Skip to main content
Erschienen in: Experimental Mechanics 1/2010

01.01.2010

A Review of Fatigue Behavior in Nanocrystalline Metals

verfasst von: H. A. Padilla II, B. L. Boyce

Erschienen in: Experimental Mechanics | Ausgabe 1/2010

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Nanocrystalline metals have been shown to exhibit unique mechanical behavior, including break-down in Hall-Petch behavior, suppression of dislocation-mediated plasticity, induction of grain boundary sliding, and induction of mechanical grain coarsening. Early research on the fatigue behavior of nanocrystalline metals shows evidence of improved fatigue resistance compared to traditional microcrystalline metals. In this review, experimental and modeling observations are used to evaluate aspects of cyclic plasticity, microstructural stability, crack initiation processes, and crack propagation processes. In cyclic plasticity studies to date, nanocrystalline metals have exhibited strongly rate-dependent cyclic hardening, suggesting the importance of diffusive deformation mechanisms such as grain-boundary sliding. The cyclic deformation processes have also been shown to cause substantial mechanically-induced grain coarsening reminiscent of coarsening observed during large-strain monotonic deformation of nanocrystalline metals. The crack-initiation process in nanocrystalline metals has been associated with both subsurface internal defects and surface extrusions, although it is unclear how these extrusions form when the grain size is below the scale necessary for persistent slip band formation. Finally, as expected, nanocrystalline metals have very little resistance to crack propagation due to limited plasticity and the lack of crack path tortuosity among other factors. Nevertheless, like bulk metallic glasses, nanocrystalline metals exhibit both ductile fatigue striations and metal-like Paris-law behavior. The review provides both a comprehensive critical survey of existing literature and a summary of key areas for further investigation.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Lowe TC (2007) Enhancing fatigue properties of nanostructured metals and alloys. Adv Mater Res 29–30:117–122 Lowe TC (2007) Enhancing fatigue properties of nanostructured metals and alloys. Adv Mater Res 29–30:117–122
2.
Zurück zum Zitat Gleiter H (1989) Nanocrystalline materials. Prog Mater Sci 33:223–315 Gleiter H (1989) Nanocrystalline materials. Prog Mater Sci 33:223–315
3.
Zurück zum Zitat Haouaoui M et al (2004) Microstructure evolution and mechanical behavior of bulk copper obtained by consolidation of micro- and nanopowders using equal-channel angular extrusion. Metall Mater Trans A 35A:2935–2949 Haouaoui M et al (2004) Microstructure evolution and mechanical behavior of bulk copper obtained by consolidation of micro- and nanopowders using equal-channel angular extrusion. Metall Mater Trans A 35A:2935–2949
4.
Zurück zum Zitat Karimpoor AA, Erb U (2006) Mechanical properties of nanocrystalline cobalt. Phys Status Solidi A 203:1265–1270 Karimpoor AA, Erb U (2006) Mechanical properties of nanocrystalline cobalt. Phys Status Solidi A 203:1265–1270
5.
Zurück zum Zitat Karimpoor AA et al (2003) High strength nanocrystalline cobalt with high tensile ductility. Scripta Mater 49:651–656 Karimpoor AA et al (2003) High strength nanocrystalline cobalt with high tensile ductility. Scripta Mater 49:651–656
6.
Zurück zum Zitat Karimpoor AA et al (2002) Tensile properties of bulk nanocrystalline hexagonal cobalt electrodeposits. Mater Sci Forum 386–3:415–420 Karimpoor AA et al (2002) Tensile properties of bulk nanocrystalline hexagonal cobalt electrodeposits. Mater Sci Forum 386–3:415–420
7.
Zurück zum Zitat Agnew SR et al (2000) Microstructure and mechanical behavior of nanocrystalline metals. Mater Sci Eng A A285:391–396 Agnew SR et al (2000) Microstructure and mechanical behavior of nanocrystalline metals. Mater Sci Eng A A285:391–396
8.
Zurück zum Zitat Fan GJ et al (2007) Mechanical behavior of a bulk nanocrystalline Ni-Fe alloy. J Alloy Compd 434(435):298–300 Fan GJ et al (2007) Mechanical behavior of a bulk nanocrystalline Ni-Fe alloy. J Alloy Compd 434(435):298–300
9.
Zurück zum Zitat Khan AS et al (2006) Nanocrystalline aluminum and iron: mechanical behavior at quasi-static and high strain rates, and constitutive modeling. Int J Plast 22:195–209MATH Khan AS et al (2006) Nanocrystalline aluminum and iron: mechanical behavior at quasi-static and high strain rates, and constitutive modeling. Int J Plast 22:195–209MATH
10.
Zurück zum Zitat Ajdelsztajn L et al (2005) Cold spray deposition of nanocrystalline aluminum alloys. Metall Mater Trans A 36A:657–666 Ajdelsztajn L et al (2005) Cold spray deposition of nanocrystalline aluminum alloys. Metall Mater Trans A 36A:657–666
11.
Zurück zum Zitat Xiao C et al (2001) Tensile behavior and fracture in nickel and carbon doped nanocrystalline nickel. Mater Sci Eng A A301:35–43 Xiao C et al (2001) Tensile behavior and fracture in nickel and carbon doped nanocrystalline nickel. Mater Sci Eng A A301:35–43
12.
Zurück zum Zitat Chokshi AH et al (1989) On the validity of the Hall-Petch relationship in nanocrystalline metals. Scripta Metall 23:1679–1683 Chokshi AH et al (1989) On the validity of the Hall-Petch relationship in nanocrystalline metals. Scripta Metall 23:1679–1683
13.
Zurück zum Zitat Wang YM et al (2003) Microsample tensile testing of nanocrystalline copper. Scripta Mater 48:1581–1586 Wang YM et al (2003) Microsample tensile testing of nanocrystalline copper. Scripta Mater 48:1581–1586
14.
Zurück zum Zitat Yang Y et al (2008) Fatigue and fracture of a bulk nanocrystalline NiFe alloy. Metall Mater Trans A 39A:1145–1156 Yang Y et al (2008) Fatigue and fracture of a bulk nanocrystalline NiFe alloy. Metall Mater Trans A 39A:1145–1156
15.
Zurück zum Zitat Tian JW et al (2007) A study of the effect of nanostructured surface layers on the fatigue behaviors of a C-2000 superalloy. Mater Sci Eng A 468–470:164–170 Tian JW et al (2007) A study of the effect of nanostructured surface layers on the fatigue behaviors of a C-2000 superalloy. Mater Sci Eng A 468–470:164–170
16.
Zurück zum Zitat Roland T et al (2006) Fatigue life improvement through surface nanostructuring of stainless steel by means of surface mechanical attrition treatment. Scripta Mater 54:1949–1954 Roland T et al (2006) Fatigue life improvement through surface nanostructuring of stainless steel by means of surface mechanical attrition treatment. Scripta Mater 54:1949–1954
17.
Zurück zum Zitat Nikitin I (2005) Mechanical and thermal stability of mechanically induced near-surface nanostructures. Mater Sci Eng Abstr (Structural Materials: Properties, Microstructure and Processing) 403:318–327 Nikitin I (2005) Mechanical and thermal stability of mechanically induced near-surface nanostructures. Mater Sci Eng Abstr (Structural Materials: Properties, Microstructure and Processing) 403:318–327
18.
Zurück zum Zitat Han SZ et al (2007) Fatigue behavior of nano-grained copper prepared by ECAP. J Alloy Compd 434–435:304–306 Han SZ et al (2007) Fatigue behavior of nano-grained copper prepared by ECAP. J Alloy Compd 434–435:304–306
19.
