Skip to main content
Top
Published in: Journal of Materials Engineering and Performance 3/2017

21-02-2017

Fatigue Life Prediction of 2D Woven Ceramic-Matrix Composites at Room and Elevated Temperatures

Author: Li Longbiao

Published in: Journal of Materials Engineering and Performance | Issue 3/2017

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this paper, the fatigue life of 2D woven ceramic-matrix composites, i.e., SiC/SiC, SiC/Si-N-C, SiC/Si-B4C, and Nextel 610™/Aluminosilicate, at room and elevated temperatures has been predicted using the micromechanics approach. An effective coefficient of the fiber volume fraction along the loading direction (ECFL) was introduced to describe the fiber architecture of preforms. The Budiansky-Hutchinson-Evans shear-lag model was used to describe the microstress field of the damaged composite considering fibers failure. The statistical matrix multicracking model and fracture mechanics interface debonding criterion were used to determine the matrix crack spacing and interface debonded length. The interface shear stress and fibers strength degradation model and oxidation region propagation model have been adopted to analyze the fatigue and oxidation effects on fatigue life of the composite, which is controlled by interface frictional slip and diffusion of oxygen gas through matrix multicrackings. Under cyclic fatigue loading, the fibers broken fraction was determined by combining the interface/fiber oxidation model, interface wear model and fibers statistical failure model at elevated temperatures, based on the assumption that the fiber strength is subjected to two-parameter Weibull distribution and the load carried by broken and intact fibers satisfy the Global Load Sharing (GLS) criterion. When the broken fibers fraction approaches to the critical value, the composites fatigue fractures. The fatigue life S-N curves of 2D SiC/SiC, SiC/Si-N-C, SiC/Si-B4C, and Nextel 610™/Aluminosilicate composites at room temperature and 800, 1000 and 1200 °C in air and steam have been predicted.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
3.
go back to reference J.A. DiCarlo and M. Van Roode, Ceramic Composite Development for Gas Turbine Hot Section Components, Proceedings of the ASME Turbo Expo: Power for Land, Sea and Air, 2006, 2, p 221–231 J.A. DiCarlo and M. Van Roode, Ceramic Composite Development for Gas Turbine Hot Section Components, Proceedings of the ASME Turbo Expo: Power for Land, Sea and Air, 2006, 2, p 221–231
8.
go back to reference L.B. Li, Fatigue Life Prediction of Carbon Fiber-Reinforced Ceramic-Matrix Composites at Room and Elevated Temperatures. Part II: Experimental Comparisons, Appl. Compos. Mater., 2015, 22, p 961–972. doi:10.1007/s10443-015-9445-4 CrossRef L.B. Li, Fatigue Life Prediction of Carbon Fiber-Reinforced Ceramic-Matrix Composites at Room and Elevated Temperatures. Part II: Experimental Comparisons, Appl. Compos. Mater., 2015, 22, p 961–972. doi:10.​1007/​s10443-015-9445-4 CrossRef
11.
go back to reference J. Aveston, G.A. Cooper, and A. Kelly, Single and Multiple Fracture. Properties of Fiber Composites: Conference on Proceedings, National Physical Laboratory, IPC, England, 1971, p 15–26 J. Aveston, G.A. Cooper, and A. Kelly, Single and Multiple Fracture. Properties of Fiber Composites: Conference on Proceedings, National Physical Laboratory, IPC, England, 1971, p 15–26
25.
go back to reference M.C. Halbig, J.D. McGuffin-Cawley, A.J. Eckel, and D.N. Brewer, Oxidation Kinetics and Stress Effects for the Oxidation of Continuous Carbon Fibers Within a Microcracked C/SiC Ceramic Matrix Composite, J. Am. Ceram. Soc., 2008, 91, p 519–526. doi:10.1111/j.1551-2916.2007.02170.x CrossRef M.C. Halbig, J.D. McGuffin-Cawley, A.J. Eckel, and D.N. Brewer, Oxidation Kinetics and Stress Effects for the Oxidation of Continuous Carbon Fibers Within a Microcracked C/SiC Ceramic Matrix Composite, J. Am. Ceram. Soc., 2008, 91, p 519–526. doi:10.​1111/​j.​1551-2916.​2007.​02170.​x CrossRef
28.
33.
go back to reference Shi, J.: Tensile Fatigue and Life Prediction of a SiC/SiC Composite. Proceeding of ASME Turbo Expo 2001, June 4-7, 2001, New Orleans, Louisiana, USA Shi, J.: Tensile Fatigue and Life Prediction of a SiC/SiC Composite. Proceeding of ASME Turbo Expo 2001, June 4-7, 2001, New Orleans, Louisiana, USA
34.
go back to reference Michael, W.K.: Fatigue Behavior of a SiC/SiC Composite at 1000 °C in Air and Steam. AFIT/GAE/ENY/10-D01 (2010). Michael, W.K.: Fatigue Behavior of a SiC/SiC Composite at 1000 °C in Air and Steam. AFIT/GAE/ENY/10-D01 (2010).
35.
go back to reference Jacob, D.: Fatigue Behavior of an Advanced SiC/SiC Composite with an Oxidation Inhibited Matrix at 1200°C in Air and in Steam. AFIT/GEA/ENY/10-M07 (2010). Jacob, D.: Fatigue Behavior of an Advanced SiC/SiC Composite with an Oxidation Inhibited Matrix at 1200°C in Air and in Steam. AFIT/GEA/ENY/10-M07 (2010).
37.
Metadata
Title
Fatigue Life Prediction of 2D Woven Ceramic-Matrix Composites at Room and Elevated Temperatures
Author
Li Longbiao
Publication date
21-02-2017
Publisher
Springer US
Published in
Journal of Materials Engineering and Performance / Issue 3/2017
Print ISSN: 1059-9495
Electronic ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-017-2561-6

Other articles of this Issue 3/2017

Journal of Materials Engineering and Performance 3/2017 Go to the issue

Premium Partners