Skip to main content
Top
Published in: Rare Metals 9/2021

18-11-2020 | Original Article

Fe3O4@Angelica sinensis polysaccharide nanoparticles as an ultralow-toxicity contrast agent for magnetic resonance imaging

Authors: Kai Wang, Xiao-Guang Xu, Ying-Li Ma, Chun-Rui Sheng, Li-Na Li, Li-Ying Lu, Jian Wang, Yi-Ning Wang, Yong Jiang

Published in: Rare Metals | Issue 9/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Although iron oxide (Fe3O4) nanoparticles have broad application prospects as magnetic resonance imaging (MRI) contrast agent, their biocompatibility and biotoxicity still need to be improved. In this study, we prepared Fe3O4@Angelica sinensis polysaccharide nanoparticles (Fe3O4@ASP NPs) with a 9 nm Fe3O4 core and ASP as the coating material. The Fe3O4@ASP NPs are superparamagnetic, can be taken up by liver and spleen macrophages in the circulatory system in vivo, and are a good-biocompatibility and low-toxicity transverse relaxation time (T2) and T2-star (T2*) magnetic resonance imaging (MRI) contrast agent for the liver. The cytotoxicity assessment using HeLa cells and the pathological tests in mice validate that Fe3O4@ASP NPs have low toxicity and good biocompatibility in vivo, which can be attributed to the ASP as a natural polysaccharide with good biocompatibility and its function of protecting the liver. Fe3O4@ASP NPs are a potential new MRI contrast agent with high signal intensity in vivo.

Graphic abstract

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
[1]
go back to reference Wahsner J, Gale EM, Rodríguez-Rodríguez A, Caravan P. Chemistry of MRI contrast agents: current challenges and new frontiers. Chem Rev. 2019;119(2):957. Wahsner J, Gale EM, Rodríguez-Rodríguez A, Caravan P. Chemistry of MRI contrast agents: current challenges and new frontiers. Chem Rev. 2019;119(2):957.
[2]
go back to reference Ntziachristos V, Pleitez MA, Aime S, Brindle KM. Emerging technologies to image tissue metabolism. Cell Metab. 2019;29(3):518. Ntziachristos V, Pleitez MA, Aime S, Brindle KM. Emerging technologies to image tissue metabolism. Cell Metab. 2019;29(3):518.
[3]
go back to reference Corot C, Robert P, Idée JM, Port M. Recent advances in iron oxide nanocrystal technology for medical imaging. Adv Drug Delivery Rev. 2006;58(14):1471. Corot C, Robert P, Idée JM, Port M. Recent advances in iron oxide nanocrystal technology for medical imaging. Adv Drug Delivery Rev. 2006;58(14):1471.
[4]
go back to reference Padmanabhan P, Kumar A, Kumar S, Chaudhary RK, Gulyás B. Nanoparticles in practice for molecular-imaging applications: an overview. Acta Biomater. 2016;41:1. Padmanabhan P, Kumar A, Kumar S, Chaudhary RK, Gulyás B. Nanoparticles in practice for molecular-imaging applications: an overview. Acta Biomater. 2016;41:1.
[5]
go back to reference Lin LS, Cong ZX, Cao JB, Ke KM, Peng QL, Gao J, Yang HH, Liu G, Chen X. Multifunctional Fe3O4@polydopamine core-shell nanocomposites for intracellular mRNA detection and imaging-guided photothermal therapy. ACS Nano. 2014;8(4):3876. Lin LS, Cong ZX, Cao JB, Ke KM, Peng QL, Gao J, Yang HH, Liu G, Chen X. Multifunctional Fe3O4@polydopamine core-shell nanocomposites for intracellular mRNA detection and imaging-guided photothermal therapy. ACS Nano. 2014;8(4):3876.
[6]
go back to reference Hao R, Yu J, Ge Z, Zhao L, Sheng F, Xu L, Li G, Hou Y. Developing Fe3O4 nanoparticles into an efficient multimodality imaging and therapeutic probe. Nanoscale. 2013;5(23):11954. Hao R, Yu J, Ge Z, Zhao L, Sheng F, Xu L, Li G, Hou Y. Developing Fe3O4 nanoparticles into an efficient multimodality imaging and therapeutic probe. Nanoscale. 2013;5(23):11954.
