Skip to main content
Top
Published in: Rare Metals 9/2021

06-07-2020

Fatigue crack growth behavior of 2624-T39 aluminum alloy with different grain sizes

Authors: Guan Huang, Zhi-Hui Li, Li-Ming Sun, Xi-Wu Li, Kai Wen, Li-Zhen Yan, Bai-Qing Xiong, Yong-An Zhang

Published in: Rare Metals | Issue 9/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The microstructure of 2624-T39 aluminum alloy was analyzed by means of metallographic (OM), scanning electron microscope (SEM) and transmission electron microscope (TEM). The effects of different microstructure characteristics on the tensile properties and fatigue crack growth rate of 2624-T39 aluminum alloy were studied. Results showed that the grain size of the alloy was a typical fiber structure along the rolling direction, and the main second phase was the Al2CuMg phase. The grain size of the alloy had an obvious influence on the fatigue crack growth rate, and the alloy showed a lower fatigue crack growth rate due to the larger grain size. The crack initiation zone on the fracture surface of alloys with lower fatigue crack growth rate was relatively rough, the crack propagation zone had obvious fatigue striations, and the transient fracture zone had a large number of smaller dimples.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
[1]
go back to reference Eto T, Nakai M. New process-microstructure method for affordable 2024 series aerospace aluminum alloys. Mater Sci Forum. 2007;539–543:3643.CrossRef Eto T, Nakai M. New process-microstructure method for affordable 2024 series aerospace aluminum alloys. Mater Sci Forum. 2007;539–543:3643.CrossRef
[2]
go back to reference Dursun T, Soutis C. Recent developments in advanced aircraft aluminium alloys. Mater Des. 2014;56:862.CrossRef Dursun T, Soutis C. Recent developments in advanced aircraft aluminium alloys. Mater Des. 2014;56:862.CrossRef
[3]
go back to reference Heinz A, Haszler A, Keidel C, Moldenhauer S, Benedictus R, Miller WS. Recent development in aluminium alloys for aerospace applications. Mater Sci Eng A. 2000;280(1):102.CrossRef Heinz A, Haszler A, Keidel C, Moldenhauer S, Benedictus R, Miller WS. Recent development in aluminium alloys for aerospace applications. Mater Sci Eng A. 2000;280(1):102.CrossRef
[4]
go back to reference Starke EA Jr, Williams JC. Progress in structural materials for aerospace systems. Acta Mater. 2003;51(19):5775.CrossRef Starke EA Jr, Williams JC. Progress in structural materials for aerospace systems. Acta Mater. 2003;51(19):5775.CrossRef
[5]
go back to reference Srivatsan TS, Kolar D, Magnusen P. The cyclic fatigue and final fracture behavior of aluminum alloy 2524. Mater Des. 2002;23(2):129.CrossRef Srivatsan TS, Kolar D, Magnusen P. The cyclic fatigue and final fracture behavior of aluminum alloy 2524. Mater Des. 2002;23(2):129.CrossRef
[6]
go back to reference Ge RS, Zhang YA, Li ZH, Wang F, Zhu BH, Xiong BQ. Fatigue crack growth rate and microstructures of 2E12 and 2524 alloy. Chin J Rare Met. 2011;35(4):600. Ge RS, Zhang YA, Li ZH, Wang F, Zhu BH, Xiong BQ. Fatigue crack growth rate and microstructures of 2E12 and 2524 alloy. Chin J Rare Met. 2011;35(4):600.
[7]
go back to reference Tiamiyu AA, Basu R, Odeshi AG, Szpunar JA. Plastic deformation in relation to microstructure and texture evolution in AA 2017-T451 and AA 2624-T351 aluminum alloys under dynamic impact loading. Mater Sci Eng. 2015;636:379.CrossRef Tiamiyu AA, Basu R, Odeshi AG, Szpunar JA. Plastic deformation in relation to microstructure and texture evolution in AA 2017-T451 and AA 2624-T351 aluminum alloys under dynamic impact loading. Mater Sci Eng. 2015;636:379.CrossRef
[8]
go back to reference Thompson AW, Backofen WA. The effect of grain size on fatigue. Acta Metall. 1971;19(7):597.CrossRef Thompson AW, Backofen WA. The effect of grain size on fatigue. Acta Metall. 1971;19(7):597.CrossRef
[9]
go back to reference Zurek AK, James MR, Morris WL. The effect of grain size on fatigue growth of short cracks. Metall Trans A (Phys Metall Mater Sci). 1983;14(8):1697.CrossRef Zurek AK, James MR, Morris WL. The effect of grain size on fatigue growth of short cracks. Metall Trans A (Phys Metall Mater Sci). 1983;14(8):1697.CrossRef
[10]
