Skip to main content
Top
Published in: Rare Metals 9/2021

25-01-2021 | Original Article

Fe2TiO5 nanochains as anode for high-performance lithium-ion capacitor

Authors: Rong Kang, Wang-Qin Zhu, Sheng Li, Bo-Bo Zou, Liao-Liao Wang, Guo-Chun Li, Xian-Hu Liu, Dickon H. L. Ng, Jing-Xia Qiu, Yan Zhao, Fen Qiao, Jia-Biao Lian

Published in: Rare Metals | Issue 9/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The unique crystal structure and multiple redox couples of iron titanate (Fe2TiO5) provide it a high theoretical capacity and good cycling stability when used as an electrode. In this study, the electrospinning method is employed to synthesize one-dimensional (1D) Fe2TiO5 nanochains. The as-prepared Fe2TiO5 nanochains exhibited superior specific capacity (500 mAh·g−1 at 0.10 A·g−1), excellent rate performance (180 mAh·g−1 at 5.00 A·g−1), and good cycling stability (retaining 100% of the initial specific capacity at a current density of 1.00 A·g−1 after 1000 cycles). The as-assembled Fe2TiO5/SCCB lithium-ion capacitor (LIC) also delivered a competitive energy density (137.8 Wh·kg−1) and power density (11,250 W·kg−1). This study proves that the as-fabricated 1D Fe2TiO5 nanochains are promising anode materials for high-performance LICs.

Graphic abstract

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
[1]
go back to reference Zhang Q, Uchaker E, Candelaria SL, Cao G. Nanomaterials for energy conversion and storage. Chem Soc Rev. 2013;42(7):3127. Zhang Q, Uchaker E, Candelaria SL, Cao G. Nanomaterials for energy conversion and storage. Chem Soc Rev. 2013;42(7):3127.
[2]
go back to reference Armand M, Tarascon JM. Building better batteries. Nature. 2008;451(7179):652. Armand M, Tarascon JM. Building better batteries. Nature. 2008;451(7179):652.
[3]
go back to reference Dunn B, Kamath H, Tarascon JM. Electrical energy storage for the grid: a battery of choices. Science. 2011;334(6058):928. Dunn B, Kamath H, Tarascon JM. Electrical energy storage for the grid: a battery of choices. Science. 2011;334(6058):928.
[4]
go back to reference Amatucci GG, Badway F, Du Pasquier A, Zheng T. An asymmetric hybrid nonaqueous energy storage cell. J Electrochem Soc. 2001;148(8):A930. Amatucci GG, Badway F, Du Pasquier A, Zheng T. An asymmetric hybrid nonaqueous energy storage cell. J Electrochem Soc. 2001;148(8):A930.
[5]
go back to reference Ding J, Wang H, Li Z, Cui K, Karpuzov D, Tan X, Kohandehghan A, Mitlin D. Peanut shell hybrid sodium ion capacitor with extreme energy–power rivals lithium ion capacitors. Energ Environ Sci. 2015;8(3):941. Ding J, Wang H, Li Z, Cui K, Karpuzov D, Tan X, Kohandehghan A, Mitlin D. Peanut shell hybrid sodium ion capacitor with extreme energy–power rivals lithium ion capacitors. Energ Environ Sci. 2015;8(3):941.
[6]
go back to reference Jezowski P, Crosnier O, Deunf E, Poizot P, Beguin F, Brousse T. Safe and recyclable lithium-ion capacitors using sacrificial organic lithium salt. Nat Mater. 2018;17(2):167. Jezowski P, Crosnier O, Deunf E, Poizot P, Beguin F, Brousse T. Safe and recyclable lithium-ion capacitors using sacrificial organic lithium salt. Nat Mater. 2018;17(2):167.
