Skip to main content
Top
Published in: Rare Metals 9/2021

17-04-2021 | Original Article

Encapsulating manganese oxide nanoparticles within conducting polypyrrole via in situ redox reaction and oxidative polymerization for long-life lithium-ion batteries

Authors: He-Liang Yao, Shan-Shan Gao, Zheng-Qian Fu, Wei-Chao Bao, Zhong-Hui Cui, Yi-Qiu Li, Fang-Fang Xu

Published in: Rare Metals | Issue 9/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Manganese oxides (MnOx) have been extensively investigated due to their extremely high theoretical capacities for application as conversion anodes in lithium-ion batteries. However, fully performing their theoretical performance still faces poor electric conductivity and serious volume change upon lithium insertion/extraction. Herein, we demonstrate encapsulating manganese oxide nanoparticles within a conducting polymer polypyrrole (PPy) shell as a facile strategy to overcome such flaws through in situ redox reaction and oxidative polymerization process. Such an in situ method combines the redox reaction between potassium permanganate and tetrahydrofuran to form MnOx nanoparticles and the subsequent oxidative polymerization of pyrrole to form a conductive polypyrrole coating shell by the oxidant KMnO4 into one step. For the as-fabricated products (MnOx@PPy), this tenderly introduced conductive PPy shell highly favors the fast electron transfer and preserves the electrode structure integrity upon repeated cycling. As the anode for LIBs, MnOx@PPy exhibits superior lithium storage performance with a high reversible capacity (1538 mAh·g−1), long-life cyclability (747 mAh·g−1 after 1000 cycles at 1.0C) and durable ratability (574 mAh·g−1 at 2.0C). This work demonstrates that the convenient in situ strategy to form conductive polymer coating shell is effective to improve the performance of conversion anodes and can be extended to other materials for energy storage applications.

Graphic Abstract

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
[1]
go back to reference Kang K, Meng YS, Bréger J, Grey CP, Ceder G. Electrodes with high power and high capacity for rechargeable lithium batteries. Science. 2006;311(5763):977.CrossRef Kang K, Meng YS, Bréger J, Grey CP, Ceder G. Electrodes with high power and high capacity for rechargeable lithium batteries. Science. 2006;311(5763):977.CrossRef
[2]
go back to reference Scrosati B, Hassoun J, Sun YK. Lithium-ion batteries. A look into the future. Energy Environ Sci. 2011;4(9):3287.CrossRef Scrosati B, Hassoun J, Sun YK. Lithium-ion batteries. A look into the future. Energy Environ Sci. 2011;4(9):3287.CrossRef
[3]
go back to reference Choi JW, Aurbach D. Promise and reality of post-lithium-ion batteries with high energy densities. Nat Rev Mater. 2016;1(4):16013.CrossRef Choi JW, Aurbach D. Promise and reality of post-lithium-ion batteries with high energy densities. Nat Rev Mater. 2016;1(4):16013.CrossRef
[4]
go back to reference Etacheri V, Marom R, Elazari R, Salitra G, Aurbach D. Challenges in the development of advanced Li-ion batteries: a review. Energy Environ Sci. 2011;4(9):3243.CrossRef Etacheri V, Marom R, Elazari R, Salitra G, Aurbach D. Challenges in the development of advanced Li-ion batteries: a review. Energy Environ Sci. 2011;4(9):3243.CrossRef
[5]
