:147–163CrossRef
16.
Zurück zum Zitat Anwar H, Maqsood A (2014) Comparison of structural and electrical properties of Co2+ doped Mn–Zn soft nano ferrites prepared via coprecipitation and hydrothermal methods. Mater Res Bull 49:426–433CrossRef Anwar H, Maqsood A (2014) Comparison of structural and electrical properties of Co2+ doped Mn–Zn soft nano ferrites prepared via coprecipitation and hydrothermal methods. Mater Res Bull 49:426–433CrossRef
17.
Zurück zum Zitat Cortes MS, Martínez-Luevanos A, García-Cerda LA, Rodríguez-Fernandez OS, Fuentes AF, Romero-García J, Montemayor SM (2015) Nanostructured pure and substituted cobalt ferrites: fabrication by electrospinning and study of their magnetic properties. J Alloys Compd 653:290–297CrossRef Cortes MS, Martínez-Luevanos A, García-Cerda LA, Rodríguez-Fernandez OS, Fuentes AF, Romero-García J, Montemayor SM (2015) Nanostructured pure and substituted cobalt ferrites: fabrication by electrospinning and study of their magnetic properties. J Alloys Compd 653:290–297CrossRef
18.
Zurück zum Zitat Tsay CY, Lin YH, Jen SU (2015) Magnetic, magnetostrictive, and AC impedance properties of manganese substituted cobalt ferrites. Ceram Int 41:5531–5536CrossRef Tsay CY, Lin YH, Jen SU (2015) Magnetic, magnetostrictive, and AC impedance properties of manganese substituted cobalt ferrites. Ceram Int 41:5531–5536CrossRef
19.
Zurück zum Zitat Goyal A, Bansal S, Kumar V, Singh J, Singhal S (2015) Mn substituted cobalt ferrites (CoMnxFe2−xO4(x=0.0, 0.2, 0.4, 0.6, 0.8, 1.0)): as magnetically separable heterogeneous nanocatalyst for the reduction of nitrophenols. Appl Surf Sci 324:877–889CrossRef Goyal A, Bansal S, Kumar V, Singh J, Singhal S (2015) Mn substituted cobalt ferrites (CoMnxFe2−xO4(x=0.0, 0.2, 0.4, 0.6, 0.8, 1.0)): as magnetically separable heterogeneous nanocatalyst for the reduction of nitrophenols. Appl Surf Sci 324:877–889CrossRef
20.
Zurück zum Zitat Velinov N, Koleva K, Tsoncheva T, Manova E, Paneva D, Tenchev K, Kunev B, Mitov I (2013) Nanosized Cu0.5Co0.5Fe2O4 ferrite as catalyst for methanol decomposition: effect of preparation procedure. Catal Commun 32:41–46CrossRef Velinov N, Koleva K, Tsoncheva T, Manova E, Paneva D, Tenchev K, Kunev B, Mitov I (2013) Nanosized Cu0.5Co0.5Fe2O4 ferrite as catalyst for methanol decomposition: effect of preparation procedure. Catal Commun 32:41–46CrossRef
21.
Zurück zum Zitat Singh C, Jauhar S, Kumar V, Singh J, Singhal S (2015) Synthesis of zinc substituted cobalt ferrites via reverse micelle technique involving in situ template formation: a study on their structural, magnetic, optical and catalytic properties. Mater Chem Phys 156:188–197CrossRef Singh C, Jauhar S, Kumar V, Singh J, Singhal S (2015) Synthesis of zinc substituted cobalt ferrites via reverse micelle technique involving in situ template formation: a study on their structural, magnetic, optical and catalytic properties. Mater Chem Phys 156:188–197CrossRef
22.
Zurück zum Zitat Jauhar S, Singhal S (2014) Substituted cobalt nano-ferrites, CoMxFe2-xO4 (M = Cr3+, Ni2+, Cu2+, Zn2+; 0.2 ≤ x ≤ 1.0) as heterogeneous catalysts for modified Fenton’s reaction. Ceram Int 40:11845–11855CrossRef Jauhar S, Singhal S (2014) Substituted cobalt nano-ferrites, CoMxFe2-xO4 (M = Cr3+, Ni2+, Cu2+, Zn2+; 0.2 ≤ x ≤ 1.0) as heterogeneous catalysts for modified Fenton’s reaction. Ceram Int 40:11845–11855CrossRef
23.
Zurück zum Zitat Bhukal S, Bansal S, Singhal S (2014) Magnetic Mn substituted cobalt zinc ferrite systems: structural, electrical and magnetic properties and their role in photo-catalytic degradation of methyl orange azo dye. Phys B 445:48–55CrossRef Bhukal S, Bansal S, Singhal S (2014) Magnetic Mn substituted cobalt zinc ferrite systems: structural, electrical and magnetic properties and their role in photo-catalytic degradation of methyl orange azo dye. Phys B 445:48–55CrossRef