Zurück zum Zitat Burkle G et al (2002) Determination of the mechanical properties of nanocrystalline Fe-Cr-based thermal spray coatings. Mater Sci Forum 386(388):571–576 Burkle G et al (2002) Determination of the mechanical properties of nanocrystalline Fe-Cr-based thermal spray coatings. Mater Sci Forum 386(388):571–576
20.
Zurück zum Zitat Cavaliere P (2007) Low cycle fatigue of electrodeposited pure nanocrystalline metals. Mater Sci Forum 2007:2–302 Cavaliere P (2007) Low cycle fatigue of electrodeposited pure nanocrystalline metals. Mater Sci Forum 2007:2–302
21.
Zurück zum Zitat Dai K, Shaw L (2008) Analysis of fatigue resistance improvements via surface severe plastic deformation. Int J Fatigue 30:1398–1408 Dai K, Shaw L (2008) Analysis of fatigue resistance improvements via surface severe plastic deformation. Int J Fatigue 30:1398–1408
22.
Zurück zum Zitat Hanlon T, Kwon YN, Suresh S (2003) Grain size effects on the fatigue response of nanocrystalline metals. Scripta Mater 49:675–680 Hanlon T, Kwon YN, Suresh S (2003) Grain size effects on the fatigue response of nanocrystalline metals. Scripta Mater 49:675–680
23.
Zurück zum Zitat Hanlon T, Tabachnikova ED, Suresh S (2005) Fatigue behavior of nanocrystalline metals and alloys. Int J Fatigue 27:1147–1158 Hanlon T, Tabachnikova ED, Suresh S (2005) Fatigue behavior of nanocrystalline metals and alloys. Int J Fatigue 27:1147–1158
24.
Zurück zum Zitat Moser B et al (2006) Cyclic strain hardening of nanocrystalline nickel. Scripta Mater 54:1151–1155 Moser B et al (2006) Cyclic strain hardening of nanocrystalline nickel. Scripta Mater 54:1151–1155
25.
Zurück zum Zitat Mano H et al (2005) Characterization of nanocrystalline surface layer induced by shot peening and effect on their fatigue strength. Materials Research Society Symposium Proceedings, November 30–December 2, 2004, Boston, MA, 843: 67–72 Mano H et al (2005) Characterization of nanocrystalline surface layer induced by shot peening and effect on their fatigue strength. Materials Research Society Symposium Proceedings, November 30–December 2, 2004, Boston, MA, 843: 67–72
26.
Zurück zum Zitat Pao PS, Jones HN, Feng CR (2004) Fatigue crack growth and fracture toughness in bimodal Al 5083. Materials Research Society Symposium Proceedings, December 1–5, 2003, Boston, MA, 791: 17–22 Pao PS, Jones HN, Feng CR (2004) Fatigue crack growth and fracture toughness in bimodal Al 5083. Materials Research Society Symposium Proceedings, December 1–5, 2003, Boston, MA, 791: 17–22
27.
Zurück zum Zitat Pao PS et al (2003) Tensile deformation and fatigue crack growth in bulk nanocrystalline Al-7.5 Mg. Materials Research Society Symposium Proceedings, December 2–6, 2002, Boston, MA, 740: 15–20 Pao PS et al (2003) Tensile deformation and fatigue crack growth in bulk nanocrystalline Al-7.5 Mg. Materials Research Society Symposium Proceedings, December 2–6, 2002, Boston, MA, 740: 15–20
28.
Zurück zum Zitat Sriraman KR, Raman SGS, Seshadri SK (2007) Influence of crystallite size on the hardness and fatigue life of steel samples coated with electrodeposited nanocrystalline Ni-W alloys. Mater Lett 61:715–718 Sriraman KR, Raman SGS, Seshadri SK (2007) Influence of crystallite size on the hardness and fatigue life of steel samples coated with electrodeposited nanocrystalline Ni-W alloys. Mater Lett 61:715–718
29.
Zurück zum Zitat Witney AB et al (1995) Fatigue of nanocrystalline copper. Scripta Metall Et Mater 33:2025–2030 Witney AB et al (1995) Fatigue of nanocrystalline copper. Scripta Metall Et Mater 33:2025–2030
30.
Zurück zum Zitat Xie JJ, Wu XL, Hong YS (2008) Study on fatigue crack nucleation of electro deposited nanocrystalline nickel. Adv Mater Res 33–37:925–930 Xie JJ, Wu XL, Hong YS (2008) Study on fatigue crack nucleation of electro deposited nanocrystalline nickel. Adv Mater Res 33–37:925–930
31.
Zurück zum Zitat Kumar KS, Van Swygenhoven H, Suresh S (2003) Mechanical behavior of nanocrystalline metals and alloys. Acta Mater 51:5743–5774 Kumar KS, Van Swygenhoven H, Suresh S (2003) Mechanical behavior of nanocrystalline metals and alloys. Acta Mater 51:5743–5774
32.
Zurück zum Zitat Czyzniewski A (2003) Deposition and some properties of nanocrystalline WC and nanocomposite WC/a-C:H coatings. Thin Solid Films 433:180–185 Czyzniewski A (2003) Deposition and some properties of nanocrystalline WC and nanocomposite WC/a-C:H coatings. Thin Solid Films 433:180–185
33.
Zurück zum Zitat Hanlon T et al (2005) Effects of grain refinement and strength on friction and damage evolution under repeated sliding contact in nanostructured metals. Int J Fatigue 27:1159–1163 Hanlon T et al (2005) Effects of grain refinement and strength on friction and damage evolution under repeated sliding contact in nanostructured metals. Int J Fatigue 27:1159–1163
34.
Zurück zum Zitat Zhang YS et al (2006) Friction and wear behaviors of nanocrystalline surface layer of pure copper. Wear 260:942–948 Zhang YS et al (2006) Friction and wear behaviors of nanocrystalline surface layer of pure copper. Wear 260:942–948
35.
Zurück zum Zitat Inturi RB, Sklarska-Smialowska Z (1992) Localized corrosion of nanocrystalline 304 type stainless steel films. Corros 48:398–403CrossRef Inturi RB, Sklarska-Smialowska Z (1992) Localized corrosion of nanocrystalline 304 type stainless steel films. Corros 48:398–403CrossRef
36.
Zurück zum Zitat Mishra R, Balasubramaniam R (2004) Effect of nanocrystalline grain size on the electrochemical and corrosion behavior of nickel. Corr Sci 46:3019–3029 Mishra R, Balasubramaniam R (2004) Effect of nanocrystalline grain size on the electrochemical and corrosion behavior of nickel. Corr Sci 46:3019–3029
37.
Zurück zum Zitat Qiu, JH (2002) A study of the corrosion resistance of electroplated nanocrystalline and polycrystalline nickel coatings. 2nd International Conference on Advanced Materials Processing, Dec 02–04, Singapore: 211–214 Qiu, JH (2002) A study of the corrosion resistance of electroplated nanocrystalline and polycrystalline nickel coatings. 2nd International Conference on Advanced Materials Processing, Dec 02–04, Singapore: 211–214
38.
Zurück zum Zitat Yamakov V et al (2007) Dynamics of nanoscale grain-boundary decohesion in aluminum by molecular-dynamics simulation. J Mater Sci 42:1466–1476 Yamakov V et al (2007) Dynamics of nanoscale grain-boundary decohesion in aluminum by molecular-dynamics simulation. J Mater Sci 42:1466–1476
39.
Zurück zum Zitat Warner DH, Curtis WA, Qu S (2007) Rate dependence of crack-tip processes predicts twinning trends in f.c.c. metals. Nat Mater 6:876–881 Warner DH, Curtis WA, Qu S (2007) Rate dependence of crack-tip processes predicts twinning trends in f.c.c. metals. Nat Mater 6:876–881
40.