go back to reference Wang H, He J, Liu J, Qi S, Wu M, Wen J, Chen Y, Feng Y, Ma J. Electrolytes enriched by crown ethers for lithium metal batteries. Adv Func Mater. 2021;31(2):2002578.CrossRef Wang H, He J, Liu J, Qi S, Wu M, Wen J, Chen Y, Feng Y, Ma J. Electrolytes enriched by crown ethers for lithium metal batteries. Adv Func Mater. 2021;31(2):2002578.CrossRef
[6]
go back to reference Liu XQ, Li LP, Li GS. Partial surface phase transformation of Li3VO4 that enables superior rate performance and fast lithium-ion storage. Tungsten. 2019;1(4):276.CrossRef Liu XQ, Li LP, Li GS. Partial surface phase transformation of Li3VO4 that enables superior rate performance and fast lithium-ion storage. Tungsten. 2019;1(4):276.CrossRef
[7]
go back to reference Li H, Wang Z, Chen L, Huang X. Research on advanced materials for Li-ion batteries. Adv Mater. 2009;21(45):4593.CrossRef Li H, Wang Z, Chen L, Huang X. Research on advanced materials for Li-ion batteries. Adv Mater. 2009;21(45):4593.CrossRef
[8]
go back to reference Reddy MV, Subba Rao GV, Chowdari BV. Metal oxides and oxysalts as anode materials for Li ion batteries. Chem Rev. 2013;113(7):5364.CrossRef Reddy MV, Subba Rao GV, Chowdari BV. Metal oxides and oxysalts as anode materials for Li ion batteries. Chem Rev. 2013;113(7):5364.CrossRef
[9]
go back to reference Yuan C, Wu HB, Xie Y, Lou XW. Mixed transition-metal oxides: design, synthesis, and energy-related applications. Angew Chem Int Ed Engl. 2014;53(6):1488.CrossRef Yuan C, Wu HB, Xie Y, Lou XW. Mixed transition-metal oxides: design, synthesis, and energy-related applications. Angew Chem Int Ed Engl. 2014;53(6):1488.CrossRef
[10]
go back to reference Poizot P, Laruelle S, Grugeon S, Dupont L, Tarascon JM. Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries. Nature. 2000;407(6803):496.CrossRef Poizot P, Laruelle S, Grugeon S, Dupont L, Tarascon JM. Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries. Nature. 2000;407(6803):496.CrossRef
[11]
go back to reference Thackeray MM, Johnson CS, Vaughey JT, Li N, Hackney SA. Advances in manganese-oxide ‘composite’ electrodes for lithium-ion batteries. J Mater Chem. 2005;15(23):2257.CrossRef Thackeray MM, Johnson CS, Vaughey JT, Li N, Hackney SA. Advances in manganese-oxide ‘composite’ electrodes for lithium-ion batteries. J Mater Chem. 2005;15(23):2257.CrossRef
[12]
go back to reference Gu X, Yue J, Li L, Xue H, Yang J, Zhao X. General synthesis of MnOx (MnO2, Mn2O3, Mn3O4, MnO) hierarchical microspheres as lithium-ion battery anodes. Electrochim Acta. 2015;184:250.CrossRef Gu X, Yue J, Li L, Xue H, Yang J, Zhao X. General synthesis of MnOx (MnO2, Mn2O3, Mn3O4, MnO) hierarchical microspheres as lithium-ion battery anodes. Electrochim Acta. 2015;184:250.CrossRef
[13]
go back to reference Zhang J, Yu A. Nanostructured transition metal oxides as advanced anodes for lithium-ion batteries. Sci Bull. 2015;60(9):823.CrossRef Zhang J, Yu A. Nanostructured transition metal oxides as advanced anodes for lithium-ion batteries. Sci Bull. 2015;60(9):823.CrossRef
[14]
go back to reference Wang J, Du N, Wu H, Zhang H, Yu J, Yang D. Order-aligned Mn3O4 nanostructures as super high-rate electrodes for rechargeable lithium-ion batteries. J Power Sources. 2013;222:32.CrossRef Wang J, Du N, Wu H, Zhang H, Yu J, Yang D. Order-aligned Mn3O4 nanostructures as super high-rate electrodes for rechargeable lithium-ion batteries. J Power Sources. 2013;222:32.CrossRef