[7]
go back to reference Chen H, Dai C, Li Y, Zhan R, Wang MQ, Guo B, Zhang Y, Liu H, Xu M, Bao SJ. An excellent full sodium-ion capacitor derived from a single Ti-based metal-organic framework. J Mater Chem A. 2018;6(48):24860. Chen H, Dai C, Li Y, Zhan R, Wang MQ, Guo B, Zhang Y, Liu H, Xu M, Bao SJ. An excellent full sodium-ion capacitor derived from a single Ti-based metal-organic framework. J Mater Chem A. 2018;6(48):24860.
[8]
go back to reference Naoi K, Ishimoto S, Miyamoto JI, Naoi W. Second generation ‘nanohybrid supercapacitor’: evolution of capacitive energy storage devices. Energy Environ Sci. 2012;5(11):9363. Naoi K, Ishimoto S, Miyamoto JI, Naoi W. Second generation ‘nanohybrid supercapacitor’: evolution of capacitive energy storage devices. Energy Environ Sci. 2012;5(11):9363.
[9]
go back to reference Liu X, Li L, Li G. Partial surface phase transformation of Li3VO4 that enables superior rate performance and fast lithium-ion storage. Tungsten. 2019;1(4):276. Liu X, Li L, Li G. Partial surface phase transformation of Li3VO4 that enables superior rate performance and fast lithium-ion storage. Tungsten. 2019;1(4):276.
[10]
go back to reference Chen S, Wang J, Fan L, Ma R, Zhang E, Liu Q, Lu B. An ultrafast rechargeable hybrid sodium-based dual-ion capacitor based on hard carbon cathodes. Adv Energy Mater. 2018;8(18):1800140. Chen S, Wang J, Fan L, Ma R, Zhang E, Liu Q, Lu B. An ultrafast rechargeable hybrid sodium-based dual-ion capacitor based on hard carbon cathodes. Adv Energy Mater. 2018;8(18):1800140.
[11]
go back to reference Chen K, Yin S, Xue D. Active La–Nb–O compounds for fast lithium-ion energy storage. Tungsten. 2019;1(4):287. Chen K, Yin S, Xue D. Active La–Nb–O compounds for fast lithium-ion energy storage. Tungsten. 2019;1(4):287.
[12]
go back to reference Yang M, Zhong Y, Ren J, Zhou X, Wei J, Zhou Z. Fabrication of high-power Li-ion hybrid supercapacitors by enhancing the exterior surface charge storage. Adv Energy Mater. 2015;5(17):1500550. Yang M, Zhong Y, Ren J, Zhou X, Wei J, Zhou Z. Fabrication of high-power Li-ion hybrid supercapacitors by enhancing the exterior surface charge storage. Adv Energy Mater. 2015;5(17):1500550.
[14]
go back to reference An YB, Chen S, Zou MM, Geng LB, Sun Z, Zhang X, Wang K, Ma YW. Improving anode performances of lithium-ion capacitors employing carbon–Si composites. Rare Met. 2019;38(12):1113. An YB, Chen S, Zou MM, Geng LB, Sun Z, Zhang X, Wang K, Ma YW. Improving anode performances of lithium-ion capacitors employing carbon–Si composites. Rare Met. 2019;38(12):1113.
[15]
go back to reference Chen Y, Murakami N, Chen HY, Sun J, Zhang QT, Wang ZF, Ohno T, Zhang M. Improvement of photocatalytic activity of high specific surface area graphitic carbon nitride by loading a co-catalyst. Rare Met. 2019;38(5):468. Chen Y, Murakami N, Chen HY, Sun J, Zhang QT, Wang ZF, Ohno T, Zhang M. Improvement of photocatalytic activity of high specific surface area graphitic carbon nitride by loading a co-catalyst. Rare Met. 2019;38(5):468.
[16]
go back to reference Khomenko V, Raymundo-Piñero E, Béguin F. High-energy density graphite/AC capacitor in organic electrolyte. J Power Sources. 2008;177(2):643. Khomenko V, Raymundo-Piñero E, Béguin F. High-energy density graphite/AC capacitor in organic electrolyte. J Power Sources. 2008;177(2):643.