Zurück zum Zitat Farkas D, Willemann M, Hyde B (2005) Atomistic mechanisms of fatigue in nanocrystalline metals. Phys Rev Lett 94:165502–4 Farkas D, Willemann M, Hyde B (2005) Atomistic mechanisms of fatigue in nanocrystalline metals. Phys Rev Lett 94:165502–4
41.
Zurück zum Zitat Noronha SJ, Farkas D (2002) Dislocation pinning effects on fracture behavior: atomistic and dislocation dynamics simulations. Phys Rev B 66:132103 Noronha SJ, Farkas D (2002) Dislocation pinning effects on fracture behavior: atomistic and dislocation dynamics simulations. Phys Rev B 66:132103
42.
Zurück zum Zitat Farkas D et al (2005) Dislocation activity and nano-void formation near crack tips in nanocrystalline Ni. Acta Mater 53:3115–3123 Farkas D et al (2005) Dislocation activity and nano-void formation near crack tips in nanocrystalline Ni. Acta Mater 53:3115–3123
43.
Zurück zum Zitat Cao AJ, Wei YG (2007) Atomistic simulations of crack nucleation and intergranular fracture in bulk nanocrystalline nickel. Phys Rev B 76:024113 Cao AJ, Wei YG (2007) Atomistic simulations of crack nucleation and intergranular fracture in bulk nanocrystalline nickel. Phys Rev B 76:024113
44.
Zurück zum Zitat Farkas D (2005) Twinning and recrystallisation as crack tip deformation mechanisms during fracture. Phil Mag 85:387–397 Farkas D (2005) Twinning and recrystallisation as crack tip deformation mechanisms during fracture. Phil Mag 85:387–397
45.
Zurück zum Zitat Farkas D, Curtin WA (2005) Plastic deformation mechanisms in nanocrystalline columnar grain structures. Mater Sci Eng A 412:316–322 Farkas D, Curtin WA (2005) Plastic deformation mechanisms in nanocrystalline columnar grain structures. Mater Sci Eng A 412:316–322
46.
Zurück zum Zitat Dao M et al (2007) Toward a quantitative understanding of mechanical behavior of nanocrystalline metals. Acta Mater 55:4041–4065 Dao M et al (2007) Toward a quantitative understanding of mechanical behavior of nanocrystalline metals. Acta Mater 55:4041–4065
47.
Zurück zum Zitat Meyers MA, Mishra A, Benson DJ (2006) Mechanical properties of nanocrystalline materials. Prog Mater Sci 51:427–556 Meyers MA, Mishra A, Benson DJ (2006) Mechanical properties of nanocrystalline materials. Prog Mater Sci 51:427–556
48.
Zurück zum Zitat Siow KS, Tay AAO, Oruganti P (2004) Mechanical properties of nanocrystalline copper and nickel. Mater Sci Tech 20:285–294 Siow KS, Tay AAO, Oruganti P (2004) Mechanical properties of nanocrystalline copper and nickel. Mater Sci Tech 20:285–294
49.
Zurück zum Zitat Torres MAS, Voorwald HJC (2002) An evaluation of shot peening, residual stress and stress relaxation on the fatigue life of AISI 4340 steel. Int J Fatigue 24:877–886 Torres MAS, Voorwald HJC (2002) An evaluation of shot peening, residual stress and stress relaxation on the fatigue life of AISI 4340 steel. Int J Fatigue 24:877–886
50.
Zurück zum Zitat Montross CS et al (2002) Laser shock processing and its effects on microstructure and properties of metal alloys: a review. Int J Fatigue 24:1021–1036 Montross CS et al (2002) Laser shock processing and its effects on microstructure and properties of metal alloys: a review. Int J Fatigue 24:1021–1036
51.
Zurück zum Zitat Altenberger I et al (1999) Cyclic deformation and near surface microstructures of shot peened or deep rolled austenitic stainless steel AISI 304. Mater Sci Eng A 264:1–16 Altenberger I et al (1999) Cyclic deformation and near surface microstructures of shot peened or deep rolled austenitic stainless steel AISI 304. Mater Sci Eng A 264:1–16
52.
Zurück zum Zitat Nikitin I, Altenberger I, Scholtes B (2005) Residual stress state and cyclic deformation behaviour of deep rolled and laser-shock peened AISI 304 stainless steel at elevated temperatures. Mater Sci Forum 490(491):376–383 Nikitin I, Altenberger I, Scholtes B (2005) Residual stress state and cyclic deformation behaviour of deep rolled and laser-shock peened AISI 304 stainless steel at elevated temperatures. Mater Sci Forum 490(491):376–383
53.
Zurück zum Zitat Farrahi GH, Lebrun JL, Couratin D (1995) Effect of shot peening on residual-stress and fatigue life of a spring steel. Fatigue Fract Eng Mater Struct 18:211–220 Farrahi GH, Lebrun JL, Couratin D (1995) Effect of shot peening on residual-stress and fatigue life of a spring steel. Fatigue Fract Eng Mater Struct 18:211–220
54.
Zurück zum Zitat Peyre P et al (1996) Laser shock processing of aluminium alloys. Application to high cycle fatigue behaviour. Mater Sci Eng A 210:102–113 Peyre P et al (1996) Laser shock processing of aluminium alloys. Application to high cycle fatigue behaviour. Mater Sci Eng A 210:102–113
55.
Zurück zum Zitat Ayyub P et al (2001) Synthesis of nanocrystalline material by sputtering and laser ablation at low temperatures. Appl Phys A 73:67–73 Ayyub P et al (2001) Synthesis of nanocrystalline material by sputtering and laser ablation at low temperatures. Appl Phys A 73:67–73
56.
Zurück zum Zitat Wang YM, Jankowski AF, Hamza AV (2007) Strength and thermal stability of nanocrystalline gold alloys. Scripta Mater 57:301–304 Wang YM, Jankowski AF, Hamza AV (2007) Strength and thermal stability of nanocrystalline gold alloys. Scripta Mater 57:301–304
57.
Zurück zum Zitat Jankowski AF et al (2006) Nanocrystalline growth and grain-size effects in Au-Cu electrodeposits. Thin Solid Films 494:268–273 Jankowski AF et al (2006) Nanocrystalline growth and grain-size effects in Au-Cu electrodeposits. Thin Solid Films 494:268–273
58.
Zurück zum Zitat Abraham M et al (2001) Microstructure and thermal stability of electrodeposited nanocrystalline nickel. International Symposium on Metastable, Mechanically Alloyed and Nanocrystalline Materials, Jun 24–29, 2001, Ann Arbor, MI: 397–402 Abraham M et al (2001) Microstructure and thermal stability of electrodeposited nanocrystalline nickel. International Symposium on Metastable, Mechanically Alloyed and Nanocrystalline Materials, Jun 24–29, 2001, Ann Arbor, MI: 397–402
59.
Zurück zum Zitat Arnould O, Hubert O, Hild F (2004) Thermomechanical properties and fatigue of nanocrystalline Ni/Cu electrodeposits. Nanoscale Materials and Modeling—Relations Among Processing, Microstructure and Mechanical Properties, April 13–16, 2004, San Francisco, CA: 357–362 Arnould O, Hubert O, Hild F (2004) Thermomechanical properties and fatigue of nanocrystalline Ni/Cu electrodeposits. Nanoscale Materials and Modeling—Relations Among Processing, Microstructure and Mechanical Properties, April 13–16, 2004, San Francisco, CA: 357–362
60.
Zurück zum Zitat Cheng S et al (2007) Fracture of Ni with grain-size from nanocrystalline to ultrafine scale under cyclic loading. Scripta Mater 57:217–220 Cheng S et al (2007) Fracture of Ni with grain-size from nanocrystalline to ultrafine scale under cyclic loading. Scripta Mater 57:217–220
61.