[15]
go back to reference Liu XC, Piao JY, Bin DS, Zhang TQ, Duan SY, Wu ZX, Cao AM, Wan LJ. Controlled formation of uniform nanoshells of manganese oxide and their potential in lithium ion batteries. Chem Commun. 2017;53(19):2846.CrossRef Liu XC, Piao JY, Bin DS, Zhang TQ, Duan SY, Wu ZX, Cao AM, Wan LJ. Controlled formation of uniform nanoshells of manganese oxide and their potential in lithium ion batteries. Chem Commun. 2017;53(19):2846.CrossRef
[16]
go back to reference Liu H, Hu Z, Ruan H, Hu R, Su Y, Zhang L, Zhang J. Nanostructured MnO2 anode materials for advanced lithium ion batteries. J Mater Sci Mater Electron. 2016;27(11):11541.CrossRef Liu H, Hu Z, Ruan H, Hu R, Su Y, Zhang L, Zhang J. Nanostructured MnO2 anode materials for advanced lithium ion batteries. J Mater Sci Mater Electron. 2016;27(11):11541.CrossRef
[17]
go back to reference Gemeay AH. Chemical preparation of manganese dioxide/polypyrrole composites and their use as cathode active materials for rechargeable lithium batteries. J Electrochem Soc. 1995;142(12):4190.CrossRef Gemeay AH. Chemical preparation of manganese dioxide/polypyrrole composites and their use as cathode active materials for rechargeable lithium batteries. J Electrochem Soc. 1995;142(12):4190.CrossRef
[18]
go back to reference Xiong X, Ding D, Wang Z, Huang B, Guo H, Li X. Surface modification of LiNi0.8Co0.1Mn0.1O2 with conducting polypyrrole. J Solid State Electrochem. 2014;18(9):2619.CrossRef Xiong X, Ding D, Wang Z, Huang B, Guo H, Li X. Surface modification of LiNi0.8Co0.1Mn0.1O2 with conducting polypyrrole. J Solid State Electrochem. 2014;18(9):2619.CrossRef
[19]
go back to reference Jin R, Wang Q, Li H, Ma Y, Sun Y, Li G. Polypyrrole layer coated MnOx/Fe2O3 nanotubes with enhanced electrochemical performance for lithium ion batteries. Appl Surf Sci. 2017;403:62.CrossRef Jin R, Wang Q, Li H, Ma Y, Sun Y, Li G. Polypyrrole layer coated MnOx/Fe2O3 nanotubes with enhanced electrochemical performance for lithium ion batteries. Appl Surf Sci. 2017;403:62.CrossRef
[20]
go back to reference Wang JG, Yang Y, Huang ZH, Kang F. Effect of temperature on the pseudo-capacitive behavior of freestanding MnO2@carbon nanofibers composites electrodes in mild electrolyte. J Power Sources. 2013;224:86.CrossRef Wang JG, Yang Y, Huang ZH, Kang F. Effect of temperature on the pseudo-capacitive behavior of freestanding MnO2@carbon nanofibers composites electrodes in mild electrolyte. J Power Sources. 2013;224:86.CrossRef
[21]
go back to reference Zhang D, Zhang Y, Luo Y, Chu PK. Highly porous honeycomb manganese oxide@carbon fibers core–shell nanocables for flexible supercapacitors. Nano Energy. 2015;13:47.CrossRef Zhang D, Zhang Y, Luo Y, Chu PK. Highly porous honeycomb manganese oxide@carbon fibers core–shell nanocables for flexible supercapacitors. Nano Energy. 2015;13:47.CrossRef
[22]
go back to reference Li X, Zhu Y, Zhang X, Liang J, Qian Y. MnO@1-D carbon composites from the precursor C4H4MnO6 and their high-performance in lithium batteries. RSC Adv. 2013;3(25):10001.CrossRef Li X, Zhu Y, Zhang X, Liang J, Qian Y. MnO@1-D carbon composites from the precursor C4H4MnO6 and their high-performance in lithium batteries. RSC Adv. 2013;3(25):10001.CrossRef