24.
Zurück zum Zitat Menini L, Pereira MC, Parreira LA, Fabris JD, Gusevskaya EV (2008) Cobalt and manganese-substituted ferrites as efficient single-site heterogeneous catalysts for aerobic oxidation of monoterpenic alkenes under solvent-free conditions. J Catal 254:355–364CrossRef Menini L, Pereira MC, Parreira LA, Fabris JD, Gusevskaya EV (2008) Cobalt and manganese-substituted ferrites as efficient single-site heterogeneous catalysts for aerobic oxidation of monoterpenic alkenes under solvent-free conditions. J Catal 254:355–364CrossRef
25.
Zurück zum Zitat Jauhar S, Singhal S, Dhiman M (2014) Manganese substituted cobalt ferrites as efficient catalysts for H2O2 assisted degradation of cationic and anionic dyes: their synthesis and characterization. Appl Catal A 486:210–218CrossRef Jauhar S, Singhal S, Dhiman M (2014) Manganese substituted cobalt ferrites as efficient catalysts for H2O2 assisted degradation of cationic and anionic dyes: their synthesis and characterization. Appl Catal A 486:210–218CrossRef
26.
Zurück zum Zitat Bouhadouza N, Rais A, Kaoua S, Moreau M, Taibi K, Addou A (2015) A structural and vibrational studies of NiAlxFe2-xO4 ferrites (0 ≤ x ≥ 1). Ceram Int 41:11687–11692CrossRef Bouhadouza N, Rais A, Kaoua S, Moreau M, Taibi K, Addou A (2015) A structural and vibrational studies of NiAlxFe2-xO4 ferrites (0 ≤ x ≥ 1). Ceram Int 41:11687–11692CrossRef
27.
Zurück zum Zitat Rais A, Taibi K, Addou A, Zanoun A, Al-Douri Y (2014) Copper substitution effect on the structural properties of nickel ferrites. Ceram Int 40:14413–14419CrossRef Rais A, Taibi K, Addou A, Zanoun A, Al-Douri Y (2014) Copper substitution effect on the structural properties of nickel ferrites. Ceram Int 40:14413–14419CrossRef
28.
Zurück zum Zitat Horsfall Jr. M, Abia AA, Spiff AI (2006) Kinetic studies on the adsorption of Cd2+, Cu2+ and Zn2+ ions from aqueous solutions by cassava (Manihot sculenta Cranz) tuber bark waste. Bioresour Technol 97:283–291CrossRef Horsfall Jr. M, Abia AA, Spiff AI (2006) Kinetic studies on the adsorption of Cd2+, Cu2+ and Zn2+ ions from aqueous solutions by cassava (Manihot sculenta Cranz) tuber bark waste. Bioresour Technol 97:283–291CrossRef
29.
Zurück zum Zitat Wakamura M, Kandori K, Ishikawa T (1998) Surface composition of calcium hydroxyapatite modified with metal ions. Colloid Surf A 142:107–116CrossRef Wakamura M, Kandori K, Ishikawa T (1998) Surface composition of calcium hydroxyapatite modified with metal ions. Colloid Surf A 142:107–116CrossRef
30.
Zurück zum Zitat Culity BD (1976) Elements of x-ray diffraction, chapter 14. Addison-Wesly Publishing Co. Inc., Reading, MA Culity BD (1976) Elements of x-ray diffraction, chapter 14. Addison-Wesly Publishing Co. Inc., Reading, MA
31.
Zurück zum Zitat Saidani M, Belkacem W, Bezergheanu A, Cizmas CB, Mliki N (2015) Surface and interparticle interactions effects on nano-cobalt ferrites. J Alloys Compd 653:513–522CrossRef Saidani M, Belkacem W, Bezergheanu A, Cizmas CB, Mliki N (2015) Surface and interparticle interactions effects on nano-cobalt ferrites. J Alloys Compd 653:513–522CrossRef
32.
Zurück zum Zitat Ajroudi L, Villain S, Madigou V, Mliki N, Leroux C (2010) Synthesis and microstructure of cobalt ferrite nanoparticles. J Cryst Growth 312:2465–2471CrossRef Ajroudi L, Villain S, Madigou V, Mliki N, Leroux C (2010) Synthesis and microstructure of cobalt ferrite nanoparticles. J Cryst Growth 312:2465–2471CrossRef
33.