Zurück zum Zitat Cziraki, A, et al (1994) Thermal-stability of nanocrystalline nickel electrodeposits-Differential scanning calorimetry, transmission electron-microscopy and magnetic studies. 8th International Conference on Rapidly Quenched and Metastable Materials, Aug 22–27, Sendai, Japan: 531–535 Cziraki, A, et al (1994) Thermal-stability of nanocrystalline nickel electrodeposits-Differential scanning calorimetry, transmission electron-microscopy and magnetic studies. 8th International Conference on Rapidly Quenched and Metastable Materials, Aug 22–27, Sendai, Japan: 531–535
62.
Zurück zum Zitat Hattar K et al (2008) Defect structures created during abnormal grain growth in pulsed-laser deposited nickel. Acta Mater 56:794–801 Hattar K et al (2008) Defect structures created during abnormal grain growth in pulsed-laser deposited nickel. Acta Mater 56:794–801
63.
Zurück zum Zitat Hugo RC et al (2003) In-situ TEM tensile testing of DC magnetron sputtered and pulsed laser deposited Ni thin films. Acta Mater 51:1937–1943 Hugo RC et al (2003) In-situ TEM tensile testing of DC magnetron sputtered and pulsed laser deposited Ni thin films. Acta Mater 51:1937–1943
64.
Zurück zum Zitat Jianhong H, Schoenung JM (2003) Nanocrystalline Ni coatings strengthened with ultrafine particles. Metall Mater Trans A 34A:673–683 Jianhong H, Schoenung JM (2003) Nanocrystalline Ni coatings strengthened with ultrafine particles. Metall Mater Trans A 34A:673–683
65.
Zurück zum Zitat Klementl U, Erb U, Aust KT (1995) Investigations of the grain growth behaviour of nanocrystalline nickel. Nanostructured Mater 6:581–584 Klementl U, Erb U, Aust KT (1995) Investigations of the grain growth behaviour of nanocrystalline nickel. Nanostructured Mater 6:581–584
66.
Zurück zum Zitat Knapp JA, Follstaedt DM (2004) Hall-Petch relationship in pulsed-laser deposited nickel films. J Mater Res 19:218–227 Knapp JA, Follstaedt DM (2004) Hall-Petch relationship in pulsed-laser deposited nickel films. J Mater Res 19:218–227
67.
Zurück zum Zitat Kumar KS et al (2003) Deformation of electrodeposited nanocrystalline nickel. Acta Mater 51:387–405 Kumar KS et al (2003) Deformation of electrodeposited nanocrystalline nickel. Acta Mater 51:387–405
68.
Zurück zum Zitat Larsen KP et al (2003) MEMS device for bending test: measurements of fatigue and creep of electroplated nickel. Sens Actuators A 103:156–164 Larsen KP et al (2003) MEMS device for bending test: measurements of fatigue and creep of electroplated nickel. Sens Actuators A 103:156–164
69.
Zurück zum Zitat Li HQ, Ebrahimi F (2003) An investigation of thermal stability and microhardness of electrodeposited nanocrystalline nickel-21% iron alloys. Acta Mater 51:3905–3913 Li HQ, Ebrahimi F (2003) An investigation of thermal stability and microhardness of electrodeposited nanocrystalline nickel-21% iron alloys. Acta Mater 51:3905–3913
70.
Zurück zum Zitat Wu X et al (2006) Twinning and stacking fault formation during tensile deformation of nanocrystalline Ni. Scripta Mater 54:1685–1690 Wu X et al (2006) Twinning and stacking fault formation during tensile deformation of nanocrystalline Ni. Scripta Mater 54:1685–1690
71.
Zurück zum Zitat Xie J, Wu X, Hong Y (2007) Shear bands at the fatigue crack tip of nanocrystalline nickel. Scripta Mater 57:5–8 Xie J, Wu X, Hong Y (2007) Shear bands at the fatigue crack tip of nanocrystalline nickel. Scripta Mater 57:5–8
72.
Zurück zum Zitat Yang Y et al (2007) Mechanisms of fatigue in LIGA Ni MEMS thin films. Mater Sci Eng A 444:39–50 Yang Y et al (2007) Mechanisms of fatigue in LIGA Ni MEMS thin films. Mater Sci Eng A 444:39–50
73.
Zurück zum Zitat Watts OP (1916) Rapid nickel plating [with discussion]. Trans Am Electrochem Soc 29:395–403 Watts OP (1916) Rapid nickel plating [with discussion]. Trans Am Electrochem Soc 29:395–403
74.
Zurück zum Zitat Cui BZ et al (2007) Highly textured and twinned Cu films fabricated by pulsed electrodeposition. Acta Mater 55:4429–4438 Cui BZ et al (2007) Highly textured and twinned Cu films fabricated by pulsed electrodeposition. Acta Mater 55:4429–4438
75.
Zurück zum Zitat Tjahyono NI, Chiu YL (2008) The effect of substrate on the microstructure and preferred orientation of nanocrystalline copper prepared by electrodeposition. Symposium on Chemical and Electrochemical Synthesis of Advanced Materials and Nanostructures on Solid Surfaces, Sep 17–21, 2007, Warsaw, Poland, 5: 3522–3525 Tjahyono NI, Chiu YL (2008) The effect of substrate on the microstructure and preferred orientation of nanocrystalline copper prepared by electrodeposition. Symposium on Chemical and Electrochemical Synthesis of Advanced Materials and Nanostructures on Solid Surfaces, Sep 17–21, 2007, Warsaw, Poland, 5: 3522–3525
76.
Zurück zum Zitat Dini JW (1982) Electrodeposition: the materials science of coatings and substrates. Noyes, New York Dini JW (1982) Electrodeposition: the materials science of coatings and substrates. Noyes, New York
77.
Zurück zum Zitat Bastos A, Zaefferer S, Raabe D (2008) Three-dimensional EBSD study on the relationship between triple junctions and columnar grains in electrodeposited Co-Ni films. J Microsc 230:487–498MathSciNet Bastos A, Zaefferer S, Raabe D (2008) Three-dimensional EBSD study on the relationship between triple junctions and columnar grains in electrodeposited Co-Ni films. J Microsc 230:487–498MathSciNet
78.
Zurück zum Zitat Buchheit TE et al (2006) Electrodeposited 80Ni-20Fe (Permalloy) as a structural material for high aspect ratio microfabrication. Mater Sci Eng A 432:149–157 Buchheit TE et al (2006) Electrodeposited 80Ni-20Fe (Permalloy) as a structural material for high aspect ratio microfabrication. Mater Sci Eng A 432:149–157
79.
Zurück zum Zitat Yin WM, Whang SH, Mirshams RA (2005) Effect of interstitials on tensile strength and creep in nanostructured Ni. Acta Mater 53:383–392 Yin WM, Whang SH, Mirshams RA (2005) Effect of interstitials on tensile strength and creep in nanostructured Ni. Acta Mater 53:383–392
80.
Zurück zum Zitat El-Sherik AM, Shirokoff J, Erb U (2005) Stress measurements in nanocrystalline Ni electrodeposits. J Alloy Compd 389:140–143 El-Sherik AM, Shirokoff J, Erb U (2005) Stress measurements in nanocrystalline Ni electrodeposits. J Alloy Compd 389:140–143
81.
Zurück zum Zitat Schlesinger M, Paunovic M (eds) (2000) Modern electroplating. 4th ed. Electrochemical society series. Wiley and Sons, New York Schlesinger M, Paunovic M (eds) (2000) Modern electroplating. 4th ed. Electrochemical society series. Wiley and Sons, New York
82.