go back to reference Zhang G, Gang L, Ding X, Sun J, Tong Z, Shao Y, Chen K. A fatigue model of high strength Al alloys containing second phase particles of various sizes. Rare Met Mater Eng. 2004;33(1):35. Zhang G, Gang L, Ding X, Sun J, Tong Z, Shao Y, Chen K. A fatigue model of high strength Al alloys containing second phase particles of various sizes. Rare Met Mater Eng. 2004;33(1):35.
[11]
go back to reference Saga J, Hayashi M, Nishio Y. Effect of grain size on fatigue crack propagation in aluminium. J Soc Mater Sci Jpn. 1977;26:1202.CrossRef Saga J, Hayashi M, Nishio Y. Effect of grain size on fatigue crack propagation in aluminium. J Soc Mater Sci Jpn. 1977;26:1202.CrossRef
[12]
go back to reference Lindigkeit J, Terlinde G, Gysler A, Lütjering G. The effect of grain size on the fatigue crack propagation behavior of age-hardened alloys in inert and corrosive environment. Acta Metall. 1979;27(11):1717.CrossRef Lindigkeit J, Terlinde G, Gysler A, Lütjering G. The effect of grain size on the fatigue crack propagation behavior of age-hardened alloys in inert and corrosive environment. Acta Metall. 1979;27(11):1717.CrossRef
[13]
go back to reference Carter RD, Lee EW, Starke EA, Beevers CJ. The effect of microstructure and environment on fatigue crack closure of 7475 aluminum alloy. Metall Mater Trans A. 1984;15(3):555.CrossRef Carter RD, Lee EW, Starke EA, Beevers CJ. The effect of microstructure and environment on fatigue crack closure of 7475 aluminum alloy. Metall Mater Trans A. 1984;15(3):555.CrossRef
[14]
go back to reference Shou WB, Yi DQ, Liu HQ, Tang C, Shen FH, Wang B. Effect of grain size on the fatigue crack growth behavior of 2524-T3 aluminum alloy. Arch Civ Mech Eng. 2016;16(3):304.CrossRef Shou WB, Yi DQ, Liu HQ, Tang C, Shen FH, Wang B. Effect of grain size on the fatigue crack growth behavior of 2524-T3 aluminum alloy. Arch Civ Mech Eng. 2016;16(3):304.CrossRef
[15]
go back to reference Yin DY, Liu HQ, Chen YQ, Yi DQ, Wang B, Shen FH, Fu S, Tang C, Pan SP. Effect of grain size on fatigue-crack growth in 2524 aluminium alloy. Int J Fatigue. 2016;84:9.CrossRef Yin DY, Liu HQ, Chen YQ, Yi DQ, Wang B, Shen FH, Fu S, Tang C, Pan SP. Effect of grain size on fatigue-crack growth in 2524 aluminium alloy. Int J Fatigue. 2016;84:9.CrossRef
[16]
go back to reference Valiev RZ, Islamgaliev RK, Alexandrov IV. Bulk nanostructured materials from severe plastic deformation. Prog Mater Sci. 2000;45(2):103.CrossRef Valiev RZ, Islamgaliev RK, Alexandrov IV. Bulk nanostructured materials from severe plastic deformation. Prog Mater Sci. 2000;45(2):103.CrossRef
[17]
go back to reference Plekhov O, Paggi M, Naimark O, Carpinteri A. A dimensional analysis interpretation to grain size and loading frequency dependencies of the Paris and Wohler curves. Int J Fatigue. 2011;33(3):477.CrossRef Plekhov O, Paggi M, Naimark O, Carpinteri A. A dimensional analysis interpretation to grain size and loading frequency dependencies of the Paris and Wohler curves. Int J Fatigue. 2011;33(3):477.CrossRef
[18]
go back to reference Yang HX, Li JS, Guo T, Wang WY, Kou HC, Wang J. Evolution of microstructure and hardness in a dual-phase Al0.5CoCrFeNi high-entropy alloy with different grain sizes. Rare Met. 2020;39(2):156.CrossRef Yang HX, Li JS, Guo T, Wang WY, Kou HC, Wang J. Evolution of microstructure and hardness in a dual-phase Al0.5CoCrFeNi high-entropy alloy with different grain sizes. Rare Met. 2020;39(2):156.CrossRef
[19]
go back to reference Händel M, Nickel D, Lampke T. Effect of different grain sizes and textures on the corrosion behaviour of aluminum alloy AA6082. Mater Werkst. 2011;42(7):606.CrossRef Händel M, Nickel D, Lampke T. Effect of different grain sizes and textures on the corrosion behaviour of aluminum alloy AA6082. Mater Werkst. 2011;42(7):606.CrossRef
[20]
go back to reference Chen YQ, Pan SP, Zhou MZ, Yi DQ, Xu DZ, Xu YF. Effects of inclusions, grain boundaries and grain orientations on the fatigue crack initiation and propagation behavior of 2524-T3 Al alloy. Mater Sci Eng A. 2013;580:150.CrossRef Chen YQ, Pan SP, Zhou MZ, Yi DQ, Xu DZ, Xu YF. Effects of inclusions, grain boundaries and grain orientations on the fatigue crack initiation and propagation behavior of 2524-T3 Al alloy. Mater Sci Eng A. 2013;580:150.CrossRef