[7]
go back to reference Xing R, Bhirde AA, Wang S, Sun X, Liu G, Hou Y, Chen X. Hollow iron oxide nanoparticles as multidrug resistant drug delivery and imaging vehicles. Nano Res. 2013;6(1):1. Xing R, Bhirde AA, Wang S, Sun X, Liu G, Hou Y, Chen X. Hollow iron oxide nanoparticles as multidrug resistant drug delivery and imaging vehicles. Nano Res. 2013;6(1):1.
[8]
go back to reference Yu J, Zhao F, Gao W, Yang X, Ju Y, Zhao L, Guo W, Xie J, Liang X, Tao X, Li J, Ying Y, Li W, Zheng J, Qiao L, Xiong S, Mou X, Che S, Hou Y. Magnetic reactive oxygen species nanoreactor for switchable magnetic resonance imaging guided cancer therapy based on pH-sensitive Fe5C2@Fe3O4 nanoparticles. ACS Nano. 2019;13(9):10002. Yu J, Zhao F, Gao W, Yang X, Ju Y, Zhao L, Guo W, Xie J, Liang X, Tao X, Li J, Ying Y, Li W, Zheng J, Qiao L, Xiong S, Mou X, Che S, Hou Y. Magnetic reactive oxygen species nanoreactor for switchable magnetic resonance imaging guided cancer therapy based on pH-sensitive Fe5C2@Fe3O4 nanoparticles. ACS Nano. 2019;13(9):10002.
[9]
go back to reference Zhou H, Tang J, Li J, Li W, Liu Y, Chen C. In vivo aggregation-induced transition between T1 and T2 relaxations of magnetic ultra-small iron oxide nanoparticles in tumor microenvironment. Nanoscale. 2017;9(9):3040. Zhou H, Tang J, Li J, Li W, Liu Y, Chen C. In vivo aggregation-induced transition between T1 and T2 relaxations of magnetic ultra-small iron oxide nanoparticles in tumor microenvironment. Nanoscale. 2017;9(9):3040.
[10]
go back to reference Shen Z, Wu A, Chen X. Iron oxide nanoparticle based contrast agents for magnetic resonance imaging. Mol Pharm. 2017;14(5):1352. Shen Z, Wu A, Chen X. Iron oxide nanoparticle based contrast agents for magnetic resonance imaging. Mol Pharm. 2017;14(5):1352.
[11]
go back to reference Hao R, Xing R, Xu Z, Hou Y, Gao S, Sun S. Synthesis, functionalization, and biomedical applications of multifunctional magnetic nanoparticles. Adv Mater. 2010;22(25):2729. Hao R, Xing R, Xu Z, Hou Y, Gao S, Sun S. Synthesis, functionalization, and biomedical applications of multifunctional magnetic nanoparticles. Adv Mater. 2010;22(25):2729.
[12]
go back to reference Khmara I, Strbak O, Zavisova V, Koneracka M, Kubovcikova M, Antal I, Kavecansky V, Lucanska D, Dobrota D, Kopcansky P. Chitosan-stabilized iron oxide nanoparticles for magnetic resonance imaging. J Magn Magn Mater. 2019;474(3):319. Khmara I, Strbak O, Zavisova V, Koneracka M, Kubovcikova M, Antal I, Kavecansky V, Lucanska D, Dobrota D, Kopcansky P. Chitosan-stabilized iron oxide nanoparticles for magnetic resonance imaging. J Magn Magn Mater. 2019;474(3):319.
[13]
go back to reference Wang J, Chen Y, Chen B, Ding J, Xia G, Gao C, Cheng J, Jin N, Zhou Y, Li X, Tang M, Wang XM. Pharmacokinetic parameters and tissue distribution of magnetic Fe3O4 nanoparticles in mice. Int J Nanomed. 2010;5:861. Wang J, Chen Y, Chen B, Ding J, Xia G, Gao C, Cheng J, Jin N, Zhou Y, Li X, Tang M, Wang XM. Pharmacokinetic parameters and tissue distribution of magnetic Fe3O4 nanoparticles in mice. Int J Nanomed. 2010;5:861.
