Skip to main content
Top
Published in: Arabian Journal for Science and Engineering 2/2022

29-10-2021 | Research Article-Computer Engineering and Computer Science

Federated Learning: Sum Power Constraints Optimization Design

Authors: Yun Chen, Guoping Zhang, Hongbo Xu, Xue Chen, Ruijie Li

Published in: Arabian Journal for Science and Engineering | Issue 2/2022

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The recent rise of high-risk scenarios such as unmanned aerial vehicles and intelligent driving, which require low latency and high privacy, has given rise to a new field called Federated Learning (FL). Limited communication bandwidth becomes a major bottleneck for aggregating local models in FL. Therefore, we use fast global model aggregation based on over-the-air computation (Aircomp). Wireless data transmission consumes most of the power of the edge nodes compared with the energy consumption required for sensing and processing data. Optimizing the transmission power of nodes can significantly save system power. To the best of our knowledge, in most of the research works on FL, the optimum design of system parameters usually takes the peak power of each sensor as the constraint condition. In this paper, the sum power constraint of edge devices is innovatively proposed to minimize the aggregation error of FL. We also study the optimization problem to minimize the total power of all edge sensors in the FL system under certain aggregation error constraints. Unfortunately, these problems presented are nonconvex biquadratic programming problems that are very difficult to solve. Therefore, we propose an alternative optimization method based on the difference-of-convex algorithm. The numerical results show that our proposal significantly reduces the aggregation error under the same total power. The simulation results also show that Intelligent Reflector Surface-assisted communication can greatly reduce the aggregation error and save system power.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference Yang, Q.; Liu, Y.; Chen, T.; Tong, Y.: Federated machine learning: concept and applications. ACM Trans. Intell. Syst. Technol. 10(2), 1 (2019)CrossRef Yang, Q.; Liu, Y.; Chen, T.; Tong, Y.: Federated machine learning: concept and applications. ACM Trans. Intell. Syst. Technol. 10(2), 1 (2019)CrossRef
2.
go back to reference Tran, N.H.; Bao, W.; Zomaya, A.; Nguyen, M.N.; Hong, C.S.: Federated learning over wireless networks: optimization model design and analysis. In: IEEE INFOCOM 2019-IEEE Conference on Computer Communications (IEEE 1387–1395 (2019) Tran, N.H.; Bao, W.; Zomaya, A.; Nguyen, M.N.; Hong, C.S.: Federated learning over wireless networks: optimization model design and analysis. In: IEEE INFOCOM 2019-IEEE Conference on Computer Communications (IEEE 1387–1395 (2019)
3.
go back to reference Elgabli, A.; Park, J.; Issaid, C.B.; Bennis, M.: Harnessing wireless channels for scalable and privacy-preserving federated learning. IEEE Trans. Commun. (2021) Elgabli, A.; Park, J.; Issaid, C.B.; Bennis, M.: Harnessing wireless channels for scalable and privacy-preserving federated learning. IEEE Trans. Commun. (2021)
4.
go back to reference Chen, M.; Yang, Z.; Saad, W.; Yin, C.; Poor, H.V.; Cui, S.: A joint learning and communications framework for federated learning over wireless networks. IEEE Trans. Wireless Commun. 20(1), 269 (2020)CrossRef Chen, M.; Yang, Z.; Saad, W.; Yin, C.; Poor, H.V.; Cui, S.: A joint learning and communications framework for federated learning over wireless networks. IEEE Trans. Wireless Commun. 20(1), 269 (2020)CrossRef
5.
go back to reference Chen, L.; Qin, X.; Wei, G.: A uniform-forcing transceiver design for over-the-air function computation. IEEE Trans. Wireless Commun. Lett. 7(6), 942 (2018)CrossRef Chen, L.; Qin, X.; Wei, G.: A uniform-forcing transceiver design for over-the-air function computation. IEEE Trans. Wireless Commun. Lett. 7(6), 942 (2018)CrossRef
6.