Zurück zum Zitat Dykhuizen RC, Smith MF (1998) Gas dynamic principles of cold spray. J Therm Spray Tech 7:205–212 Dykhuizen RC, Smith MF (1998) Gas dynamic principles of cold spray. J Therm Spray Tech 7:205–212
83.
Zurück zum Zitat Gilmore DL et al (1999) Particle velocity and deposition efficiency in the cold spray process. J Therm Spray Tech 8:576–582 Gilmore DL et al (1999) Particle velocity and deposition efficiency in the cold spray process. J Therm Spray Tech 8:576–582
84.
Zurück zum Zitat Dykhuizen RC et al (1999) Impact of high velocity cold spray particles. J Therm Spray Tech 8:559–564 Dykhuizen RC et al (1999) Impact of high velocity cold spray particles. J Therm Spray Tech 8:559–564
85.
Zurück zum Zitat Hall AC et al (2006) The effect of a simple annealing heat treatment on the mechanical properties of cold-sprayed aluminum. J Therm Spray Tech 15:233–238 Hall AC et al (2006) The effect of a simple annealing heat treatment on the mechanical properties of cold-sprayed aluminum. J Therm Spray Tech 15:233–238
86.
Zurück zum Zitat Hall, A, et al (2009) Preparation and mechanical properties of cold sprayed nanocrystalline aluminum. International Thermal Spray Conference, June 2–4, 2008, Maastricht, The Netherlands: Hall, A, et al (2009) Preparation and mechanical properties of cold sprayed nanocrystalline aluminum. International Thermal Spray Conference, June 2–4, 2008, Maastricht, The Netherlands:
87.
Zurück zum Zitat Alkhimov AP, Kosarev VF, Papyrin AN (1990) A method of cold gas-dynamic deposition. Sov Phys Dokl 35:1047–1049 Alkhimov AP, Kosarev VF, Papyrin AN (1990) A method of cold gas-dynamic deposition. Sov Phys Dokl 35:1047–1049
88.
Zurück zum Zitat Ajdelsztajn L et al (2006) Cold-spray processing of a nanocrystalline Al-Cu = Mg-Fe-Ni alloy with Sc. J Therm Spray Tech 15:184–190 Ajdelsztajn L et al (2006) Cold-spray processing of a nanocrystalline Al-Cu = Mg-Fe-Ni alloy with Sc. J Therm Spray Tech 15:184–190
89.
Zurück zum Zitat Richer P et al (2006) Substrate roughness and thickness effects on cold spray nanocrystalline Al-Mg coatings. J Therm Spray Tech 15:246–254 Richer P et al (2006) Substrate roughness and thickness effects on cold spray nanocrystalline Al-Mg coatings. J Therm Spray Tech 15:246–254
90.
Zurück zum Zitat Ajdelsztajn L, Jodoin B, Schoenung JM (2006) Synthesis and mechanical properties of nanocrystalline Ni coatings produced by cold gas dynamic spraying. Surf Coat Tech 201:1166–1172 Ajdelsztajn L, Jodoin B, Schoenung JM (2006) Synthesis and mechanical properties of nanocrystalline Ni coatings produced by cold gas dynamic spraying. Surf Coat Tech 201:1166–1172
91.
Zurück zum Zitat Fan SQ et al (2006) Characterization of microstructure of nano-TiO2 coating deposited by vacuum cold spraying. J Therm Spray Tech 15:513–517 Fan SQ et al (2006) Characterization of microstructure of nano-TiO2 coating deposited by vacuum cold spraying. J Therm Spray Tech 15:513–517
92.
Zurück zum Zitat Li CJ et al (2007) Characterization of nanostructured WC-Co deposited by cold spraying. J Therm Spray Tech 16:1011–1020 Li CJ et al (2007) Characterization of nanostructured WC-Co deposited by cold spraying. J Therm Spray Tech 16:1011–1020
93.
Zurück zum Zitat Mughrabi H, Hoppel HW, Kautz M (2004) Fatigue and microstructure of ultrafine-grained metals produced by severe plastic deformation. Scripta Mater 51:807–812 Mughrabi H, Hoppel HW, Kautz M (2004) Fatigue and microstructure of ultrafine-grained metals produced by severe plastic deformation. Scripta Mater 51:807–812
94.
Zurück zum Zitat Hoppel HW et al (2006) An overview: fatigue behaviour of ultrafine-grained metals and alloys. Int J Fatigue 28:1001–1010 Hoppel HW et al (2006) An overview: fatigue behaviour of ultrafine-grained metals and alloys. Int J Fatigue 28:1001–1010
95.
Zurück zum Zitat Canadinc D et al (2008) On the cyclic stability of nanocrystalline copper obtained by powder consolidation at room temperature. Scripta Mater 58:307–310 Canadinc D et al (2008) On the cyclic stability of nanocrystalline copper obtained by powder consolidation at room temperature. Scripta Mater 58:307–310
96.
Zurück zum Zitat Horita Z, Langdon TG (2005) Microstructures and microhardness of an aluminum alloy and pure copper after processing by high-pressure torsion. Mater Sci Eng A 410–411:422–425 Horita Z, Langdon TG (2005) Microstructures and microhardness of an aluminum alloy and pure copper after processing by high-pressure torsion. Mater Sci Eng A 410–411:422–425
97.
Zurück zum Zitat Ivanisenko Y, Valiev RZ, Fecht HJ (2005) Grain boundary statistics in nano-structured iron produced by high pressure torsion. Mater Sci Eng A 390:159–165 Ivanisenko Y, Valiev RZ, Fecht HJ (2005) Grain boundary statistics in nano-structured iron produced by high pressure torsion. Mater Sci Eng A 390:159–165
98.
Zurück zum Zitat Pérez-Prado MT et al (2008) Bulk nanocrystalline [omega]-Zr by high-pressure torsion. Scripta Mater 58:219–222 Pérez-Prado MT et al (2008) Bulk nanocrystalline [omega]-Zr by high-pressure torsion. Scripta Mater 58:219–222
99.
Zurück zum Zitat Yang Z, Welzel U (2005) Microstructure-microhardness relation of nanostructured Ni produced by high-pressure torsion. Mater Lett 59:3406–3409 Yang Z, Welzel U (2005) Microstructure-microhardness relation of nanostructured Ni produced by high-pressure torsion. Mater Lett 59:3406–3409
100.
Zurück zum Zitat Lee Z et al (2004) Microstructure and microhardness of cryomilled bulk nanocrystalline Al-7.5%Mg alloy consolidated by high pressure torsion. Scripta Mater 51:209–214 Lee Z et al (2004) Microstructure and microhardness of cryomilled bulk nanocrystalline Al-7.5%Mg alloy consolidated by high pressure torsion. Scripta Mater 51:209–214
101.
Zurück zum Zitat Stolyarov VV et al (2000) Processing nanocrystalline Ti and its nanocomposites from micrometer-sized Ti powder using high pressure torsion. Mater Sci Eng A 282:78–85 Stolyarov VV et al (2000) Processing nanocrystalline Ti and its nanocomposites from micrometer-sized Ti powder using high pressure torsion. Mater Sci Eng A 282:78–85
102.
Zurück zum Zitat Valiev RZ et al (1996) Processing of nanostructured nickel by severe plastic deformation consolidation of ball-milled powder. Scripta Mater 34:1443–1448 Valiev RZ et al (1996) Processing of nanostructured nickel by severe plastic deformation consolidation of ball-milled powder. Scripta Mater 34:1443–1448
103.
Zurück zum Zitat Liao XZ et al (2006) High-pressure torsion-induced grain growth in electrodeposited nanocrystalline Ni. Appl Phys Lett 88 Liao XZ et al (2006) High-pressure torsion-induced grain growth in electrodeposited nanocrystalline Ni. Appl Phys Lett 88
104.