[14]
go back to reference He X, Nie H, Wang K, Tan W, Wu X, Zhang P. In vivo study of biodistribution and urinary excretion of surface-modified silica nanoparticles. Anal Chem. 2008;80(24):9597. He X, Nie H, Wang K, Tan W, Wu X, Zhang P. In vivo study of biodistribution and urinary excretion of surface-modified silica nanoparticles. Anal Chem. 2008;80(24):9597.
[15]
go back to reference Li J, Cha R, Zhang Y, Guo H, Long K, Gao P, Wang X, Zhou F, Jiang X. Iron oxide nanoparticles for targeted imaging of liver tumors with ultralow hepatotoxicity. J Mater Chem B. 2018;6(40):6413. Li J, Cha R, Zhang Y, Guo H, Long K, Gao P, Wang X, Zhou F, Jiang X. Iron oxide nanoparticles for targeted imaging of liver tumors with ultralow hepatotoxicity. J Mater Chem B. 2018;6(40):6413.
[16]
go back to reference Scialabba C, Puleio R, Peddis D, Varvaro G, Calandra P, Cassata G, Cicero L, Licciardi M, Giammona G. Folate targeted coated SPIONs as efficient tool for MRI. Nano Res. 2017;10(9):3212. Scialabba C, Puleio R, Peddis D, Varvaro G, Calandra P, Cassata G, Cicero L, Licciardi M, Giammona G. Folate targeted coated SPIONs as efficient tool for MRI. Nano Res. 2017;10(9):3212.
[17]
go back to reference Xia B, Li J, Shi J, Zhang Y, Zhang Q, Chen Z, Wang B. Biodegradablec and magnetic-fluorescent porous silicon@iron oxide nanocomposites for fluorescence/magnetic resonance bimodal imaging of tumor in vivo. ACS Biomater Sci Eng. 2017;3(10):2579. Xia B, Li J, Shi J, Zhang Y, Zhang Q, Chen Z, Wang B. Biodegradablec and magnetic-fluorescent porous silicon@iron oxide nanocomposites for fluorescence/magnetic resonance bimodal imaging of tumor in vivo. ACS Biomater Sci Eng. 2017;3(10):2579.
[18]
go back to reference Liu Q, Song L, Chen S, Gao J, Zhao P, Du J. A superparamagnetic polymersome with extremely high T2 relaxivity for MRI and cancer-targeted drug delivery. Biomaterials. 2017;114:23. Liu Q, Song L, Chen S, Gao J, Zhao P, Du J. A superparamagnetic polymersome with extremely high T2 relaxivity for MRI and cancer-targeted drug delivery. Biomaterials. 2017;114:23.
[19]
go back to reference Liu J, Tang M, Zhou Y, Long Y, Cheng Y, Zheng H. A siramesine-loaded metal organic framework nanoplatform for overcoming multidrug resistance with efficient cancer cell targeting. RSC Adv. 2020;10(12):6919. Liu J, Tang M, Zhou Y, Long Y, Cheng Y, Zheng H. A siramesine-loaded metal organic framework nanoplatform for overcoming multidrug resistance with efficient cancer cell targeting. RSC Adv. 2020;10(12):6919.
[20]
go back to reference Ge R, Li X, Lin M, Wang D, Li S, Liu S, Tang Q, Liu Y, Jiang J, Liu L, Sun H, Zhang H, Yang B. Fe3O4@polydopamine composite theranostic superparticles employing preassembled Fe3O4 nanoparticles as the core. ACS Appl Mater Interfaces. 2016;8(35):22942. Ge R, Li X, Lin M, Wang D, Li S, Liu S, Tang Q, Liu Y, Jiang J, Liu L, Sun H, Zhang H, Yang B. Fe3O4@polydopamine composite theranostic superparticles employing preassembled Fe3O4 nanoparticles as the core. ACS Appl Mater Interfaces. 2016;8(35):22942.
[21]
go back to reference Xu C, Zhang C, Wang Y, Li L, Li L, Whittaker AK. Controllable synthesis of a novel magnetic core–shell nanoparticle for dual-modal imaging and pH-responsive drug delivery. Nanotechnology. 2017;28(49):495101. Xu C, Zhang C, Wang Y, Li L, Li L, Whittaker AK. Controllable synthesis of a novel magnetic core–shell nanoparticle for dual-modal imaging and pH-responsive drug delivery. Nanotechnology. 2017;28(49):495101.