go back to reference Zhu, G.; Huang, K.: MIMO over-the-air computation for high-mobility multimodal sensing. IEEE Internet Things J. 6(4), 6089 (2018)CrossRef Zhu, G.; Huang, K.: MIMO over-the-air computation for high-mobility multimodal sensing. IEEE Internet Things J. 6(4), 6089 (2018)CrossRef
7.
go back to reference Yang, K.; Jiang, T.; Shi, Y.; Ding, Z.: Federated learning via over-the-air computation. IEEE Trans. Wirel. Commun. 19(3), 2022 (2020)CrossRef Yang, K.; Jiang, T.; Shi, Y.; Ding, Z.: Federated learning via over-the-air computation. IEEE Trans. Wirel. Commun. 19(3), 2022 (2020)CrossRef
8.
go back to reference Zhu, G.; Wang, Y.; Huang, K.: Broadband analog aggregation for low-latency federated edge learning. IEEE Trans. Wirel. Commun. 19(1), 491 (2019)CrossRef Zhu, G.; Wang, Y.; Huang, K.: Broadband analog aggregation for low-latency federated edge learning. IEEE Trans. Wirel. Commun. 19(1), 491 (2019)CrossRef
9.
go back to reference Amiri, M.M.; Gündüz, D.: Machine learning at the wireless edge: distributed stochastic gradient descent over-the-air. IEEE Trans. Signal Process. 68, 2155 (2020)MathSciNetCrossRef Amiri, M.M.; Gündüz, D.: Machine learning at the wireless edge: distributed stochastic gradient descent over-the-air. IEEE Trans. Signal Process. 68, 2155 (2020)MathSciNetCrossRef
10.
go back to reference Nazer, B.; Gastpar, M.: Reliable computation over multiple-access channels. In: Proceedings of 43rd Annual Allerton Conference on Communication, Control, and Computing (2005) Nazer, B.; Gastpar, M.: Reliable computation over multiple-access channels. In: Proceedings of 43rd Annual Allerton Conference on Communication, Control, and Computing (2005)
11.
go back to reference Tang, S.; Yin, H.; Zhang, C.; Obana, S.: Reliable over-the-air computation by amplify-and-forward based relay. IEEE Access 9, 53333 (2021)CrossRef Tang, S.; Yin, H.; Zhang, C.; Obana, S.: Reliable over-the-air computation by amplify-and-forward based relay. IEEE Access 9, 53333 (2021)CrossRef
12.
go back to reference Goldenbaum, M.; Boche, H.; Stańczak, S.: Harnessing interference for analog function computation in wireless sensor networks. IEEE Trans. Signal Process. 61(20), 4893 (2013)MathSciNetCrossRef Goldenbaum, M.; Boche, H.; Stańczak, S.: Harnessing interference for analog function computation in wireless sensor networks. IEEE Trans. Signal Process. 61(20), 4893 (2013)MathSciNetCrossRef
13.
go back to reference Chen, L.; Zhao, N.; Chen, Y.; Yu, F.R.; Wei, G.: Over-the-air computation for IoT networks: computing multiple functions with antenna arrays. IEEE Internet Things J. 5(6), 5296 (2018)CrossRef Chen, L.; Zhao, N.; Chen, Y.; Yu, F.R.; Wei, G.: Over-the-air computation for IoT networks: computing multiple functions with antenna arrays. IEEE Internet Things J. 5(6), 5296 (2018)CrossRef
14.
go back to reference Liaskos, C.; Nie, S.; Tsioliaridou, A.; Pitsillides, A.; Ioannidis, S.; Akyildiz, I.: A new wireless communication paradigm through software-controlled metasurfaces. IEEE Commun. Mag. 56(9), 162 (2018)CrossRef Liaskos, C.; Nie, S.; Tsioliaridou, A.; Pitsillides, A.; Ioannidis, S.; Akyildiz, I.: A new wireless communication paradigm through software-controlled metasurfaces. IEEE Commun. Mag. 56(9), 162 (2018)CrossRef
15.
go back to reference Wu, Q.; Zhang, R.: Towards smart and reconfigurable environment: Intelligent reflecting surface aided wireless network. IEEE Commun. Mag. 58(1), 106 (2019)CrossRef Wu, Q.; Zhang, R.: Towards smart and reconfigurable environment: Intelligent reflecting surface aided wireless network. IEEE Commun. Mag. 58(1), 106 (2019)CrossRef
16.
go back to reference Huang, C.; Zappone, A.; Alexandropoulos, G.C.; Debbah, M.; Yuen, C.: Reconfigurable intelligent surfaces for energy efficiency in wireless communication. IEEE Trans. Wirel. Commun. 18(8), 4157 (2019)CrossRef Huang, C.; Zappone, A.; Alexandropoulos, G.C.; Debbah, M.; Yuen, C.: Reconfigurable intelligent surfaces for energy efficiency in wireless communication. IEEE Trans. Wirel. Commun. 18(8), 4157 (2019)CrossRef
17.