Zurück zum Zitat Mohapatra S, Rout SR, Maiti S, Maiti TK, Panda AB (2011) Monodisperse mesoporous cobalt ferrite nanoparticles: synthesis and application in targeted delivery of antitumor drugs. J Mater Chem 21:9185–9193CrossRef Mohapatra S, Rout SR, Maiti S, Maiti TK, Panda AB (2011) Monodisperse mesoporous cobalt ferrite nanoparticles: synthesis and application in targeted delivery of antitumor drugs. J Mater Chem 21:9185–9193CrossRef
34.
Zurück zum Zitat Goyal A, Bansal S, Samuel P, Kumar V, Singhal S (2014) CoMn0.2Fe1.8O4 ferrite nanoparticles engineered by sol–gel technology: An expert and versatile catalyst for the reduction of nitroaromatic compounds. J Mater Chem A 2:18848–18860CrossRef Goyal A, Bansal S, Samuel P, Kumar V, Singhal S (2014) CoMn0.2Fe1.8O4 ferrite nanoparticles engineered by sol–gel technology: An expert and versatile catalyst for the reduction of nitroaromatic compounds. J Mater Chem A 2:18848–18860CrossRef
35.
Zurück zum Zitat Khot VM, Salunkhe AB, Phadatare MR, Thorat ND, Pawar SH (2013) Low-temperature synthesis of MgxMn1–xFe2O4 (x = 0–1) nanoparticles: Cation distribution, structural and magnetic properties. J Phys D Appl Phys 46:055303CrossRef Khot VM, Salunkhe AB, Phadatare MR, Thorat ND, Pawar SH (2013) Low-temperature synthesis of MgxMn1–xFe2O4 (x = 0–1) nanoparticles: Cation distribution, structural and magnetic properties. J Phys D Appl Phys 46:055303CrossRef
36.
Zurück zum Zitat Sun K, Wu G, Wang B, Zhong Q, Yang Y, Yu Z, Wu C, Wei P, Jiang X, Lan Z (2015) Cation distribution and magnetic property of Ti/Sn-substituted manganeseezinc ferrites. J Alloys Compd 650:363–369CrossRef Sun K, Wu G, Wang B, Zhong Q, Yang Y, Yu Z, Wu C, Wei P, Jiang X, Lan Z (2015) Cation distribution and magnetic property of Ti/Sn-substituted manganeseezinc ferrites. J Alloys Compd 650:363–369CrossRef
37.
Zurück zum Zitat Ramesh M, Rao GSN, Samatha K, Rao BP (2015) Cation distribution of Ni–Cu substituted Li-ferrites. Ceram Int 41:1765–1770CrossRef Ramesh M, Rao GSN, Samatha K, Rao BP (2015) Cation distribution of Ni–Cu substituted Li-ferrites. Ceram Int 41:1765–1770CrossRef
38.
Zurück zum Zitat Gabal MA, Bayoumy WA, Saeed A, Angari YMA (2015) Structural and electromagnetic characterization of Cr-substituted Ni–Zn ferrites synthesized via Egg-white route. J Mol Struct 1097:45–51CrossRef Gabal MA, Bayoumy WA, Saeed A, Angari YMA (2015) Structural and electromagnetic characterization of Cr-substituted Ni–Zn ferrites synthesized via Egg-white route. J Mol Struct 1097:45–51CrossRef
39.
Zurück zum Zitat Ghodake JS, Kambale RC, Shinde TJ, Maskar PK, Suryavanshi SS (2016) Magnetic and microwave absorbing properties of Co2+ substituted nickel–zinc ferrites with the emphasis on initial permeability studies. J Magn Magn Mater 401:938–942CrossRef Ghodake JS, Kambale RC, Shinde TJ, Maskar PK, Suryavanshi SS (2016) Magnetic and microwave absorbing properties of Co2+ substituted nickel–zinc ferrites with the emphasis on initial permeability studies. J Magn Magn Mater 401:938–942CrossRef
40.
Zurück zum Zitat Kambale RC, Shaikh PA, Kamble SS, Kolekar YD (2009) Effect of cobalt substitution on structural, magnetic and electric properties of nickel ferrite. J Alloy Compd 478:599–603CrossRef Kambale RC, Shaikh PA, Kamble SS, Kolekar YD (2009) Effect of cobalt substitution on structural, magnetic and electric properties of nickel ferrite. J Alloy Compd 478:599–603CrossRef
41.
Zurück zum Zitat Peng T, Zhang X, Lv H, Zan L (2012) Preparation of NiFe2O4 nanoparticles and its visible-light-driven photoactivity for hydrogen production. Catal Commun 28:116–119CrossRef Peng T, Zhang X, Lv H, Zan L (2012) Preparation of NiFe2O4 nanoparticles and its visible-light-driven photoactivity for hydrogen production. Catal Commun 28:116–119CrossRef
