Skip to main content
Top
Published in: Arabian Journal for Science and Engineering 2/2022

26-10-2021 | Research Article-Computer Engineering and Computer Science

Gene Selection for Microarray Cancer Classification based on Manta Rays Foraging Optimization and Support Vector Machines

Authors: Essam H. Houssein, Hager N. Hassan, Mustafa M. Al-Sayed, Emad Nabil

Published in: Arabian Journal for Science and Engineering | Issue 2/2022

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In DNA microarray applications, many techniques are proposed for cancer classification in order to detect normal and cancerous humans or classify different types of cancers. Gene selection is usually required as a preliminary step for a cancer classification problem. This step aims to select the most informative genes among a great number of genes, which represent an important issue. Although many studies have been proposed to address this issue, they lack getting the most informative and fewest number of genes with the highest accuracy and little effort from the high dimensionality of microarray datasets. Manta ray foraging optimization(MRFO) algorithm is a new meta-heuristic algorithm that mimics the nature of manta ray fishes in food foraging. MRFO has achieved promising results in other fields, such as solar generating units. Due to the high accuracy results of the support vector machines (SVM), it is the most commonly used classification algorithm in cancer studies, especially with microarray data. For exploiting the pros of both algorithms (i.e., MRFO and SVM), in this paper, a hybrid algorithm is proposed to select the most predictive and informative genes for cancer classification. A binary microarray dataset, which includes colon and leukemia1, and a multi-class microarray dataset that includes SRBCT, lymphoma, and leukemia2, are used to evaluate the accuracy of the proposed technique. Like other optimization techniques, MRFO suffers from some problems related to the high dimensionality and complexity of the microarray data. For solving such problems as well as improving the performance, the minimum redundancy maximum relevance (mRMR) method is used as a preprocessing stage. The proposed technique has been evaluated compared to the most common cancer classification algorithms. The experimental results show that our proposed technique achieves the highest accuracy with the fewest number of informative genes and little effort.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Dubitzky, W.; Granzow, M.; Downes, C.S.; Berrar, D.: Introduction to microarray data analysis. In: A Practical Approach to Microarray Data Analysis. Springer, pp. 1–46. (2003) Dubitzky, W.; Granzow, M.; Downes, C.S.; Berrar, D.: Introduction to microarray data analysis. In: A Practical Approach to Microarray Data Analysis. Springer, pp. 1–46. (2003)
2.
go back to reference Benso, A.; Di Carlo, S.; Politano, G.; Savino, A.: Gpu acceleration for statistical gene classification. In: 2010 IEEE International Conference on Automation, Quality and Testing, Robotics (AQTR), Vol. 2, IEEE, pp. 1–6. (2010) Benso, A.; Di Carlo, S.; Politano, G.; Savino, A.: Gpu acceleration for statistical gene classification. In: 2010 IEEE International Conference on Automation, Quality and Testing, Robotics (AQTR), Vol. 2, IEEE, pp. 1–6. (2010)
3.
go back to reference Golub, T.R.; Slonim, D.K.; Tamayo, P.; Huard, C.; Gaasenbeek, M.; Mesirov, J.P.; Coller, H.; Loh, M.L.; Downing, J.R.; Caligiuri, M.A.; et al.: Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science 286(5439), 531–537 (1999)CrossRef Golub, T.R.; Slonim, D.K.; Tamayo, P.; Huard, C.; Gaasenbeek, M.; Mesirov, J.P.; Coller, H.; Loh, M.L.; Downing, J.R.; Caligiuri, M.A.; et al.: Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science 286(5439), 531–537 (1999)CrossRef
4.
go back to reference Alshamlan, H.M.; Badr, G.H.; Alohali, Y.: A study of cancer microarray gene expression profile: objectives and approaches. In: Proceedings of the World Congress on Engineering, Vol. 2, pp. 1–6 (2013) Alshamlan, H.M.; Badr, G.H.; Alohali, Y.: A study of cancer microarray gene expression profile: objectives and approaches. In: Proceedings of the World Congress on Engineering, Vol. 2, pp. 1–6 (2013)
5.
go back to reference Ghorai, S.; Mukherjee, A.; Sengupta, S.; Dutta, P.K.: Multicategory cancer classification from gene expression data by multiclass NPPC ensemble. In: 2010 International Conference on Systems in Medicine and Biology, IEEE, (2010), pp. 41–48 Ghorai, S.; Mukherjee, A.; Sengupta, S.; Dutta, P.K.: Multicategory cancer classification from gene expression data by multiclass NPPC ensemble. In: 2010 International Conference on Systems in Medicine and Biology, IEEE, (2010), pp. 41–48
