Skip to main content
Erschienen in: Rare Metals 10/2019

19.08.2019

Preparation and electrochemical properties of Sn/C composites

verfasst von: Bei-Ping Wang, Rui Lv, Dong-Sheng Lan

Erschienen in: Rare Metals | Ausgabe 10/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The metal tin (Sn), as one potential anode material for lithium-ion batteries, rapidly degrades its cyclic performance due to huge volume expansion/contraction during lithium intercalation/de-intercalation process. Amorphous carbon was adopted as conductive and buffer matrix to form Sn/C composites. The products were prepared by hydrothermal reaction and carbothermal reduction using tin tetrachloride and glucose as raw materials. The composites were characterized by X-ray diffraction (XRD), Raman spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), cyclic voltammetry (CV) and galvanostatic charge/discharge measurements. The results show that relative smaller metallic tin particles in 1:8 Sn/C composite are formed and distributed more uniformly in the carbon matrix. The lithium intercalation capacity of Sn/C composites reaches 820.4 mAh·g−1, and the capacity retention over 60 cycles remains 54.1%. 1:8 Sn/C composite exhibits enhanced rate performance and cyclic stability compared to 1:5 and 1:10 samples.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
[1]
Zurück zum Zitat Yang D, Shi J, Shi J, Yang H. Simple synthesis of Si/Sn@C-G anodes with enhanced electrochemical properties for Li-ion batteries. Electrochim Acta. 2018;259:1081.CrossRef Yang D, Shi J, Shi J, Yang H. Simple synthesis of Si/Sn@C-G anodes with enhanced electrochemical properties for Li-ion batteries. Electrochim Acta. 2018;259:1081.CrossRef
[2]
Zurück zum Zitat Zhao N, Fang R, He MH, Chen C, Li YQ, Bi ZJ, Guo XX. Cycle stability of lithium/garnet/lithium cells with different intermediate layers. Rare Met. 2018;37(6):473.CrossRef Zhao N, Fang R, He MH, Chen C, Li YQ, Bi ZJ, Guo XX. Cycle stability of lithium/garnet/lithium cells with different intermediate layers. Rare Met. 2018;37(6):473.CrossRef
[3]
Zurück zum Zitat Yun FL, Lu SG. Thermal characteristic analysis of lithium ion power battery based on high nickel ternary material before and after cycle. Chin J Rare Met. 2018;42(2):182. Yun FL, Lu SG. Thermal characteristic analysis of lithium ion power battery based on high nickel ternary material before and after cycle. Chin J Rare Met. 2018;42(2):182.
[4]
Zurück zum Zitat Vadlamani BS, Jagannathan M, Chandran KSR. Silicon with columnar microporous architecture for ultrahigh total energy-storage capacity and with highly reversible lithiation performance. ACS Appl Energy Mater. 2018;1(3):993.CrossRef Vadlamani BS, Jagannathan M, Chandran KSR. Silicon with columnar microporous architecture for ultrahigh total energy-storage capacity and with highly reversible lithiation performance. ACS Appl Energy Mater. 2018;1(3):993.CrossRef
[5]
Zurück zum Zitat Whitehead AH, Elliott JM, Owen JR. Nanostructured tin for use as a negative electrode material in Li-ion batteries. J Power Sour. 1999;81–82:33.CrossRef Whitehead AH, Elliott JM, Owen JR. Nanostructured tin for use as a negative electrode material in Li-ion batteries. J Power Sour. 1999;81–82:33.CrossRef