[17]
go back to reference Lee WSV, Huang X, Tan TL, Xue JM. Low Li+ insertion barrier carbon for high energy efficient lithium-ion capacitor. ACS Appl Mater Interfaces. 2018;10(2):1690. Lee WSV, Huang X, Tan TL, Xue JM. Low Li+ insertion barrier carbon for high energy efficient lithium-ion capacitor. ACS Appl Mater Interfaces. 2018;10(2):1690.
[18]
go back to reference Mao Z, Wang H, Chao D, Wang R, He B, Gong Y, Fan HJ. Al2O3-assisted confinement synthesis of oxide/carbon hollow composite nanofibers and application in metal-ion capacitors. Small. 2020;16(33):2001950. Mao Z, Wang H, Chao D, Wang R, He B, Gong Y, Fan HJ. Al2O3-assisted confinement synthesis of oxide/carbon hollow composite nanofibers and application in metal-ion capacitors. Small. 2020;16(33):2001950.
[19]
go back to reference Zou K, Cai P, Wang B, Liu C, Li J, Qiu T, Zou G, Hou H, Ji X. Insights into enhanced capacitive behavior of carbon cathode for lithium ion capacitors: the coupling of pore size and graphitization engineering. Nano-Micro Lett. 2020;12(1):121. Zou K, Cai P, Wang B, Liu C, Li J, Qiu T, Zou G, Hou H, Ji X. Insights into enhanced capacitive behavior of carbon cathode for lithium ion capacitors: the coupling of pore size and graphitization engineering. Nano-Micro Lett. 2020;12(1):121.
[20]
go back to reference Cai P, Zou K, Zou G, Hou H, Ji X. Quinone/ester-based oxygen functional group-incorporated full carbon Li-ion capacitor for enhanced performance. Nanoscale. 2020;12(6):3677. Cai P, Zou K, Zou G, Hou H, Ji X. Quinone/ester-based oxygen functional group-incorporated full carbon Li-ion capacitor for enhanced performance. Nanoscale. 2020;12(6):3677.
[21]
go back to reference Zou K, Cai P, Tian Y, Li J, Liu C, Zou G, Hou H, Ji X. Voltage-induced high-efficient in situ presodiation strategy for sodium ion capacitors. Small Methods. 2020;4(3):1900763. Zou K, Cai P, Tian Y, Li J, Liu C, Zou G, Hou H, Ji X. Voltage-induced high-efficient in situ presodiation strategy for sodium ion capacitors. Small Methods. 2020;4(3):1900763.
[22]
go back to reference Liu GY, Zhao YY, Tang YF, Liu XD, Liu M, Wu PJ. In situ sol-gel synthesis of Ti2Nb10O29/C nanoparticles with enhanced pseudocapacitive contribution for a high-rate lithium-ion battery. Rare Met. 2020;39(9):1063. Liu GY, Zhao YY, Tang YF, Liu XD, Liu M, Wu PJ. In situ sol-gel synthesis of Ti2Nb10O29/C nanoparticles with enhanced pseudocapacitive contribution for a high-rate lithium-ion battery. Rare Met. 2020;39(9):1063.
[23]
go back to reference Zhu W, El-Khodary SA, Li S, Zou B, Kang R, Li G, Ng DHL, Liu X, Qiu J, Zhao Y, Huang Y, Lian J, Li H. Roselle-like Zn2Ti3O8/rGO nanocomposite as anode for lithium ion capacitor. Chem Eng J. 2020;385:123881. Zhu W, El-Khodary SA, Li S, Zou B, Kang R, Li G, Ng DHL, Liu X, Qiu J, Zhao Y, Huang Y, Lian J, Li H. Roselle-like Zn2Ti3O8/rGO nanocomposite as anode for lithium ion capacitor. Chem Eng J. 2020;385:123881.
[24]
go back to reference Sun X, Radovanovic PV, Cui B. Advances in spinel Li4Ti5O12 anode materials for lithium-ion batteries. New J Chem. 2015;39(1):38. Sun X, Radovanovic PV, Cui B. Advances in spinel Li4Ti5O12 anode materials for lithium-ion batteries. New J Chem. 2015;39(1):38.