[22]
go back to reference Arsalani S, Guidelli EJ, Silveira MA, Salmon CEG, Araujo JFDF, Bruno AC, Baffa O. Magnetic Fe3O4 nanoparticles coated by natural rubber latex as MRI contrast agent. J Magn Magn Mater. 2019;475:458. Arsalani S, Guidelli EJ, Silveira MA, Salmon CEG, Araujo JFDF, Bruno AC, Baffa O. Magnetic Fe3O4 nanoparticles coated by natural rubber latex as MRI contrast agent. J Magn Magn Mater. 2019;475:458.
[23]
go back to reference Park J, Lee G, Seo J. Mannose-functionalized core@shell nanoparticles and their interactions with bacteria. J Mater Sci. 2017;52(3):1534. Park J, Lee G, Seo J. Mannose-functionalized core@shell nanoparticles and their interactions with bacteria. J Mater Sci. 2017;52(3):1534.
[24]
go back to reference Xu YY, Wang L, Wu T, Wang RM. Magnetic properties of α-Fe2O3 nanopallets. Rare Met. 2019;38(1):14. Xu YY, Wang L, Wu T, Wang RM. Magnetic properties of α-Fe2O3 nanopallets. Rare Met. 2019;38(1):14.
[25]
go back to reference Lin Y, Liu X, Xing Z, Geng Y, Wilson J, Wu D, Kong H. Preparation and characterization of magnetic Fe3O4–chitosan nanoparticles for cellulase immobilization. Cellulose. 2017;24(12):5541. Lin Y, Liu X, Xing Z, Geng Y, Wilson J, Wu D, Kong H. Preparation and characterization of magnetic Fe3O4–chitosan nanoparticles for cellulase immobilization. Cellulose. 2017;24(12):5541.
[26]
go back to reference Jin M, Zhao K, Huang Q, Xu C, Shang P. Isolation, structure and bioactivities of the polysaccharides from Angelica sinensis (Oliv.) Diels: a review. Carbohydr Polym. 2012;89(3):713. Jin M, Zhao K, Huang Q, Xu C, Shang P. Isolation, structure and bioactivities of the polysaccharides from Angelica sinensis (Oliv.) Diels: a review. Carbohydr Polym. 2012;89(3):713.
[27]
go back to reference Wei WL, Zeng R, Gu CM, Qu Y, Huang LF. Angelica sinensis in China—a review of botanical profile, ethnopharmacology, phytochemistry and chemical analysis. J Ethnopharmacol. 2016;190:116. Wei WL, Zeng R, Gu CM, Qu Y, Huang LF. Angelica sinensis in China—a review of botanical profile, ethnopharmacology, phytochemistry and chemical analysis. J Ethnopharmacol. 2016;190:116.
[28]
go back to reference Yin JY, Chan BCL, Yu H, Lau IYK, Han XQ, Cheng SW, Wong CK, Lau CBS, Xie MY, Fung KP, Leung PC, Han QB. Separation, structure characterization, conformation and immunomodulating effect of a hyperbranched heteroglycan from Radix Astragali. Carbohydr Polym. 2012;87(1):667. Yin JY, Chan BCL, Yu H, Lau IYK, Han XQ, Cheng SW, Wong CK, Lau CBS, Xie MY, Fung KP, Leung PC, Han QB. Separation, structure characterization, conformation and immunomodulating effect of a hyperbranched heteroglycan from Radix Astragali. Carbohydr Polym. 2012;87(1):667.
[29]
go back to reference Fang L, Xiao XF, Liu CX, He X. Recent advance in studies on Angelica sinensis. Chin Herb Med. 2012;4(1):12. Fang L, Xiao XF, Liu CX, He X. Recent advance in studies on Angelica sinensis. Chin Herb Med. 2012;4(1):12.
[30]
go back to reference Nie R. Protective effect of Angelica sinensis polysaccharides in hepatic injuries by tetrachloride intoxication. J Wuhan Polytech Univ. 2008;27:23. Nie R. Protective effect of Angelica sinensis polysaccharides in hepatic injuries by tetrachloride intoxication. J Wuhan Polytech Univ. 2008;27:23.