[6]
Zurück zum Zitat Nitta N, Wu F, Lee JT, Yushin G. Li-ion battery materials: present and future. Mater Today. 2015;18(5):252.CrossRef Nitta N, Wu F, Lee JT, Yushin G. Li-ion battery materials: present and future. Mater Today. 2015;18(5):252.CrossRef
[7]
Zurück zum Zitat Wachtler M, Besenhard JO, Winter M. Tin and tin-based intermetallics as new anode materials for lithium-ion cells. J Power Sour. 2001;94(2):189.CrossRef Wachtler M, Besenhard JO, Winter M. Tin and tin-based intermetallics as new anode materials for lithium-ion cells. J Power Sour. 2001;94(2):189.CrossRef
[8]
Zurück zum Zitat Li H, Wang Q, Shi L, Chen L, Huang X. Nanosized SnSb alloy pinning on hard non-graphitic carbon spherules as anode materials for a Li ion battery. Chem Mater. 2002;14(1):103.CrossRef Li H, Wang Q, Shi L, Chen L, Huang X. Nanosized SnSb alloy pinning on hard non-graphitic carbon spherules as anode materials for a Li ion battery. Chem Mater. 2002;14(1):103.CrossRef
[9]
Zurück zum Zitat Lu W, Luo C, Li Y, Feng Y, Feng W, Zhao Y, Yuan X. CoSn/carbon composite nanofibers for applications as anode in lithium-ion batteries. J Nanoparticle Res. 2013;15(9):1736.CrossRef Lu W, Luo C, Li Y, Feng Y, Feng W, Zhao Y, Yuan X. CoSn/carbon composite nanofibers for applications as anode in lithium-ion batteries. J Nanoparticle Res. 2013;15(9):1736.CrossRef
[10]
Zurück zum Zitat Dong Z, Zhang R, Ji D, Chernova NA, Karki K, Sallis S, Piper L, Whittingham MS. The anode challenge for lithium-ion batteries: a mechanochemically synthesized Sn–Fe–C composite anode surpasses graphitic carbon. Adv Sci. 2016;3(4):1500229.CrossRef Dong Z, Zhang R, Ji D, Chernova NA, Karki K, Sallis S, Piper L, Whittingham MS. The anode challenge for lithium-ion batteries: a mechanochemically synthesized Sn–Fe–C composite anode surpasses graphitic carbon. Adv Sci. 2016;3(4):1500229.CrossRef
[11]
Zurück zum Zitat Lin YM, Abel PR, Gupta A, Goodenough JB, Heller A, Mullins CB. Sn–Cu nanocomposite anodes for rechargeable sodium-ion batteries. ACS Appl Mat Interfaces. 2013;5(17):8273.CrossRef Lin YM, Abel PR, Gupta A, Goodenough JB, Heller A, Mullins CB. Sn–Cu nanocomposite anodes for rechargeable sodium-ion batteries. ACS Appl Mat Interfaces. 2013;5(17):8273.CrossRef
[12]
Zurück zum Zitat Zou YQ, Wang Y. Sn@CNT nanostructures rooted in graphene with high and fast Li-storage capacities. ACS Nano. 2011;5(10):8108.CrossRef Zou YQ, Wang Y. Sn@CNT nanostructures rooted in graphene with high and fast Li-storage capacities. ACS Nano. 2011;5(10):8108.CrossRef
[13]
Zurück zum Zitat Lee Y, Jo MR, Song K, Nam KM, Park JT, Kang YM. Hollow Sn–SnO2 nanocrystal/graphite composites and their lithium storage properties. ACS Appl Mat Interfaces. 2012;4(7):3459.CrossRef Lee Y, Jo MR, Song K, Nam KM, Park JT, Kang YM. Hollow Sn–SnO2 nanocrystal/graphite composites and their lithium storage properties. ACS Appl Mat Interfaces. 2012;4(7):3459.CrossRef
[14]
Zurück zum Zitat Fan X, Tang X, Ma D, Bi P, Jiang A, Zhu J, Xu X. Novel hollow Sn–Cu composite nanoparticles anodes for Li-ion batteries prepared by galvanic replacement reaction. J Solid State Electrochem. 2014;18(4):1137.CrossRef Fan X, Tang X, Ma D, Bi P, Jiang A, Zhu J, Xu X. Novel hollow Sn–Cu composite nanoparticles anodes for Li-ion batteries prepared by galvanic replacement reaction. J Solid State Electrochem. 2014;18(4):1137.CrossRef