go back to reference Jiang, T.; Shi, Y.: Over-the-air computation via intelligent reflecting surfaces. In: 2019 IEEE Global Communications Conference (GLOBECOM) (IEEE, 2019), pp. 1–6 (2019) Jiang, T.; Shi, Y.: Over-the-air computation via intelligent reflecting surfaces. In: 2019 IEEE Global Communications Conference (GLOBECOM) (IEEE, 2019), pp. 1–6 (2019)
18.
go back to reference Wang, Z.; Shi, Y.; Zhou, Y.; Zhou, H.; Zhang, N.: Wireless-powered over-the-air computation in intelligent reflecting surface-aided IoT networks. IEEE Internet Things J. 8(3), 1585 (2020)CrossRef Wang, Z.; Shi, Y.; Zhou, Y.; Zhou, H.; Zhang, N.: Wireless-powered over-the-air computation in intelligent reflecting surface-aided IoT networks. IEEE Internet Things J. 8(3), 1585 (2020)CrossRef
19.
go back to reference Wang, Z.; Qiu, J.; Zhou, Y.; Shi, Y.; Fu, L.; Chen, W.; Lataief, K.B.: Federated learning via intelligent reflecting surface, arXiv preprint arXiv:2011.05051 (2020) Wang, Z.; Qiu, J.; Zhou, Y.; Shi, Y.; Fu, L.; Chen, W.; Lataief, K.B.: Federated learning via intelligent reflecting surface, arXiv preprint arXiv:​2011.​05051 (2020)
20.
go back to reference Xu, C.; Liu, S.; Yang, Z.; Huang, Y.; Wong, K.K.: Learning rate optimization for federated learning exploiting over-the-air computation, arXiv preprint arXiv:2102.02946 (2021) Xu, C.; Liu, S.; Yang, Z.; Huang, Y.; Wong, K.K.: Learning rate optimization for federated learning exploiting over-the-air computation, arXiv preprint arXiv:​2102.​02946 (2021)
21.
go back to reference Cao, X.; Zhu, G.; Xu, J.; Huang, K.: Optimized power control for over-the-air computation in fading channels. IEEE Trans. Wireless Commun. 19(11), 7498 (2020)CrossRef Cao, X.; Zhu, G.; Xu, J.; Huang, K.: Optimized power control for over-the-air computation in fading channels. IEEE Trans. Wireless Commun. 19(11), 7498 (2020)CrossRef
22.
go back to reference Wilson, C.; Veeravalli, V.: A convergent version of the Max SINR algorithm for the MIMO interference channel. IEEE Trans. Wirel. Commun. 12(6), 2952 (2013)CrossRef Wilson, C.; Veeravalli, V.: A convergent version of the Max SINR algorithm for the MIMO interference channel. IEEE Trans. Wirel. Commun. 12(6), 2952 (2013)CrossRef
23.
go back to reference Zang, X.; Liu, W.; Li, Y.; Vucetic, B.: Over-the-air computation systems: optimal design with sum-power constraint. IEEE Wirel. Commun. Lett. 9(9), 1524 (2020)CrossRef Zang, X.; Liu, W.; Li, Y.; Vucetic, B.: Over-the-air computation systems: optimal design with sum-power constraint. IEEE Wirel. Commun. Lett. 9(9), 1524 (2020)CrossRef
24.
go back to reference Luo, Z.Q.; Ma, W.K.; So, A.M.C.; Ye, Y.; Zhang, S.: Semidefinite relaxation of quadratic optimization problems. IEEE Signal Process. Mag. 27(3), 20 (2010)CrossRef Luo, Z.Q.; Ma, W.K.; So, A.M.C.; Ye, Y.; Zhang, S.: Semidefinite relaxation of quadratic optimization problems. IEEE Signal Process. Mag. 27(3), 20 (2010)CrossRef
26.
go back to reference Tao, P.D.; An, L.T.H.: Convex analysis approach to DC programming: theory, algorithms and applications. Acta Math. Vietnam 22(1), 289 (1997)MathSciNetMATH Tao, P.D.; An, L.T.H.: Convex analysis approach to DC programming: theory, algorithms and applications. Acta Math. Vietnam 22(1), 289 (1997)MathSciNetMATH
Metadata
Title
Federated Learning: Sum Power Constraints Optimization Design
Authors
Yun Chen
Guoping Zhang
Hongbo Xu
Xue Chen
Ruijie Li
Publication date
29-10-2021
Publisher
Springer Berlin Heidelberg
Published in
Arabian Journal for Science and Engineering / Issue 2/2022
Print ISSN: 2193-567X
Electronic ISSN: 2191-4281
DOI
https://doi.org/10.1007/s13369-021-06210-5

Other articles of this Issue 2/2022

Arabian Journal for Science and Engineering 2/2022 Go to the issue

Research Article-Computer Engineering And Computer Science

Intelligent Framework for Prediction of Heart Disease using Deep Learning

Research Article-Computer Engineering and Computer Science

Resource Provisioning Through Machine Learning in Cloud Services

Research Article-Computer Engineering and Computer Science

High Occupancy Itemset Mining with Consideration of Transaction Occupancy

Premium Partners