[31]
go back to reference Ding H, Shi GG, Yu X, Yu JP, Huang JA. Modulation of GdCl3 and Angelica sinensis polysaccharides on differentially expressed genes in liver of hepatic immunological injury mice by cDNA microarray. World J Gastroenterol. 2003;9(5):1072. Ding H, Shi GG, Yu X, Yu JP, Huang JA. Modulation of GdCl3 and Angelica sinensis polysaccharides on differentially expressed genes in liver of hepatic immunological injury mice by cDNA microarray. World J Gastroenterol. 2003;9(5):1072.
[32]
go back to reference Yang T, Jia M, Meng J, Wu H, Mei Q. Immunomodulatory activity of polysaccharide isolated from Angelica sinensis. Int J Biol Macromol. 2006;39(4):179. Yang T, Jia M, Meng J, Wu H, Mei Q. Immunomodulatory activity of polysaccharide isolated from Angelica sinensis. Int J Biol Macromol. 2006;39(4):179.
[33]
go back to reference Wang QK, Chen CX, Guo YJ, Zhao HY, Sun JF, Ma S, Xing KZ. Dietary polysaccharide from Angelica sinensis enhanced cellular defence responses and disease resistance of grouper Epinephelus malabaricus. Aquac Int. 2011;19(5):945. Wang QK, Chen CX, Guo YJ, Zhao HY, Sun JF, Ma S, Xing KZ. Dietary polysaccharide from Angelica sinensis enhanced cellular defence responses and disease resistance of grouper Epinephelus malabaricus. Aquac Int. 2011;19(5):945.
[34]
go back to reference Shang P, Qian AR, Yang TH, Jia M, Mei QB, Cho CH, Zhao WM, Chen ZN. Experimental study of anti-tumor effects of polysaccharides from Angelica sinensis. World J Gastroenterol. 2003;9(9):1963. Shang P, Qian AR, Yang TH, Jia M, Mei QB, Cho CH, Zhao WM, Chen ZN. Experimental study of anti-tumor effects of polysaccharides from Angelica sinensis. World J Gastroenterol. 2003;9(9):1963.
[35]
go back to reference Cao W, Li XQ, Wang X, Li T, Chen X, Liu SB, Mei QB. Characterizations and anti-tumor activities of three acidic polysaccharides from Angelica sinensis (Oliv.) Diels. Int J Biol Macromol. 2010;46(1):115. Cao W, Li XQ, Wang X, Li T, Chen X, Liu SB, Mei QB. Characterizations and anti-tumor activities of three acidic polysaccharides from Angelica sinensis (Oliv.) Diels. Int J Biol Macromol. 2010;46(1):115.
[36]
go back to reference Zhang S, He B, Ge J, Li H, Luo X, Zhang H, Li Y, Zhai C, Liu P, Liu X, Fei X. Extraction, chemical analysis of Angelica sinensis polysaccharides and antioxidant activity of the polysaccharides in ischemia–reperfusion rats. Int J Biol Macromol. 2010;47(4):546. Zhang S, He B, Ge J, Li H, Luo X, Zhang H, Li Y, Zhai C, Liu P, Liu X, Fei X. Extraction, chemical analysis of Angelica sinensis polysaccharides and antioxidant activity of the polysaccharides in ischemia–reperfusion rats. Int J Biol Macromol. 2010;47(4):546.
[37]
go back to reference Celikler S, Tas S, Vatan O, Ziyanok-Ayvalik S, Yildiz G, Bilaloglu R. Anti-hyperglycemic and antigenotoxic potential of Ulva rigida ethanolic extract in the experimental diabetes mellitus. Food Chem Toxicol. 2009;47(8):1837. Celikler S, Tas S, Vatan O, Ziyanok-Ayvalik S, Yildiz G, Bilaloglu R. Anti-hyperglycemic and antigenotoxic potential of Ulva rigida ethanolic extract in the experimental diabetes mellitus. Food Chem Toxicol. 2009;47(8):1837.
[38]
go back to reference Sarker SD, Nahar L. Natural medicine: the genus Angelica. Curr Med Chem. 2004;11(11):1479. Sarker SD, Nahar L. Natural medicine: the genus Angelica. Curr Med Chem. 2004;11(11):1479.