42.
Zurück zum Zitat Li X, Hou Y, Zhao Q, Wang L (2011) A general, one-step and template-free synthesis of sphere-like zinc ferrite nanostructures with enhanced photocatalytic activity for dye degradation. J Colloid Interface Sci 358:102–108CrossRef Li X, Hou Y, Zhao Q, Wang L (2011) A general, one-step and template-free synthesis of sphere-like zinc ferrite nanostructures with enhanced photocatalytic activity for dye degradation. J Colloid Interface Sci 358:102–108CrossRef
43.
Zurück zum Zitat Singh A, Singh A, Singh S, Tandon P, Yadav BC, Yadav RR (2015) Synthesis, characterization and performance of zinc ferrite nanorods for room temperature sensing applications. J Alloy Compds 618:475–483CrossRef Singh A, Singh A, Singh S, Tandon P, Yadav BC, Yadav RR (2015) Synthesis, characterization and performance of zinc ferrite nanorods for room temperature sensing applications. J Alloy Compds 618:475–483CrossRef
44.
Zurück zum Zitat Habibi MH, Parhizkar J (2015) Cobalt ferrite nano-composite coated on glass by Doctor Blade method for photo-catalytic degradation of an azo textile dye Reactive Red 4: XRD, FESEM and DRS investigations. Spectrochimic Acta Part A 150:879–885CrossRef Habibi MH, Parhizkar J (2015) Cobalt ferrite nano-composite coated on glass by Doctor Blade method for photo-catalytic degradation of an azo textile dye Reactive Red 4: XRD, FESEM and DRS investigations. Spectrochimic Acta Part A 150:879–885CrossRef
45.
Zurück zum Zitat Dileep K, Loukya B, Pachauri N, Gupta A, Datta R (2014) Probing optical band gaps at the nanoscale in NiFe2O4 and CoFe2O4 epitaxial films by high resolution electron energy loss spectroscopy. J Appl Phys 116:103505CrossRef Dileep K, Loukya B, Pachauri N, Gupta A, Datta R (2014) Probing optical band gaps at the nanoscale in NiFe2O4 and CoFe2O4 epitaxial films by high resolution electron energy loss spectroscopy. J Appl Phys 116:103505CrossRef
46.
Zurück zum Zitat Amrousse R, Katsumi (2012) Substituted ferrite MxFe1−xFe2O4 (M=Mn, Zn) catalysts for N2O catalytic decomposition processes. Catal Commun 26:194–198CrossRef Amrousse R, Katsumi (2012) Substituted ferrite MxFe1−xFe2O4 (M=Mn, Zn) catalysts for N2O catalytic decomposition processes. Catal Commun 26:194–198CrossRef
47.
Zurück zum Zitat Fan G, Gu Z, Yang L, Li F (2009) Nanocrystalline zinc ferrite photocatalysts formed using the colloid mill and hydrothermal technique. Chem Eng J (Amsterdam, Neth) 155:534–541 Fan G, Gu Z, Yang L, Li F (2009) Nanocrystalline zinc ferrite photocatalysts formed using the colloid mill and hydrothermal technique. Chem Eng J (Amsterdam, Neth) 155:534–541
48.
Zurück zum Zitat Ji K, Dai H, Deng J, Zhang L, Jiang H, Xie S, Han W (2013) One-pot hydrothermal preparation and catalytic performance of porous strontium ferrite hollow spheres for the combustion of toluene. J Mol Catal A Chem 370:189–196CrossRef Ji K, Dai H, Deng J, Zhang L, Jiang H, Xie S, Han W (2013) One-pot hydrothermal preparation and catalytic performance of porous strontium ferrite hollow spheres for the combustion of toluene. J Mol Catal A Chem 370:189–196CrossRef
49.
Zurück zum Zitat Deraz NM (2010) Size and crystallinity-dependent magnetic properties of copper ferrite nano-particles. J Alloy Compds 501:317–325CrossRef Deraz NM (2010) Size and crystallinity-dependent magnetic properties of copper ferrite nano-particles. J Alloy Compds 501:317–325CrossRef
50.