6.
go back to reference Guo, S.-B.; Lyu, M.R.; Lok, T.-M.: Gene selection based on mutual information for the classification of multi-class cancer. In: International Conference on Intelligent Computing, Springer, pp. 454–463 (2006) Guo, S.-B.; Lyu, M.R.; Lok, T.-M.: Gene selection based on mutual information for the classification of multi-class cancer. In: International Conference on Intelligent Computing, Springer, pp. 454–463 (2006)
7.
go back to reference Alanni, R.; Hou, J.; Azzawi, H.; Xiang, Y.: A novel gene selection algorithm for cancer classification using microarray datasets. BMC Med. Genomics 12(1), 10 (2019)CrossRef Alanni, R.; Hou, J.; Azzawi, H.; Xiang, Y.: A novel gene selection algorithm for cancer classification using microarray datasets. BMC Med. Genomics 12(1), 10 (2019)CrossRef
8.
go back to reference Alshamlan, H.M.; Badr, G.H.; Alohali, Y.A.: The performance of bio-inspired evolutionary gene selection methods for cancer classification using microarray dataset, International Journal of Bioscience. Biochem. Bioinf. 4(3), 166 (2014) Alshamlan, H.M.; Badr, G.H.; Alohali, Y.A.: The performance of bio-inspired evolutionary gene selection methods for cancer classification using microarray dataset, International Journal of Bioscience. Biochem. Bioinf. 4(3), 166 (2014)
9.
go back to reference Narendra, P.M.; Fukunaga, K.: A branch and bound algorithm for feature subset selection. IEEE Trans. Comput. 9, 917–922 (1977)MATHCrossRef Narendra, P.M.; Fukunaga, K.: A branch and bound algorithm for feature subset selection. IEEE Trans. Comput. 9, 917–922 (1977)MATHCrossRef
10.
go back to reference Watada, J.; Arunava, R.; Jingru, L.; Bo, W.; Shuming, W.: A dual recurrent neural network-based hybrid approach for solving convex quadratic bi-level programming problem. Neurocomputing 407, 136–154 (2020)CrossRef Watada, J.; Arunava, R.; Jingru, L.; Bo, W.; Shuming, W.: A dual recurrent neural network-based hybrid approach for solving convex quadratic bi-level programming problem. Neurocomputing 407, 136–154 (2020)CrossRef
11.
go back to reference Zhao, W.; Zhang, Z.; Wang, L.: Manta ray foraging optimization: an effective bio-inspired optimizer for engineering applications. Eng. Appl. Artif. Intell. 87, 103300103300 (2020)CrossRef Zhao, W.; Zhang, Z.; Wang, L.: Manta ray foraging optimization: an effective bio-inspired optimizer for engineering applications. Eng. Appl. Artif. Intell. 87, 103300103300 (2020)CrossRef
12.
go back to reference Guyon, I.; Weston, J.; Barnhill, S.; Vapnik, V.: Gene selection for cancer classification using support vector machines. Mach. Learn. 46(1–3), 389–422 (2002)MATHCrossRef Guyon, I.; Weston, J.; Barnhill, S.; Vapnik, V.: Gene selection for cancer classification using support vector machines. Mach. Learn. 46(1–3), 389–422 (2002)MATHCrossRef
13.
go back to reference Huerta, E.B.; Duval, B.; Hao, J.-K.: A hybrid GA/SVM approach for gene selection and classification of microarray data. In: Workshops on Applications of Evolutionary Computation, Springer, pp. 34–44(2006) Huerta, E.B.; Duval, B.; Hao, J.-K.: A hybrid GA/SVM approach for gene selection and classification of microarray data. In: Workshops on Applications of Evolutionary Computation, Springer, pp. 34–44(2006)
14.
go back to reference Mukherjee, S.: Classifying microarray data using support vector machines. In: A practical Approach to Microarray Data Analysis. Springer, pp. 166–185 (2003) Mukherjee, S.: Classifying microarray data using support vector machines. In: A practical Approach to Microarray Data Analysis. Springer, pp. 166–185 (2003)
15.
go back to reference Alshamlan, H.; Badr, G.; Alohali, Y.: A comparative study of cancer classification methods using microarray gene expression profile. In: Proceedings of the First International Conference on Advanced Data and Information Engineering (DaEng-2013), Springer, pp. 389–398 (2014) Alshamlan, H.; Badr, G.; Alohali, Y.: A comparative study of cancer classification methods using microarray gene expression profile. In: Proceedings of the First International Conference on Advanced Data and Information Engineering (DaEng-2013), Springer, pp. 389–398 (2014)
16.
go back to reference Heidari, A.A.; Mirjalili, S.; Faris, H.; Aljarah, I.; Mafarja, M.; Chen, H.: Harris hawks optimization: algorithm and applications. Future Generat. Comput. Syst. 97, 849–872 (2019)CrossRef Heidari, A.A.; Mirjalili, S.; Faris, H.; Aljarah, I.; Mafarja, M.; Chen, H.: Harris hawks optimization: algorithm and applications. Future Generat. Comput. Syst. 97, 849–872 (2019)CrossRef