[21]
go back to reference Wang J, Fang C, Hao H, Wang SH, Yang SJ, Dai SL, Zhang XG. Effects of trace Zr on the microstructure and properties of 2E12 alloy. Rare Met. 2009;28(5):511.CrossRef Wang J, Fang C, Hao H, Wang SH, Yang SJ, Dai SL, Zhang XG. Effects of trace Zr on the microstructure and properties of 2E12 alloy. Rare Met. 2009;28(5):511.CrossRef
[22]
go back to reference Dominguez J, Zapatero J, Pascual J. Effect of load histories on scatter of fatigue crack growth in aluminum alloy 2024-T351. Eng Fract Mech. 1997;56(1):65.CrossRef Dominguez J, Zapatero J, Pascual J. Effect of load histories on scatter of fatigue crack growth in aluminum alloy 2024-T351. Eng Fract Mech. 1997;56(1):65.CrossRef
[23]
go back to reference Golestaneh AF, Ali A, Bayat M. Analytical and numerical investigation of fatigue crack growth in aluminum alloy. Key Eng Mater. 2011;462–463(4):1050.CrossRef Golestaneh AF, Ali A, Bayat M. Analytical and numerical investigation of fatigue crack growth in aluminum alloy. Key Eng Mater. 2011;462–463(4):1050.CrossRef
[24]
go back to reference Suresh S. Fatigue crack deflection and fracture surface contact: micromechanical models. Metall Trans A (Phys Metall Mater Sci). 1985;16(1):249.CrossRef Suresh S. Fatigue crack deflection and fracture surface contact: micromechanical models. Metall Trans A (Phys Metall Mater Sci). 1985;16(1):249.CrossRef
[25]
go back to reference Cavaliere P. Fatigue properties and crack behavior of ultra-fine and nanocrystalline pure metals. Int J Fatigue. 2009;31(10):1476.CrossRef Cavaliere P. Fatigue properties and crack behavior of ultra-fine and nanocrystalline pure metals. Int J Fatigue. 2009;31(10):1476.CrossRef
[26]
go back to reference Padilla HA, Boyce BL. A review of fatigue behavior in nanocrystalline metals. Exp Mech. 2010;50(1):5.CrossRef Padilla HA, Boyce BL. A review of fatigue behavior in nanocrystalline metals. Exp Mech. 2010;50(1):5.CrossRef
[27]
go back to reference Pokluda J. Dislocation-based model of plasticity and roughness-induced crack closure. Int J Fatigue. 2013;46(1):35.CrossRef Pokluda J. Dislocation-based model of plasticity and roughness-induced crack closure. Int J Fatigue. 2013;46(1):35.CrossRef
[28]
go back to reference Turnbull A, Rios ERDL. The effect of grain size on fatigue crack growth in an aluminium magnesium alloy. Fatigue Fract Eng Mater Struct. 2010;18(11):1355.CrossRef Turnbull A, Rios ERDL. The effect of grain size on fatigue crack growth in an aluminium magnesium alloy. Fatigue Fract Eng Mater Struct. 2010;18(11):1355.CrossRef
[29]
go back to reference Tan L, Zhang XY, Xia T, Huang GJ, Liu Q. Fracture morphology and crack mechanism in pure polycrystalline magnesium under tension–compression fatigue testing. Rare Met. 2020;39(2):162.CrossRef Tan L, Zhang XY, Xia T, Huang GJ, Liu Q. Fracture morphology and crack mechanism in pure polycrystalline magnesium under tension–compression fatigue testing. Rare Met. 2020;39(2):162.CrossRef
[30]
go back to reference Haigen J, Zhimin Y, Feng J, Xue L. EBSD analysis of fatigue crack growth of 2124 aluminum alloy for aviation. Rare Met Mater Eng. 2014;43(6):1332.CrossRef Haigen J, Zhimin Y, Feng J, Xue L. EBSD analysis of fatigue crack growth of 2124 aluminum alloy for aviation. Rare Met Mater Eng. 2014;43(6):1332.CrossRef
[31]
go back to reference Yamada R, Itoh G, Kurumada A, Nakai M. Further study on the effect of environment on fatigue crack growth behavior of 2000 and 7000 series aluminum alloys. Mater Sci Forum. 2016;879:2153.CrossRef Yamada R, Itoh G, Kurumada A, Nakai M. Further study on the effect of environment on fatigue crack growth behavior of 2000 and 7000 series aluminum alloys. Mater Sci Forum. 2016;879:2153.CrossRef
Metadata
Title
Fatigue crack growth behavior of 2624-T39 aluminum alloy with different grain sizes
Authors
Guan Huang
Zhi-Hui Li
Li-Ming Sun
Xi-Wu Li
Kai Wen
Li-Zhen Yan
Bai-Qing Xiong
Yong-An Zhang
Publication date
06-07-2020
Publisher
Nonferrous Metals Society of China
Published in
Rare Metals / Issue 9/2021
Print ISSN: 1001-0521
Electronic ISSN: 1867-7185
DOI
https://doi.org/10.1007/s12598-020-01496-0

Other articles of this Issue 9/2021

Rare Metals 9/2021 Go to the issue

Premium Partners