Zurück zum Zitat Mano H, Kondo S, Matsumuro A (2006) Microstructured surface layer induced by shot peening and its effect on fatigue strength. J Japan Inst Metals 70:415–419 Mano H, Kondo S, Matsumuro A (2006) Microstructured surface layer induced by shot peening and its effect on fatigue strength. J Japan Inst Metals 70:415–419
105.
Zurück zum Zitat Martin U et al (1998) Cyclic deformation and near surface microstructures of normalized shot peened steel SAE 1045. Mater Sci Eng A 246:69–80 Martin U et al (1998) Cyclic deformation and near surface microstructures of normalized shot peened steel SAE 1045. Mater Sci Eng A 246:69–80
106.
Zurück zum Zitat Bonelli M et al (2003) Pulsed laser deposition of diamondlike carbon films on polycarbonate. J Appl Phys 93:859–865 Bonelli M et al (2003) Pulsed laser deposition of diamondlike carbon films on polycarbonate. J Appl Phys 93:859–865
107.
Zurück zum Zitat Palkar VR, Prashanthi K, Dattagupta SP (2008) Influence of process-induced stress on multiferroic properties of pulse laser deposited Bi0.7Dy0.3FeO3 thin films. J Phys D 41:5 Palkar VR, Prashanthi K, Dattagupta SP (2008) Influence of process-induced stress on multiferroic properties of pulse laser deposited Bi0.7Dy0.3FeO3 thin films. J Phys D 41:5
108.
Zurück zum Zitat Luzin V, Valarezo A, Sampath S (2007) Through-thickness residual stress measurement in metal and ceramic spray coatings by neutron diffraction. MECASENS 4th International Conference on Stress Evaluation using Neutrons and Synchrotron Radiation, Sep 24–26, Vienna, AUSTRIA: 315–320 Luzin V, Valarezo A, Sampath S (2007) Through-thickness residual stress measurement in metal and ceramic spray coatings by neutron diffraction. MECASENS 4th International Conference on Stress Evaluation using Neutrons and Synchrotron Radiation, Sep 24–26, Vienna, AUSTRIA: 315–320
109.
Zurück zum Zitat Choi WB et al (2007) Integrated characterization of cold sprayed aluminum coatings. Acta Mater 55:857–866 Choi WB et al (2007) Integrated characterization of cold sprayed aluminum coatings. Acta Mater 55:857–866
110.
Zurück zum Zitat Jiang HG et al (2000) Microstructural evolution, microhardness and thermal stability of HPT-processed Cu. Mater Sci Eng A 290:128–138 Jiang HG et al (2000) Microstructural evolution, microhardness and thermal stability of HPT-processed Cu. Mater Sci Eng A 290:128–138
111.
Zurück zum Zitat Shaik G, Milligan W (1997) Consolidation of nanostructured metal powders by rapid forging: Processing, modeling, and subsequent mechanical behavior. Metall Mater Trans A 28:895–904 Shaik G, Milligan W (1997) Consolidation of nanostructured metal powders by rapid forging: Processing, modeling, and subsequent mechanical behavior. Metall Mater Trans A 28:895–904
112.
Zurück zum Zitat ASTM (1993) Standard test methods of tension testing of metallic foil. ASTM International, West Conshohocken ASTM (1993) Standard test methods of tension testing of metallic foil. ASTM International, West Conshohocken
113.
Zurück zum Zitat IEC (2006) Semiconductor devices—Micro-electromechanical devices—Part 2: Tensile testing method of thin film materials, European Committee for Electrotechnical Standardization IEC (2006) Semiconductor devices—Micro-electromechanical devices—Part 2: Tensile testing method of thin film materials, European Committee for Electrotechnical Standardization
114.
Zurück zum Zitat IEC (2006) Semiconductor devices—Micro-electromechanical devices—Part 3: Thin film standard test piece for tensile testing, European Committee for Electrotechnical Standardization IEC (2006) Semiconductor devices—Micro-electromechanical devices—Part 3: Thin film standard test piece for tensile testing, European Committee for Electrotechnical Standardization
115.
Zurück zum Zitat IEC (2006) Semiconductor devices—Micro-electromechanical devices—Part 1: Terms and definitions, European Committee on Electrotechnical Standardization IEC (2006) Semiconductor devices—Micro-electromechanical devices—Part 1: Terms and definitions, European Committee on Electrotechnical Standardization
116.
Zurück zum Zitat IEC (2009) Semiconductor devices—Micro-electromechanical devices—Part 6: Axial fatigue testing methods of thin film materials, International Electrotechnical Commission IEC (2009) Semiconductor devices—Micro-electromechanical devices—Part 6: Axial fatigue testing methods of thin film materials, International Electrotechnical Commission
117.
Zurück zum Zitat Schwaiger R, Kraft O (1999) High cycle fatigue of thin silver films investigated by dynamic microbeam deflection. Scripta Mater 41:823–829 Schwaiger R, Kraft O (1999) High cycle fatigue of thin silver films investigated by dynamic microbeam deflection. Scripta Mater 41:823–829
118.
Zurück zum Zitat Schwaiger R, Dehm G, Kraft O (2003) Cyclic deformation of polycrystalline Cu films. Phil Mag 83:693–710 Schwaiger R, Dehm G, Kraft O (2003) Cyclic deformation of polycrystalline Cu films. Phil Mag 83:693–710
119.
Zurück zum Zitat ASTM (2007) Standard practice for conducting force controlled constant amplitude axial fatigue tests of metallic materials. ASTM International, West Conshohocken ASTM (2007) Standard practice for conducting force controlled constant amplitude axial fatigue tests of metallic materials. ASTM International, West Conshohocken
120.
Zurück zum Zitat ASTM (2004) Standard practice for strain-controlled fatigue testing. ASTM International, West Conshohocken ASTM (2004) Standard practice for strain-controlled fatigue testing. ASTM International, West Conshohocken
121.
Zurück zum Zitat ASTM (2008) Standard test method for measurement of fatigue crack growth rates. ASTM International, West Conshohocken ASTM (2008) Standard test method for measurement of fatigue crack growth rates. ASTM International, West Conshohocken
122.
Zurück zum Zitat Yang Y et al (2007) Fatigue of LIGA Ni micro-electro-mechanical system thin films. Metall Mater Trans A 38:2340–2348 Yang Y et al (2007) Fatigue of LIGA Ni micro-electro-mechanical system thin films. Metall Mater Trans A 38:2340–2348
123.
Zurück zum Zitat Cheng S et al (2009) Cyclic deformation of nanocrystalline and ultrafine-grained nickel. Acta Mater 57:1272–1280 Cheng S et al (2009) Cyclic deformation of nanocrystalline and ultrafine-grained nickel. Acta Mater 57:1272–1280
124.
Zurück zum Zitat Boyce BL, Michael JR, Kotula PG (2004) Fatigue of metallic microdevices and the role of fatigue-induced surface oxides. Acta Mater 52:1609–1619 Boyce BL, Michael JR, Kotula PG (2004) Fatigue of metallic microdevices and the role of fatigue-induced surface oxides. Acta Mater 52:1609–1619
125.
Zurück zum Zitat Misra A et al (2004) Dislocation mechanisms and symmetric slip in rolled nano-scale metallic multilayers. Acta Mater 52:2387–2394 Misra A et al (2004) Dislocation mechanisms and symmetric slip in rolled nano-scale metallic multilayers. Acta Mater 52:2387–2394
126.
Zurück zum Zitat Suresh S (1991) Fatigue of materials. Cambridge University Press, Cambridge Suresh S (1991) Fatigue of materials. Cambridge University Press, Cambridge
127.