Zurück zum Zitat Sharma R, Kumar V, Bansal S, Singhal S (2015) Assortment of magnetic nanospinels for activation of distinct inorganic oxidants in photo-Fenton’s process. J Mol Catal A Chem 402:53–63CrossRef Sharma R, Kumar V, Bansal S, Singhal S (2015) Assortment of magnetic nanospinels for activation of distinct inorganic oxidants in photo-Fenton’s process. J Mol Catal A Chem 402:53–63CrossRef
51.
Zurück zum Zitat Bhukal S, Dhiman M, Bansal S, Tripathi MK, Singhal S (2016) Substituted Co–Cu–Zn nanoferrites: Synthesis, fundamental and redox catalytic properties for the degradation of methyl orange. RSC Adv 6:1360–1375CrossRef Bhukal S, Dhiman M, Bansal S, Tripathi MK, Singhal S (2016) Substituted Co–Cu–Zn nanoferrites: Synthesis, fundamental and redox catalytic properties for the degradation of methyl orange. RSC Adv 6:1360–1375CrossRef
52.
Zurück zum Zitat Jauhar S, Singhal S (2014) Chromium and copper substituted lanthanum nano-ferrites: their synthesis, characterization and application studies. J Mol Struct 1075:534–541CrossRef Jauhar S, Singhal S (2014) Chromium and copper substituted lanthanum nano-ferrites: their synthesis, characterization and application studies. J Mol Struct 1075:534–541CrossRef
53.
Zurück zum Zitat Xie T, Xu L, Liu C, Wang Y (2013) Magnetic composite ZnFe2O4/SrFe12O19: preparation, characterization, and photocatalytic activity under visible light. Appl Surf Sci 273:684–691CrossRef Xie T, Xu L, Liu C, Wang Y (2013) Magnetic composite ZnFe2O4/SrFe12O19: preparation, characterization, and photocatalytic activity under visible light. Appl Surf Sci 273:684–691CrossRef
54.
Zurück zum Zitat Soltani T, Entezari MH (2013) Solar photocatalytic degradation of RB5 by ferrite bismuth nanoparticles synthesized via ultrasound. Ultrason Sonochem 20:1245–1253CrossRef Soltani T, Entezari MH (2013) Solar photocatalytic degradation of RB5 by ferrite bismuth nanoparticles synthesized via ultrasound. Ultrason Sonochem 20:1245–1253CrossRef
55.
Zurück zum Zitat Sharma R, Bansal S, Singhal S (2015) Tailoring the photo-Fenton activity of spinel ferrites (MFe2O4) by incorporating different cations (M = Cu, Zn, Ni and Co) in the structure. RSC Adv 5:6006–6018CrossRef Sharma R, Bansal S, Singhal S (2015) Tailoring the photo-Fenton activity of spinel ferrites (MFe2O4) by incorporating different cations (M = Cu, Zn, Ni and Co) in the structure. RSC Adv 5:6006–6018CrossRef
Metadaten
Titel
Impact of metal ions (Cr3+, Co2+, Ni2+, Cu2+ and Zn2+) substitution on the structural, magnetic and catalytic properties of substituted Co–Mn ferrites synthesized by sol–gel route
verfasst von
Manisha Dhiman
Santosh Bhukal
Bhupendra Chudasama
Sonal Singhal
Publikationsdatum
19.10.2016
Verlag
Springer US
Erschienen in
Journal of Sol-Gel Science and Technology / Ausgabe 3/2017
Print ISSN: 0928-0707
Elektronische ISSN: 1573-4846
DOI
https://doi.org/10.1007/s10971-016-4232-8

Weitere Artikel der Ausgabe 3/2017

Journal of Sol-Gel Science and Technology 3/2017 Zur Ausgabe

Original Paper: Functional coatings, thin films and membranes (including deposition techniques)

An investigation into the simultaneous influence of withdrawal speed and number of coated layers on photocatalytic activity of ZnO thin films

Original Paper: Sol-gel and hybrid materials for energy, environment and building applications

PEO/PVDF-based gel polymer electrolyte by incorporating nano-TiO2 for electrochromic glass

Original Paper: Nano-structured materials (particles, fibers, colloids, composites, etc.)

A general strategy to synthesis Mg-Ti-O nanofibers by sol–gel assisted electrospinning

Original Paper: Sol-gel and hybrid materials with surface modification for applications

Size and shape controlled of α-Fe2O3 nanoparticles prepared via sol–gel technique and their photocatalytic activity

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.