[25]
go back to reference Lou S, Zhao Y, Wang J, Yin G, Du C, Sun X. Ti-based oxide anode materials for advanced electrochemical energy storage: lithium/sodium ion batteries and hybrid pseudocapacitors. Small. 2019;15(52):1904740. Lou S, Zhao Y, Wang J, Yin G, Du C, Sun X. Ti-based oxide anode materials for advanced electrochemical energy storage: lithium/sodium ion batteries and hybrid pseudocapacitors. Small. 2019;15(52):1904740.
[26]
go back to reference Guo S, Wang S, Wu N, Liu J, Ni Y, Liu W. Facile synthesis of porous Fe2TiO5 microparticulates serving as anode material with enhanced electrochemical performances. RSC Adv. 2015;5(126):103767. Guo S, Wang S, Wu N, Liu J, Ni Y, Liu W. Facile synthesis of porous Fe2TiO5 microparticulates serving as anode material with enhanced electrochemical performances. RSC Adv. 2015;5(126):103767.
[27]
go back to reference França DT, Amorim BF, de Morais Araújo AM, Morales MA, Bohn F, de Medeiros SN. Structural and magnetic properties of Fe2TiO5 nanopowders prepared by ball-milling and post annealing. Mater Lett. 2019;236:526. França DT, Amorim BF, de Morais Araújo AM, Morales MA, Bohn F, de Medeiros SN. Structural and magnetic properties of Fe2TiO5 nanopowders prepared by ball-milling and post annealing. Mater Lett. 2019;236:526.
[28]
go back to reference Tao T, Glushenkov AM, Rahman MM, Chen Y. Electrochemical reactivity of ilmenite FeTiO3, its nanostructures and oxide-carbon nanocomposites with lithium. Electrochim Acta. 2013;108:127. Tao T, Glushenkov AM, Rahman MM, Chen Y. Electrochemical reactivity of ilmenite FeTiO3, its nanostructures and oxide-carbon nanocomposites with lithium. Electrochim Acta. 2013;108:127.
[29]
go back to reference Guan XF, Zheng J, Zhao ML, Li LP, Li GS. Synthesis of FeTiO3 nanosheets with 0001 facets exposed: enhanced electrochemical performance and catalytic activity. RSC Adv. 2013;3(33):13635. Guan XF, Zheng J, Zhao ML, Li LP, Li GS. Synthesis of FeTiO3 nanosheets with 0001 facets exposed: enhanced electrochemical performance and catalytic activity. RSC Adv. 2013;3(33):13635.
[30]
go back to reference Liu Q, He J, Yao T, Sun Z, Cheng W, He S, Xie Y, Peng Y, Cheng H, Sun Y, Jiang Y, Hu F, Xie Z, Yan W, Pan Z, Wu Z, Wei S. Aligned Fe2TiO5-containing nanotube arrays with low onset potential for visible-light water oxidation. Nat Commun. 2014;5(1):5122. Liu Q, He J, Yao T, Sun Z, Cheng W, He S, Xie Y, Peng Y, Cheng H, Sun Y, Jiang Y, Hu F, Xie Z, Yan W, Pan Z, Wu Z, Wei S. Aligned Fe2TiO5-containing nanotube arrays with low onset potential for visible-light water oxidation. Nat Commun. 2014;5(1):5122.
[31]
go back to reference Min KM, Park KS, Lim AH, Kim JC, Kim DW. Synthesis of pseudobrookite-type Fe2TiO5 nanoparticles and their Li-ion electroactivity. Ceram Int. 2012;38(7):6009. Min KM, Park KS, Lim AH, Kim JC, Kim DW. Synthesis of pseudobrookite-type Fe2TiO5 nanoparticles and their Li-ion electroactivity. Ceram Int. 2012;38(7):6009.