Zurück zum Zitat Zhu X, Jones JW, Allison JE (2008) Effect of frequency, environment, and temperature on fatigue behavior of E319 cast aluminum alloy: stress-controlled fatigue life response. Metall Mater Trans A 39:2681–2688 Zhu X, Jones JW, Allison JE (2008) Effect of frequency, environment, and temperature on fatigue behavior of E319 cast aluminum alloy: stress-controlled fatigue life response. Metall Mater Trans A 39:2681–2688
128.
Zurück zum Zitat Gutkin MY, Ovid’ko IA, Skiba NV (2005) Emission of partial dislocations from triple junctions of grain boundaries in nanocrystalline materials. J Phys D 38:3921–3925 Gutkin MY, Ovid’ko IA, Skiba NV (2005) Emission of partial dislocations from triple junctions of grain boundaries in nanocrystalline materials. J Phys D 38:3921–3925
129.
Zurück zum Zitat Amodeo RJ, Ghoniem NM (1990) Dislocation dynamics Part 2: applications to the formation of persistent slip bands, planar arrays and dislocation cells. Phys Rev B 41:6968–6976 Amodeo RJ, Ghoniem NM (1990) Dislocation dynamics Part 2: applications to the formation of persistent slip bands, planar arrays and dislocation cells. Phys Rev B 41:6968–6976
130.
Zurück zum Zitat Depres C, Robertson CF, Fivel MC (2004) Low-strain fatigue in AISI 316 L steel surface grains: a three-dimensional discrete dislocation dynamics modelling of the early cycles—I. Dislocation microstructures and mechanical behaviour. Phil Mag 84:2257–2275 Depres C, Robertson CF, Fivel MC (2004) Low-strain fatigue in AISI 316 L steel surface grains: a three-dimensional discrete dislocation dynamics modelling of the early cycles—I. Dislocation microstructures and mechanical behaviour. Phil Mag 84:2257–2275
131.
Zurück zum Zitat Depres C, Robertson CF, Fivel MC (2006) Low-strain fatigue in 316 L steel surface grains: a three dimension discrete dislocation dynamics modelling of the early cycles. Part 2: persistent slip markings and micro-crack nucleation. Phil Mag 86:79–97 Depres C, Robertson CF, Fivel MC (2006) Low-strain fatigue in 316 L steel surface grains: a three dimension discrete dislocation dynamics modelling of the early cycles. Part 2: persistent slip markings and micro-crack nucleation. Phil Mag 86:79–97
132.
Zurück zum Zitat Hahner P, Tippelt B, Holste C (1998) On the dislocation dynamics of persistent slip bands in cyclically deformed fcc metals. Acta Mater 46:5073–5084 Hahner P, Tippelt B, Holste C (1998) On the dislocation dynamics of persistent slip bands in cyclically deformed fcc metals. Acta Mater 46:5073–5084
133.
Zurück zum Zitat Wang ZB et al (2003) Effect of surface nanocrystallization on friction and wear properties in low carbon steel. Mater Sci Eng A 352:144–149 Wang ZB et al (2003) Effect of surface nanocrystallization on friction and wear properties in low carbon steel. Mater Sci Eng A 352:144–149
134.
Zurück zum Zitat Qi ZQ, Jiang JC, Meletis EI (2009) Wear mechanism of nanocrystalline metals. 1st International Meeting on Developments in Materials, Processes and Applications of Nanotechnology (MPA 2007), Jan 15, Belfast, North Ireland: 4227–4232 Qi ZQ, Jiang JC, Meletis EI (2009) Wear mechanism of nanocrystalline metals. 1st International Meeting on Developments in Materials, Processes and Applications of Nanotechnology (MPA 2007), Jan 15, Belfast, North Ireland: 4227–4232
135.
Zurück zum Zitat Sun HQ, Shi YN, Zhang MX (2009) Sliding wear-induced microstructure evolution of nanocrystalline and coarse-grained AZ91D Mg alloy. Wear 266:666–670 Sun HQ, Shi YN, Zhang MX (2009) Sliding wear-induced microstructure evolution of nanocrystalline and coarse-grained AZ91D Mg alloy. Wear 266:666–670
136.
Zurück zum Zitat Hoppel HW, et al (2002) Microstructural study of the parameters governing coarsening and cyclic softening in fatigued ultrafine-grained copper. Philosophical Magazine a-Physics of Condensed Matter Structure Defects and Mechanical Properties 82: 1781–1794 Hoppel HW, et al (2002) Microstructural study of the parameters governing coarsening and cyclic softening in fatigued ultrafine-grained copper. Philosophical Magazine a-Physics of Condensed Matter Structure Defects and Mechanical Properties 82: 1781–1794
137.
Zurück zum Zitat Gianola DS et al (2006) Stress-assisted discontinuous grain growth and its effect on the deformation behavior of nanocrystalline aluminum thin films. Acta Mater 54:2253–2263 Gianola DS et al (2006) Stress-assisted discontinuous grain growth and its effect on the deformation behavior of nanocrystalline aluminum thin films. Acta Mater 54:2253–2263
138.
Zurück zum Zitat Gianola DS et al (2008) Grain-size stabilization by impurities and effect on stress-coupled grain growth in nanocrystalline Al thin films. Mater Sci Eng A 483:637–640 Gianola DS et al (2008) Grain-size stabilization by impurities and effect on stress-coupled grain growth in nanocrystalline Al thin films. Mater Sci Eng A 483:637–640
139.
Zurück zum Zitat Yang B et al (2008) Strain effects on the coarsening and softening of electrodeposited nanocrystalline Ni subjected to high pressure torsion. Scripta Mater 58:790–793 Yang B et al (2008) Strain effects on the coarsening and softening of electrodeposited nanocrystalline Ni subjected to high pressure torsion. Scripta Mater 58:790–793
140.
Zurück zum Zitat Schiøtz J (2004) Strain-induced coarsening in nanocrystalline metals under cyclic deformation. Mater Sci Eng A 375–377:975–979 Schiøtz J (2004) Strain-induced coarsening in nanocrystalline metals under cyclic deformation. Mater Sci Eng A 375–377:975–979
141.
Zurück zum Zitat Gutkin MY, Ovid’ko IA (2005) Grain boundary migration as rotational deformation mode in nanocrystalline materials. Appl Phys Lett 87:251916–3 Gutkin MY, Ovid’ko IA (2005) Grain boundary migration as rotational deformation mode in nanocrystalline materials. Appl Phys Lett 87:251916–3
142.
Zurück zum Zitat Ovid’ko IA, Sheinerman AG, Aifantis EC (2008) Stress-driven migration of grain boundaries and fracture processes in nanocrystalline ceramics and metals. Acta Mater 56:2718–2727 Ovid’ko IA, Sheinerman AG, Aifantis EC (2008) Stress-driven migration of grain boundaries and fracture processes in nanocrystalline ceramics and metals. Acta Mater 56:2718–2727
143.
Zurück zum Zitat Cahn JW, Taylor JE (2004) A unified approach to motion of grain boundaries, relative tangential translation along grain boundaries, and grain rotation. Acta Mater 52:4887–4898 Cahn JW, Taylor JE (2004) A unified approach to motion of grain boundaries, relative tangential translation along grain boundaries, and grain rotation. Acta Mater 52:4887–4898
144.
Zurück zum Zitat Wang QY et al (2002) Effect of inclusion on subsurface crack initiation and gigacycle fatigue strength. Int J Fatigue 24:1269–1274 Wang QY et al (2002) Effect of inclusion on subsurface crack initiation and gigacycle fatigue strength. Int J Fatigue 24:1269–1274
145.
Zurück zum Zitat Chai G (2007) Damage behavior of metallic materials under very high cycle fatigue. Key Eng Mater 348–349:237–240 Chai G (2007) Damage behavior of metallic materials under very high cycle fatigue. Key Eng Mater 348–349:237–240
146.