[39]
go back to reference Wang KP, Zeng F, Liu JY, Guo D, Zhang Y. Inhibitory effect of polysaccharides isolated from Angelica sinensis on hepcidin expression. J Ethnopharmacol. 2011;134(3):944. Wang KP, Zeng F, Liu JY, Guo D, Zhang Y. Inhibitory effect of polysaccharides isolated from Angelica sinensis on hepcidin expression. J Ethnopharmacol. 2011;134(3):944.
[40]
go back to reference Liu SP, Dong WG, Wu DF, Luo HS, Yu JP. Protective effect of Angelica sinensis polysaccharide on experimental immunological colon injury in rats. World J Gastroenterol. 2003;9(12):2786. Liu SP, Dong WG, Wu DF, Luo HS, Yu JP. Protective effect of Angelica sinensis polysaccharide on experimental immunological colon injury in rats. World J Gastroenterol. 2003;9(12):2786.
[41]
go back to reference Wong VKC, Yu L, Cho CH. Protective effect of polysaccharides from Angelica sinensis on ulcerative colitis in rats. Inflammopharmacology. 2008;16(4):162. Wong VKC, Yu L, Cho CH. Protective effect of polysaccharides from Angelica sinensis on ulcerative colitis in rats. Inflammopharmacology. 2008;16(4):162.
[42]
go back to reference Wang K, Li L, Xu X, Lu L, Wang J, Wang S, Wang Y, Jin Z, Zhang JZ, Jiang Y. Fe3O4@astragalus polysaccharide core-shell nanoparticles for iron deficiency anemia therapy and magnetic resonance imaging in vivo. ACS Appl Mater Interfaces. 2019;11:10452. Wang K, Li L, Xu X, Lu L, Wang J, Wang S, Wang Y, Jin Z, Zhang JZ, Jiang Y. Fe3O4@astragalus polysaccharide core-shell nanoparticles for iron deficiency anemia therapy and magnetic resonance imaging in vivo. ACS Appl Mater Interfaces. 2019;11:10452.
[43]
go back to reference Fleet ME. The structure of magnetite: two annealed natural magnetites, Fe3.005O4 and Fe2.96Mg0.04O4. Acta Crystallogr Sect C: Cryst Struct Commun. 1984;40(9):1491. Fleet ME. The structure of magnetite: two annealed natural magnetites, Fe3.005O4 and Fe2.96Mg0.04O4. Acta Crystallogr Sect C: Cryst Struct Commun. 1984;40(9):1491.
[44]
go back to reference Neuberger T, Schöpf B, Hofmann H, Hofmann M, von Rechenberg B. Superparamagnetic nanoparticles for biomedical applications: possibilities and limitations of a new drug delivery system. J Magn Magn Mater. 2005;293(1):483. Neuberger T, Schöpf B, Hofmann H, Hofmann M, von Rechenberg B. Superparamagnetic nanoparticles for biomedical applications: possibilities and limitations of a new drug delivery system. J Magn Magn Mater. 2005;293(1):483.
[45]
go back to reference Wang J, Ge B, Li Z, Guan F, Li F. Structural analysis and immunoregulation activity comparison of five polysaccharides from Angelica sinensis. Carbohydr Polym. 2016;140:6. Wang J, Ge B, Li Z, Guan F, Li F. Structural analysis and immunoregulation activity comparison of five polysaccharides from Angelica sinensis. Carbohydr Polym. 2016;140:6.
[46]
go back to reference Bhattacharjee S. DLS and zeta potential—what they are and what they are not? J Control Release. 2016;235:337. Bhattacharjee S. DLS and zeta potential—what they are and what they are not? J Control Release. 2016;235:337.
Metadata
Title
Fe3O4@Angelica sinensis polysaccharide nanoparticles as an ultralow-toxicity contrast agent for magnetic resonance imaging
Authors
Kai Wang
Xiao-Guang Xu
Ying-Li Ma
Chun-Rui Sheng
Li-Na Li
Li-Ying Lu
Jian Wang
Yi-Ning Wang
Yong Jiang
Publication date
18-11-2020
Publisher
Nonferrous Metals Society of China
Published in
Rare Metals / Issue 9/2021
Print ISSN: 1001-0521
Electronic ISSN: 1867-7185
DOI
https://doi.org/10.1007/s12598-020-01620-0

Other articles of this Issue 9/2021

Rare Metals 9/2021 Go to the issue

Premium Partners