[32]
go back to reference Kim D-H, Kim J. Synthesis of LiFePO4 nanoparticles in polyol medium and their electrochemical properties. Electrochem Solid-State Lett. 2006;9(9):A439. Kim D-H, Kim J. Synthesis of LiFePO4 nanoparticles in polyol medium and their electrochemical properties. Electrochem Solid-State Lett. 2006;9(9):A439.
[33]
go back to reference Aricò AS, Bruce P, Scrosati B, Tarascon JM, van Schalkwijk W. Nanostructured materials for advanced energy conversion and storage devices. Nat Mater. 2005;4(5):366. Aricò AS, Bruce P, Scrosati B, Tarascon JM, van Schalkwijk W. Nanostructured materials for advanced energy conversion and storage devices. Nat Mater. 2005;4(5):366.
[34]
go back to reference Bruce PG, Scrosati B, Tarascon JM. Nanomaterials for rechargeable lithium batteries. Angew Chem Int Ed Engl. 2008;47(16):2930. Bruce PG, Scrosati B, Tarascon JM. Nanomaterials for rechargeable lithium batteries. Angew Chem Int Ed Engl. 2008;47(16):2930.
[35]
go back to reference Huang H, Yin SC, Nazar LF. Approaching theoretical capacity of LiFePO4 at room temperature at high rates. Electrochem Solid-State Lett. 2001;4(10):A170. Huang H, Yin SC, Nazar LF. Approaching theoretical capacity of LiFePO4 at room temperature at high rates. Electrochem Solid-State Lett. 2001;4(10):A170.
[36]
go back to reference Wang Y, Wang Y, Hosono E, Wang K, Zhou H. The design of a LiFePO4/carbon nanocomposite with a core–shell structure and its synthesis by an in situ polymerization restriction method. Angew Chem Int Ed. 2008;47(39):7461. Wang Y, Wang Y, Hosono E, Wang K, Zhou H. The design of a LiFePO4/carbon nanocomposite with a core–shell structure and its synthesis by an in situ polymerization restriction method. Angew Chem Int Ed. 2008;47(39):7461.
[37]
go back to reference Chen H, Wu Y, Duan J, Zhan R, Wang W, Wang MQ, Chen Y, Xu M, Bao SJ. (001) facet-dominated hierarchically hollow Na2Ti3O7 as a high-rate anode material for sodium-ion capacitors. ACS Appl Mater Interfaces. 2019;11(45):42197. Chen H, Wu Y, Duan J, Zhan R, Wang W, Wang MQ, Chen Y, Xu M, Bao SJ. (001) facet-dominated hierarchically hollow Na2Ti3O7 as a high-rate anode material for sodium-ion capacitors. ACS Appl Mater Interfaces. 2019;11(45):42197.
[38]
go back to reference Pan H, Lu X, Yu X, Hu YS, Li H, Yang XQ, Chen L. Sodium storage and transport properties in layered Na2Ti3O7 for room-temperature sodium-ion batteries. Adv Energy Mater. 2013;3(9):1186. Pan H, Lu X, Yu X, Hu YS, Li H, Yang XQ, Chen L. Sodium storage and transport properties in layered Na2Ti3O7 for room-temperature sodium-ion batteries. Adv Energy Mater. 2013;3(9):1186.
[39]
go back to reference Lu Y, Goodenough JB, Dathar GKP, Henkelman G, Wu J, Stevenson K. Behavior of Li guest in KNb5O13 host with one-dimensional tunnels and multiple interstitial sites. Chem Mater. 2011;23(13):3210. Lu Y, Goodenough JB, Dathar GKP, Henkelman G, Wu J, Stevenson K. Behavior of Li guest in KNb5O13 host with one-dimensional tunnels and multiple interstitial sites. Chem Mater. 2011;23(13):3210.