Zurück zum Zitat Shiozawa K, Lu L (2002) Very high-cycle fatigue behaviour of shot-peened high-carbon-chromium bearing steel. Fatigue Fract Eng Mater Struct 25:813–822 Shiozawa K, Lu L (2002) Very high-cycle fatigue behaviour of shot-peened high-carbon-chromium bearing steel. Fatigue Fract Eng Mater Struct 25:813–822
147.
Zurück zum Zitat Wagner L (1999) Mechanical surface treatments on titanium, aluminum and magnesium alloys. Mater Sci Eng A 263:210–216 Wagner L (1999) Mechanical surface treatments on titanium, aluminum and magnesium alloys. Mater Sci Eng A 263:210–216
148.
Zurück zum Zitat Boyce BL, Ritchie RO (2001) Effect of load ratio and maximum stress intensity on the fatigue threshold in Ti-6Al-4 V. Eng Fract Mech 68:129–147 Boyce BL, Ritchie RO (2001) Effect of load ratio and maximum stress intensity on the fatigue threshold in Ti-6Al-4 V. Eng Fract Mech 68:129–147
149.
Zurück zum Zitat Meirom RA et al (2008) Velocity-dependent fatigue crack paths in nanograined Pt films. Phys Rev Lett 101:085503–4 Meirom RA et al (2008) Velocity-dependent fatigue crack paths in nanograined Pt films. Phys Rev Lett 101:085503–4
150.
Zurück zum Zitat Fujita K, Inoue A, Zhang A (2001) Fractography of fatigue crack propagation in a nanocrystalline Zr-based bulk metallic glass. Scripta Mater 44:1629–1633 Fujita K, Inoue A, Zhang A (2001) Fractography of fatigue crack propagation in a nanocrystalline Zr-based bulk metallic glass. Scripta Mater 44:1629–1633
151.
Zurück zum Zitat Sergueeva AV et al (2005) Shear band formation and ductility in bulk metallic glass. Phil Mag 85:2671–2687 Sergueeva AV et al (2005) Shear band formation and ductility in bulk metallic glass. Phil Mag 85:2671–2687
152.
Zurück zum Zitat Ovid’ko IA, Sheinerman AG (2004) Triple junction nanocracks in fatigued nanocrystalline materials. Acta Mater 7:61–66 Ovid’ko IA, Sheinerman AG (2004) Triple junction nanocracks in fatigued nanocrystalline materials. Acta Mater 7:61–66
153.
Zurück zum Zitat Lu L, Sui ML, Lu K (2000) Superplastic extensibility of nanocrystalline copper at room temperature. Sci 287:1463–1466 Lu L, Sui ML, Lu K (2000) Superplastic extensibility of nanocrystalline copper at room temperature. Sci 287:1463–1466
154.
Zurück zum Zitat Yang F, Yang W (2008) Brittle versus ductile transition of nanocrystalline metals. Int J Solids Struct 45:3897–3907MATH Yang F, Yang W (2008) Brittle versus ductile transition of nanocrystalline metals. Int J Solids Struct 45:3897–3907MATH
155.
Zurück zum Zitat Ovid’ko IA, Sheinerman AG (2009) Grain size effect on crack blunting in nanocrystalline materials. Scripta Mater 60:627–630 Ovid’ko IA, Sheinerman AG (2009) Grain size effect on crack blunting in nanocrystalline materials. Scripta Mater 60:627–630
156.
Zurück zum Zitat Yang W, Wang H (2004) Mechanics modeling for deformation of nano-grained metals. J Mech Phys Solids 52:875–889MATH Yang W, Wang H (2004) Mechanics modeling for deformation of nano-grained metals. J Mech Phys Solids 52:875–889MATH
157.
Zurück zum Zitat Ovid’ko IA, Sheinerman AG (2007) Special strain hardening mechanism and nanocrack generation in nanocrystalline materials. Appl Phys Lett 90:171927–3 Ovid’ko IA, Sheinerman AG (2007) Special strain hardening mechanism and nanocrack generation in nanocrystalline materials. Appl Phys Lett 90:171927–3
158.
Zurück zum Zitat Ritchie R (1988) Mechanisms of fatigue crack-propagation in metals, ceramics and composites—role of crack tip shielding. Mater Sci Eng A 103:15–28 Ritchie R (1988) Mechanisms of fatigue crack-propagation in metals, ceramics and composites—role of crack tip shielding. Mater Sci Eng A 103:15–28
159.
Zurück zum Zitat Gutkin MY, Ovid’ko IA (2004) Nanocracks at grain boundaries in nanocrystalline materials. Phil Mag Lett 84:655–663 Gutkin MY, Ovid’ko IA (2004) Nanocracks at grain boundaries in nanocrystalline materials. Phil Mag Lett 84:655–663
160.
Zurück zum Zitat Ebrahimi F, Li HQ (2007) The effect of annealing on deformation and fracture of a nanocrystalline fcc metal. J Mater Sci 42:1444–1454 Ebrahimi F, Li HQ (2007) The effect of annealing on deformation and fracture of a nanocrystalline fcc metal. J Mater Sci 42:1444–1454
161.
Zurück zum Zitat Xu MH, Patu S, Wang ZG (1988) The improvement in fatigue life of pure polycrystalline nickel by nitrogen ion-implantation. Phys Status Solidi A 105:419–425 Xu MH, Patu S, Wang ZG (1988) The improvement in fatigue life of pure polycrystalline nickel by nitrogen ion-implantation. Phys Status Solidi A 105:419–425
162.
Zurück zum Zitat Demers V et al (2009) Thermomechanical fatigue of nanostructured Ti-Ni shape memory alloys. Mater Sci Eng A 513–14:185–196 Demers V et al (2009) Thermomechanical fatigue of nanostructured Ti-Ni shape memory alloys. Mater Sci Eng A 513–14:185–196
163.
Zurück zum Zitat Webster GA, Ezeilo AN (2001) Residual stress distributions and their influence on fatigue lifetimes. Int J Fatigue 23:375–383 Webster GA, Ezeilo AN (2001) Residual stress distributions and their influence on fatigue lifetimes. Int J Fatigue 23:375–383
164.
Zurück zum Zitat Potirniche GP et al (2005) Fatigue damage in nickel and copper single crystals at nanoscale. Int J Fatigue 27:1179–1185 Potirniche GP et al (2005) Fatigue damage in nickel and copper single crystals at nanoscale. Int J Fatigue 27:1179–1185
165.
Zurück zum Zitat Kruzic JJ et al (2005) Fatigue threshold R-curves for predicting reliability of ceramics under cyclic loading. Acta Mater 53:2595–2605 Kruzic JJ et al (2005) Fatigue threshold R-curves for predicting reliability of ceramics under cyclic loading. Acta Mater 53:2595–2605
166.
Zurück zum Zitat Gilbert C, Schroeder V, Ritchie R (1999) Mechanisms for fracture and fatigue-crack propagation in a bulk metallic glass. Metall Mater Trans A 30:1739–1753 Gilbert C, Schroeder V, Ritchie R (1999) Mechanisms for fracture and fatigue-crack propagation in a bulk metallic glass. Metall Mater Trans A 30:1739–1753
Metadaten
Titel
A Review of Fatigue Behavior in Nanocrystalline Metals
verfasst von
H. A. Padilla II
B. L. Boyce
Publikationsdatum
01.01.2010
Verlag
Springer US
Erschienen in
Experimental Mechanics / Ausgabe 1/2010
Print ISSN: 0014-4851
Elektronische ISSN: 1741-2765
DOI
https://doi.org/10.1007/s11340-009-9301-2

Weitere Artikel der Ausgabe 1/2010

Experimental Mechanics 1/2010 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.