[23]
go back to reference Xia H, Lai M, Lu L. Nanoflaky MnO2/carbon nanotube nanocomposites as anode materials for lithium-ion batteries. J Mater Chem. 2010;20(33):6896.CrossRef Xia H, Lai M, Lu L. Nanoflaky MnO2/carbon nanotube nanocomposites as anode materials for lithium-ion batteries. J Mater Chem. 2010;20(33):6896.CrossRef
[24]
go back to reference Zheng F, Xia G, Yang Y, Chen Q. MOF-derived ultrafine MnO nanocrystals embedded in a porous carbon matrix as high-performance anodes for lithium-ion batteries. Nanoscale. 2015;7(21):9637.CrossRef Zheng F, Xia G, Yang Y, Chen Q. MOF-derived ultrafine MnO nanocrystals embedded in a porous carbon matrix as high-performance anodes for lithium-ion batteries. Nanoscale. 2015;7(21):9637.CrossRef
[25]
go back to reference Liu B, Hu X, Xu H, Luo W, Sun Y, Huang Y. Encapsulation of MnO nanocrystals in electrospun carbon nanofibers as high-performance anode materials for lithium-ion batteries. Sci Rep. 2014;4:4229.CrossRef Liu B, Hu X, Xu H, Luo W, Sun Y, Huang Y. Encapsulation of MnO nanocrystals in electrospun carbon nanofibers as high-performance anode materials for lithium-ion batteries. Sci Rep. 2014;4:4229.CrossRef
[26]
go back to reference Wang BP, Lv R, Lan DS. Preparation and electrochemical properties of Sn/C composites. Rare Met. 2019;38(10):996.CrossRef Wang BP, Lv R, Lan DS. Preparation and electrochemical properties of Sn/C composites. Rare Met. 2019;38(10):996.CrossRef
[27]
go back to reference Feng L, Zhang Y, Wang R, Zhang Y, Bai W, Ji S, Xuan Z, Yang J, Zheng Z, Guan H. Preparation of PPy-coated MnO2 hybrid micromaterials and their improved cyclic performance as anode for lithium-ion batteries. Nanoscale Res Lett. 2017;12(1):518.CrossRef Feng L, Zhang Y, Wang R, Zhang Y, Bai W, Ji S, Xuan Z, Yang J, Zheng Z, Guan H. Preparation of PPy-coated MnO2 hybrid micromaterials and their improved cyclic performance as anode for lithium-ion batteries. Nanoscale Res Lett. 2017;12(1):518.CrossRef
[28]
go back to reference Hsieh CT, Lin CY, Lin JY. High reversibility of Li intercalation and de-intercalation in MnO-attached graphene anodes for Li-ion batteries. Electrochim Acta. 2011;56(24):8861.CrossRef Hsieh CT, Lin CY, Lin JY. High reversibility of Li intercalation and de-intercalation in MnO-attached graphene anodes for Li-ion batteries. Electrochim Acta. 2011;56(24):8861.CrossRef
[29]
go back to reference Xiao Y, Wang X, Wang W, Zhao D, Cao M. Engineering hybrid between MnO and N-doped carbon to achieve exceptionally high capacity for lithium-ion battery anode. ACS Appl Mater Interfaces. 2014;6(3):2051.CrossRef Xiao Y, Wang X, Wang W, Zhao D, Cao M. Engineering hybrid between MnO and N-doped carbon to achieve exceptionally high capacity for lithium-ion battery anode. ACS Appl Mater Interfaces. 2014;6(3):2051.CrossRef
[30]
go back to reference Wang H, Xu Z, Li Z, Cui K, Ding J, Kohandehghan A, Tan X, Zahiri B, Olsen BC, Holt CMB, Mitlin D. Hybrid device employing three-dimensional arrays of MnO in carbon nanosheets bridges battery-supercapacitor divide. Nano Lett. 2014;14(4):1987. Wang H, Xu Z, Li Z, Cui K, Ding J, Kohandehghan A, Tan X, Zahiri B, Olsen BC, Holt CMB, Mitlin D. Hybrid device employing three-dimensional arrays of MnO in carbon nanosheets bridges battery-supercapacitor divide. Nano Lett. 2014;14(4):1987.