[40]
go back to reference Han JT, Liu DQ, Song SH, Kim Y, Goodenough JB. Lithium ion intercalation performance of niobium oxides: KNb5O13 and K6Nb10.8O30. Chem Mater. 2009;21(20):4753. Han JT, Liu DQ, Song SH, Kim Y, Goodenough JB. Lithium ion intercalation performance of niobium oxides: KNb5O13 and K6Nb10.8O30. Chem Mater. 2009;21(20):4753.
[41]
go back to reference Zhang Y, Dong P, Zhao J, Li X, Zhang Y. Simple solution-combustion synthesis of Fe2TiO5 nanomaterials with enhanced lithium storage properties. Ceram Int. 2019;45(9):11382. Zhang Y, Dong P, Zhao J, Li X, Zhang Y. Simple solution-combustion synthesis of Fe2TiO5 nanomaterials with enhanced lithium storage properties. Ceram Int. 2019;45(9):11382.
[42]
go back to reference Liu J, Wang J, Xu C, Jiang H, Li C, Zhang L, Lin J, Shen ZX. Advanced energy storage devices: basic principles, analytical methods, and rational materials design. Adv Sci. 2018;5(1):1700322. Liu J, Wang J, Xu C, Jiang H, Li C, Zhang L, Lin J, Shen ZX. Advanced energy storage devices: basic principles, analytical methods, and rational materials design. Adv Sci. 2018;5(1):1700322.
[43]
go back to reference Ma SB, Nam KW, Yoon WS, Yang XQ, Ahn KY, Oh KH, Kim KB. Electrochemical properties of manganese oxide coated onto carbon nanotubes for energy-storage applications. J Power Sources. 2008;178(1):483. Ma SB, Nam KW, Yoon WS, Yang XQ, Ahn KY, Oh KH, Kim KB. Electrochemical properties of manganese oxide coated onto carbon nanotubes for energy-storage applications. J Power Sources. 2008;178(1):483.
[44]
go back to reference Augustyn V, Simon P, Dunn B. Pseudocapacitive oxide materials for high-rate electrochemical energy storage. Energy Environ Sci. 2014;7(5):1597. Augustyn V, Simon P, Dunn B. Pseudocapacitive oxide materials for high-rate electrochemical energy storage. Energy Environ Sci. 2014;7(5):1597.
[45]
go back to reference Chao D, Zhu C, Yang P, Xia X, Liu J, Wang J, Fan X, Savilov SV, Lin J, Fan HJ, Shen ZX. Array of nanosheets render ultrafast and high-capacity Na-ion storage by tunable pseudocapacitance. Nat Commun. 2016;7(1):12122. Chao D, Zhu C, Yang P, Xia X, Liu J, Wang J, Fan X, Savilov SV, Lin J, Fan HJ, Shen ZX. Array of nanosheets render ultrafast and high-capacity Na-ion storage by tunable pseudocapacitance. Nat Commun. 2016;7(1):12122.
[46]
go back to reference Li S, Qiu J, Lai C, Ling M, Zhao H, Zhang S. Surface capacitive contributions: towards high rate anode materials for sodium ion batteries. Nano Energy. 2015;12:224. Li S, Qiu J, Lai C, Ling M, Zhao H, Zhang S. Surface capacitive contributions: towards high rate anode materials for sodium ion batteries. Nano Energy. 2015;12:224.
[47]
go back to reference Zhao C, Yu C, Zhang M, Huang H, Li S, Han X, Liu Z, Yang J, Xiao W, Liang J, Sun X, Qiu J. Ultrafine MoO2-carbon microstructures enable ultralong-life power-type sodium ion storage by enhanced pseudocapacitance. Adv Energy Mater. 2017;7(15):1602880. Zhao C, Yu C, Zhang M, Huang H, Li S, Han X, Liu Z, Yang J, Xiao W, Liang J, Sun X, Qiu J. Ultrafine MoO2-carbon microstructures enable ultralong-life power-type sodium ion storage by enhanced pseudocapacitance. Adv Energy Mater. 2017;7(15):1602880.