[15]
Zurück zum Zitat Nam DH, Hong KS, Lim SJ, Kim TH, Kwon HS. Electrochemical properties of electrodeposited Sn anodes for Na-ion batteries. J Phys Chem C. 2014;118(35):20086.CrossRef Nam DH, Hong KS, Lim SJ, Kim TH, Kwon HS. Electrochemical properties of electrodeposited Sn anodes for Na-ion batteries. J Phys Chem C. 2014;118(35):20086.CrossRef
[16]
Zurück zum Zitat Zhang H, Song H, Chen X, Zhou J. Enhanced lithium ion storage property of Sn nanoparticles: the confinement effect of few-walled carbon nanotubes. J Phys Chem C. 2012;116(43):22774.CrossRef Zhang H, Song H, Chen X, Zhou J. Enhanced lithium ion storage property of Sn nanoparticles: the confinement effect of few-walled carbon nanotubes. J Phys Chem C. 2012;116(43):22774.CrossRef
[17]
Zurück zum Zitat Hu R, Waller GH, Wang Y, Chen Y, Yang C, Zhou W, Zhu M, Liu M. Cu6Sn5@SnO2–C nanocomposite with stable core/shell structure as a high reversible anode for Li-ion batteries. Nano Energy. 2015;18:232.CrossRef Hu R, Waller GH, Wang Y, Chen Y, Yang C, Zhou W, Zhu M, Liu M. Cu6Sn5@SnO2–C nanocomposite with stable core/shell structure as a high reversible anode for Li-ion batteries. Nano Energy. 2015;18:232.CrossRef
[18]
Zurück zum Zitat Tao X, Wu R, Xia Y, Huang H, Chai W, Feng T, Gan Y, Zhang W. Biotemplated fabrication of Sn@C anode materials based on the unique metal biosorption behavior of microalgae. ACS Appl Mat Interfaces. 2014;6(5):3696.CrossRef Tao X, Wu R, Xia Y, Huang H, Chai W, Feng T, Gan Y, Zhang W. Biotemplated fabrication of Sn@C anode materials based on the unique metal biosorption behavior of microalgae. ACS Appl Mat Interfaces. 2014;6(5):3696.CrossRef
[19]
Zurück zum Zitat Wang Y, Wu M, Jiao Z, Lee JY. Sn@CNT and Sn@C@CNT nanostructures for superior reversible lithium ion storage. Chem Mater. 2009;21(14):3210.CrossRef Wang Y, Wu M, Jiao Z, Lee JY. Sn@CNT and Sn@C@CNT nanostructures for superior reversible lithium ion storage. Chem Mater. 2009;21(14):3210.CrossRef
[20]
Zurück zum Zitat Qin J, He C, Zhao N, Wang Z, Shi C, Liu EZ, Li J. Graphene networks anchored with Sn@Graphene as lithium ion battery anode. ACS Nano. 2014;8(2):1728.CrossRef Qin J, He C, Zhao N, Wang Z, Shi C, Liu EZ, Li J. Graphene networks anchored with Sn@Graphene as lithium ion battery anode. ACS Nano. 2014;8(2):1728.CrossRef
[21]
Zurück zum Zitat Yan Y, Ben L, Zhan Y, Huang X. Nano-Sn embedded in expanded graphite as anode for lithium ion batteries with improved low temperature electrochemical performance. Electrochim Acta. 2016;187:186.CrossRef Yan Y, Ben L, Zhan Y, Huang X. Nano-Sn embedded in expanded graphite as anode for lithium ion batteries with improved low temperature electrochemical performance. Electrochim Acta. 2016;187:186.CrossRef
[22]
Zurück zum Zitat Tallant DR, Friedmann TA, Missert NA, Siegal MP, Sullivan JP. Raman spectroscopy of amorphous carbon. MRS Proc. 1997;498(4):473. Tallant DR, Friedmann TA, Missert NA, Siegal MP, Sullivan JP. Raman spectroscopy of amorphous carbon. MRS Proc. 1997;498(4):473.