[31]
go back to reference Iwanowski RJ, Heinonen MH, Janik E. X-ray photoelectron spectra of zinc-blende MnTe. Chem Phys Lett. 2004;387(1–3):110.CrossRef Iwanowski RJ, Heinonen MH, Janik E. X-ray photoelectron spectra of zinc-blende MnTe. Chem Phys Lett. 2004;387(1–3):110.CrossRef
[32]
go back to reference Tan BJ, Klabunde KJ, Sherwood PMA. XPS studies of solvated metal atom dispersed (SMAD) catalysts. Evidence for layered cobalt-manganese particles on alumina and silica. J Am Chem Soc. 1991;113(3):855.CrossRef Tan BJ, Klabunde KJ, Sherwood PMA. XPS studies of solvated metal atom dispersed (SMAD) catalysts. Evidence for layered cobalt-manganese particles on alumina and silica. J Am Chem Soc. 1991;113(3):855.CrossRef
[33]
go back to reference Dubal DP, Dhawale DS, Salunkhe RR, Lokhande CD. A novel chemical synthesis of Mn3O4 thin film and its stepwise conversion into birnessite MnO2 during super capacitive studies. J Electroanal Chem. 2010;647(1):60.CrossRef Dubal DP, Dhawale DS, Salunkhe RR, Lokhande CD. A novel chemical synthesis of Mn3O4 thin film and its stepwise conversion into birnessite MnO2 during super capacitive studies. J Electroanal Chem. 2010;647(1):60.CrossRef
[34]
go back to reference Li J, Xiong S, Liu Y, Ju Z, Qian Y. High electrochemical performance of monodisperse NiCo2O2 mesoporous microspheres as an anode material for Li-ion batteries. ACS Appl Mater Interfaces. 2013;5(3):981.CrossRef Li J, Xiong S, Liu Y, Ju Z, Qian Y. High electrochemical performance of monodisperse NiCo2O2 mesoporous microspheres as an anode material for Li-ion batteries. ACS Appl Mater Interfaces. 2013;5(3):981.CrossRef
[35]
go back to reference Huang B, Zhang X, Cai J, Liu W, Lin S. A novel MnO2/rGO composite prepared by electrodeposition as a non-noble metal electrocatalyst for ORR. J Appl Electrochem. 2019;49(8):767.CrossRef Huang B, Zhang X, Cai J, Liu W, Lin S. A novel MnO2/rGO composite prepared by electrodeposition as a non-noble metal electrocatalyst for ORR. J Appl Electrochem. 2019;49(8):767.CrossRef
[36]
go back to reference Cai Z, Xu L, Yan M, Han C, He L, Hercule KM, Niu C, Yuan Z, Xu W, Qu L, Zhao K, Mai L. Manganese oxide/carbon yolk-shell nanorod anodes for high capacity lithium batteries. Nano Lett. 2015;15(1):738.CrossRef Cai Z, Xu L, Yan M, Han C, He L, Hercule KM, Niu C, Yuan Z, Xu W, Qu L, Zhao K, Mai L. Manganese oxide/carbon yolk-shell nanorod anodes for high capacity lithium batteries. Nano Lett. 2015;15(1):738.CrossRef
[37]
go back to reference Qie L, Chen WM, Wang ZH, Shao QG, Li X, Yuan LX, Hu XL, Zhang WX, Huang YH. Nitrogen-doped porous carbon nanofiber webs as anodes for lithium ion batteries with a superhigh capacity and rate capability. Adv Mater. 2012;24(15):2047.CrossRef Qie L, Chen WM, Wang ZH, Shao QG, Li X, Yuan LX, Hu XL, Zhang WX, Huang YH. Nitrogen-doped porous carbon nanofiber webs as anodes for lithium ion batteries with a superhigh capacity and rate capability. Adv Mater. 2012;24(15):2047.CrossRef
[38]
go back to reference Zhang Y, Chen P, Gao X, Wang B, Liu H, Wu H, Liu H, Dou S. Nitrogen-doped graphene ribbon assembled core-sheath MnO@graphene scrolls as hierarchically ordered 3D porous electrodes for fast and durable lithium storage. Adv Func Mater. 2016;26(43):7754.CrossRef Zhang Y, Chen P, Gao X, Wang B, Liu H, Wu H, Liu H, Dou S. Nitrogen-doped graphene ribbon assembled core-sheath MnO@graphene scrolls as hierarchically ordered 3D porous electrodes for fast and durable lithium storage. Adv Func Mater. 2016;26(43):7754.CrossRef
[39]