[48]
go back to reference Dong S, Shen L, Li H, Nie P, Zhu Y, Sheng Q, Zhang X. Pseudocapacitive behaviours of Na2Ti3O7@CNT coaxial nanocables for high-performance sodium-ion capacitors. J Mater Chem A. 2015;3(42):21277. Dong S, Shen L, Li H, Nie P, Zhu Y, Sheng Q, Zhang X. Pseudocapacitive behaviours of Na2Ti3O7@CNT coaxial nanocables for high-performance sodium-ion capacitors. J Mater Chem A. 2015;3(42):21277.
[49]
go back to reference Liu H, Li Z, Sun H, Lu Q. Electrospun Fe2TiO5–TiO2@graphene nanofibers as highly durable insertion anode with enhanced lithium storage properties. Energy Technol. 2020;8(7):2000215. Liu H, Li Z, Sun H, Lu Q. Electrospun Fe2TiO5–TiO2@graphene nanofibers as highly durable insertion anode with enhanced lithium storage properties. Energy Technol. 2020;8(7):2000215.
[50]
go back to reference Kim H, Cho MY, Kim MH, Park KY, Gwon H, Lee Y, Roh KC, Kang K. A novel high-energy hybrid supercapacitor with an anatase TiO2-reduced graphene oxide anode and an activated carbon cathode. Adv Energy Mater. 2013;3(11):1500. Kim H, Cho MY, Kim MH, Park KY, Gwon H, Lee Y, Roh KC, Kang K. A novel high-energy hybrid supercapacitor with an anatase TiO2-reduced graphene oxide anode and an activated carbon cathode. Adv Energy Mater. 2013;3(11):1500.
[51]
go back to reference Aravindan V, Sundaramurthy J, Jain A, Kumar PS, Ling WC, Ramakrishna S, Srinivasan MP, Madhavi S. Unveiling TiNb2O7 as an insertion anode for lithium ion capacitors with high energy and power density. Chemsuschem. 2014;7(7):1858. Aravindan V, Sundaramurthy J, Jain A, Kumar PS, Ling WC, Ramakrishna S, Srinivasan MP, Madhavi S. Unveiling TiNb2O7 as an insertion anode for lithium ion capacitors with high energy and power density. Chemsuschem. 2014;7(7):1858.
[52]
go back to reference Ye L, Liang Q, Lei Y, Yu X, Han C, Shen W, Huang ZH, Kang F, Yang QH. A high performance Li-ion capacitor constructed with Li4Ti5O12/C hybrid and porous graphene macroform. J Power Sources. 2015;282:174. Ye L, Liang Q, Lei Y, Yu X, Han C, Shen W, Huang ZH, Kang F, Yang QH. A high performance Li-ion capacitor constructed with Li4Ti5O12/C hybrid and porous graphene macroform. J Power Sources. 2015;282:174.
[53]
go back to reference Aravindan V, Chuiling W, Madhavi S. High power lithium-ion hybrid electrochemical capacitors using spinel LiCrTiO4 as insertion electrode. J Mater Chem. 2012;22(31):16026. Aravindan V, Chuiling W, Madhavi S. High power lithium-ion hybrid electrochemical capacitors using spinel LiCrTiO4 as insertion electrode. J Mater Chem. 2012;22(31):16026.
Metadata
Title
Fe2TiO5 nanochains as anode for high-performance lithium-ion capacitor
Authors
Rong Kang
Wang-Qin Zhu
Sheng Li
Bo-Bo Zou
Liao-Liao Wang
Guo-Chun Li
Xian-Hu Liu
Dickon H. L. Ng
Jing-Xia Qiu
Yan Zhao
Fen Qiao
Jia-Biao Lian
Publication date
25-01-2021
Publisher
Nonferrous Metals Society of China
Published in
Rare Metals / Issue 9/2021
Print ISSN: 1001-0521
Electronic ISSN: 1867-7185
DOI
https://doi.org/10.1007/s12598-020-01638-4

Other articles of this Issue 9/2021

Rare Metals 9/2021 Go to the issue

Premium Partners