[23]
Zurück zum Zitat Ferrari AC, Robertson J. Interpretation of Raman spectra of disordered and amorphous carbon. Phys Rev B Condens Matter. 2000;61(20):14095.CrossRef Ferrari AC, Robertson J. Interpretation of Raman spectra of disordered and amorphous carbon. Phys Rev B Condens Matter. 2000;61(20):14095.CrossRef
[24]
Zurück zum Zitat Wsv L, Huang X, Tan TL, Xue JM. Low Li+ insertion barrier carbon for high energy efficient lithium-ion capacitor. ACS Appl Mater Interfaces. 2018;10(2):1690.CrossRef Wsv L, Huang X, Tan TL, Xue JM. Low Li+ insertion barrier carbon for high energy efficient lithium-ion capacitor. ACS Appl Mater Interfaces. 2018;10(2):1690.CrossRef
[25]
Zurück zum Zitat Kim JG, Nam SH, Lee SH, Choi SM, Kim WB. SnO2 nanorod-planted graphite: an effective nanostructure configuration for reversible lithium ion storage. ACS Appl Mater Interfaces. 2011;3(3):828.CrossRef Kim JG, Nam SH, Lee SH, Choi SM, Kim WB. SnO2 nanorod-planted graphite: an effective nanostructure configuration for reversible lithium ion storage. ACS Appl Mater Interfaces. 2011;3(3):828.CrossRef
[26]
Zurück zum Zitat Xu Y, Liu Q, Zhu Y, Liu Y, Langrock A, Zachariah MR, Wang C. Uniform nano-Sn/C composite anodes for lithium ion batteries. Nano Lett. 2013;13(2):470.CrossRef Xu Y, Liu Q, Zhu Y, Liu Y, Langrock A, Zachariah MR, Wang C. Uniform nano-Sn/C composite anodes for lithium ion batteries. Nano Lett. 2013;13(2):470.CrossRef
[27]
Zurück zum Zitat Hu Y, Yang QR, Ma J, Chou SL, Zhu M, Li Y. Sn/SnO2@C composite nanofibers as advanced anode for lithium-ion batteries. Electrochim Acta. 2015;186:271.CrossRef Hu Y, Yang QR, Ma J, Chou SL, Zhu M, Li Y. Sn/SnO2@C composite nanofibers as advanced anode for lithium-ion batteries. Electrochim Acta. 2015;186:271.CrossRef
[28]
Zurück zum Zitat Kravchyk K, Protesescu L, Bodnarchuk MI, Krumeich F, Yarema M, Walter M, Guntlin C, Kovalenko MV. Monodisperse and inorganically capped Sn and Sn/SnO2 nanocrystals for high-performance Li-ion battery anodes. JACS. 2013;135(11):4199.CrossRef Kravchyk K, Protesescu L, Bodnarchuk MI, Krumeich F, Yarema M, Walter M, Guntlin C, Kovalenko MV. Monodisperse and inorganically capped Sn and Sn/SnO2 nanocrystals for high-performance Li-ion battery anodes. JACS. 2013;135(11):4199.CrossRef
[29]
Zurück zum Zitat Li L, Liu X, Wang S, Zhao W. Influence of surface structure on the capacity and irreversible capacity loss of Sn-based anodes for lithium ion batteries. ACS Sustain Chem Eng. 2014;2(7):1857.CrossRef Li L, Liu X, Wang S, Zhao W. Influence of surface structure on the capacity and irreversible capacity loss of Sn-based anodes for lithium ion batteries. ACS Sustain Chem Eng. 2014;2(7):1857.CrossRef
[30]
Zurück zum Zitat Li Y, Zhang H, Chen Y, Shi Z, Cao X, Guo Z, Shen PK. Nitrogen-doped carbon-encapsulated SnO2@Sn nanoparticles uniformly grafted on three-dimensional graphene-like networks as anode for high-performance lithium ion batteries. ACS Appl Mater Interfaces. 2016;8(1):197.CrossRef Li Y, Zhang H, Chen Y, Shi Z, Cao X, Guo Z, Shen PK. Nitrogen-doped carbon-encapsulated SnO2@Sn nanoparticles uniformly grafted on three-dimensional graphene-like networks as anode for high-performance lithium ion batteries. ACS Appl Mater Interfaces. 2016;8(1):197.CrossRef
Metadaten
Titel
Preparation and electrochemical properties of Sn/C composites
verfasst von
Bei-Ping Wang
Rui Lv
Dong-Sheng Lan
Publikationsdatum
19.08.2019
Verlag
Nonferrous Metals Society of China
Erschienen in
Rare Metals / Ausgabe 10/2019
Print ISSN: 1001-0521
Elektronische ISSN: 1867-7185
DOI
https://doi.org/10.1007/s12598-019-01289-0

Weitere Artikel der Ausgabe 10/2019

Rare Metals 10/2019 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.