go back to reference Haniff MASM, Hafiz SM, Huang NM, Rahman SA, Wahid KAA, Syono MI, Azid IA. Piezoresistive effect in plasma-doping of graphene sheet for high-performance flexible pressure sensing application. ACS Appl Mater Interfaces. 2017;9(17):15192.CrossRef Haniff MASM, Hafiz SM, Huang NM, Rahman SA, Wahid KAA, Syono MI, Azid IA. Piezoresistive effect in plasma-doping of graphene sheet for high-performance flexible pressure sensing application. ACS Appl Mater Interfaces. 2017;9(17):15192.CrossRef
[40]
go back to reference Nan D, Huang ZH, Lv R, Yang L, Wang JG, Shen W, Lin Y, Yu X, Ye L, Sun H, Kang F. Nitrogen-enriched electrospun porous carbon nanofiber networks as high-performance free-standing electrode materials. J Mater Chem A. 2014;2(46):19678.CrossRef Nan D, Huang ZH, Lv R, Yang L, Wang JG, Shen W, Lin Y, Yu X, Ye L, Sun H, Kang F. Nitrogen-enriched electrospun porous carbon nanofiber networks as high-performance free-standing electrode materials. J Mater Chem A. 2014;2(46):19678.CrossRef
[41]
go back to reference Chen KF, Lo SC, Chang L, Egerton R, Kai JJ, Lin JJ, Chen FR. Valence state map of iron oxide thin film obtained from electron spectroscopy imaging series. Micron. 2007;38(4):354.CrossRef Chen KF, Lo SC, Chang L, Egerton R, Kai JJ, Lin JJ, Chen FR. Valence state map of iron oxide thin film obtained from electron spectroscopy imaging series. Micron. 2007;38(4):354.CrossRef
[42]
go back to reference Loomer DB, Al TA, Weaver L, Cogswell S. Manganese valence imaging in Mn minerals at the nanoscale using STEM-EELS. Am Miner. 2007;92(1):72.CrossRef Loomer DB, Al TA, Weaver L, Cogswell S. Manganese valence imaging in Mn minerals at the nanoscale using STEM-EELS. Am Miner. 2007;92(1):72.CrossRef
[43]
go back to reference Schmid HK, Mader W. Oxidation states of Mn and Fe in various compound oxide systems. Micron. 2006;37(5):426.CrossRef Schmid HK, Mader W. Oxidation states of Mn and Fe in various compound oxide systems. Micron. 2006;37(5):426.CrossRef
[44]
go back to reference Tan H, Verbeeck J, Abakumov A, Van Tendeloo G. Oxidation state and chemical shift investigation in transition metal oxides by EELS. Ultramicroscopy. 2012;116:24.CrossRef Tan H, Verbeeck J, Abakumov A, Van Tendeloo G. Oxidation state and chemical shift investigation in transition metal oxides by EELS. Ultramicroscopy. 2012;116:24.CrossRef
[45]
go back to reference Sun Y, Hu X, Luo W, Huang Y. Porous carbon-modified MnO disks prepared by a microwave-polyol process and their superior lithium-ion storage properties. J Mater Chem. 2012;22(36):19190.CrossRef Sun Y, Hu X, Luo W, Huang Y. Porous carbon-modified MnO disks prepared by a microwave-polyol process and their superior lithium-ion storage properties. J Mater Chem. 2012;22(36):19190.CrossRef
[46]
go back to reference Xiao YC, Xu CY, Wang PP, Fang HT, Sun XY, Ma FX, Pei Y, Zhen L. Encapsulating MnO nanoparticles within foam-like carbon nanosheet matrix for fast and durable lithium storage. Nano Energy. 2018;50:675.CrossRef Xiao YC, Xu CY, Wang PP, Fang HT, Sun XY, Ma FX, Pei Y, Zhen L. Encapsulating MnO nanoparticles within foam-like carbon nanosheet matrix for fast and durable lithium storage. Nano Energy. 2018;50:675.CrossRef
Metadata
Title
Encapsulating manganese oxide nanoparticles within conducting polypyrrole via in situ redox reaction and oxidative polymerization for long-life lithium-ion batteries
Authors
He-Liang Yao
Shan-Shan Gao
Zheng-Qian Fu
Wei-Chao Bao
Zhong-Hui Cui
Yi-Qiu Li
Fang-Fang Xu
Publication date
17-04-2021
Publisher
Nonferrous Metals Society of China
Published in
Rare Metals / Issue 9/2021
Print ISSN: 1001-0521
Electronic ISSN: 1867-7185
DOI
https://doi.org/10.1007/s12598-021-01725-0

Other articles of this Issue 9/2021

Rare Metals 9/2021 Go to the issue

Premium Partners