17.
go back to reference Hayyolalam, V.; Kazem, A.A.P.: Black widow optimization algorithm: a novel meta-heuristic approach for solving engineering optimization problems. Eng. Appl. Artif. Intell. 87, 103249 (2020)CrossRef Hayyolalam, V.; Kazem, A.A.P.: Black widow optimization algorithm: a novel meta-heuristic approach for solving engineering optimization problems. Eng. Appl. Artif. Intell. 87, 103249 (2020)CrossRef
18.
go back to reference Mirjalili, S.; Mirjalili, S.M.; Lewis, A.: Grey wolf optimizer. Adv. Eng. softw. 69, 46–61 (2014)CrossRef Mirjalili, S.; Mirjalili, S.M.; Lewis, A.: Grey wolf optimizer. Adv. Eng. softw. 69, 46–61 (2014)CrossRef
19.
go back to reference Whitley, D.: A genetic algorithm tutorial. Stat. Comput. 4(2), 65–85 (1994)CrossRef Whitley, D.: A genetic algorithm tutorial. Stat. Comput. 4(2), 65–85 (1994)CrossRef
20.
go back to reference Mirjalili, S.; Lewis, A.: The whale optimization algorithm. Adv. Eng. softw. 95, 51–67 (2016)CrossRef Mirjalili, S.; Lewis, A.: The whale optimization algorithm. Adv. Eng. softw. 95, 51–67 (2016)CrossRef
21.
go back to reference Kennedy, J.; Eberhart, R.: Particle swarm optimization. In: Proceedings of ICNN’95-International Conference on Neural Networks, Vol. 4, IEEE, pp. 1942–1948 (1995) Kennedy, J.; Eberhart, R.: Particle swarm optimization. In: Proceedings of ICNN’95-International Conference on Neural Networks, Vol. 4, IEEE, pp. 1942–1948 (1995)
22.
go back to reference Karaboga, D.: An idea based on honey bee swarm for numerical optimization, Tech. rep., Technical report-tr06, Erciyes university, engineering faculty, computer (2005). Karaboga, D.: An idea based on honey bee swarm for numerical optimization, Tech. rep., Technical report-tr06, Erciyes university, engineering faculty, computer (2005).
23.
go back to reference Alon, U.; Barkai, N.; Notterman, D.A.; Gish, K.; Ybarra, S.; Mack, D.; Levine, A.J.: Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays. Proc. Nat. Acad. Sci. 96(12), 6745–6750 (1999)CrossRef Alon, U.; Barkai, N.; Notterman, D.A.; Gish, K.; Ybarra, S.; Mack, D.; Levine, A.J.: Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays. Proc. Nat. Acad. Sci. 96(12), 6745–6750 (1999)CrossRef
24.
go back to reference Khan, J.; Wei, J.S.; Ringner, M.; Saal, L.H.; Ladanyi, M.; Westermann, F.; Berthold, F.; Schwab, M.; Antonescu, C.R.; Peterson, C.; et al.: Classification and diagnostic prediction of cancers using gene expression profiling and artificial neural networks. Nature Med. 7(6), 673–679 (2001)CrossRef Khan, J.; Wei, J.S.; Ringner, M.; Saal, L.H.; Ladanyi, M.; Westermann, F.; Berthold, F.; Schwab, M.; Antonescu, C.R.; Peterson, C.; et al.: Classification and diagnostic prediction of cancers using gene expression profiling and artificial neural networks. Nature Med. 7(6), 673–679 (2001)CrossRef
25.
go back to reference Alizadeh, A.A.; Eisen, M.B.; Davis, R.E.; Ma, C.; Lossos, I.S.; Rosenwald, A.; Boldrick, J.C.; Sabet, H.; Tran, T.; Yu, X.; et al.: Distinct types of diffuse large b-cell lymphoma identified by gene expression profiling. Nature 403(6769), 503–511 (2000)CrossRef Alizadeh, A.A.; Eisen, M.B.; Davis, R.E.; Ma, C.; Lossos, I.S.; Rosenwald, A.; Boldrick, J.C.; Sabet, H.; Tran, T.; Yu, X.; et al.: Distinct types of diffuse large b-cell lymphoma identified by gene expression profiling. Nature 403(6769), 503–511 (2000)CrossRef
26.
go back to reference Armstrong, S.A.; Staunton, J.E.; Silverman, L.B.; Pieters, R.; den Boer, M.L.; Minden, M.D.; Sallan, S.E.; Lander, E.S.; Golub, T.R.; Korsmeyer, S.J.: Mll translocations specify a distinct gene expression profile that distinguishes a unique leukemia. Nature Genetics 30(1), 41–47 (2002)CrossRef Armstrong, S.A.; Staunton, J.E.; Silverman, L.B.; Pieters, R.; den Boer, M.L.; Minden, M.D.; Sallan, S.E.; Lander, E.S.; Golub, T.R.; Korsmeyer, S.J.: Mll translocations specify a distinct gene expression profile that distinguishes a unique leukemia. Nature Genetics 30(1), 41–47 (2002)CrossRef
27.
go back to reference Peng, H.; Long, F.; Ding, C.: Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy. IEEE Trans. Pattern Anal. Mach. intell. 27(8), 1226–1238 (2005)CrossRef Peng, H.; Long, F.; Ding, C.: Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy. IEEE Trans. Pattern Anal. Mach. intell. 27(8), 1226–1238 (2005)CrossRef
28.
go back to reference Lazar, C.; Taminau, J.; Meganck, S.; Steenhoff, D.; Coletta, A.; Molter, C.; de Schaetzen, V.; Duque, R.; Bersini, H.; Nowe, A.: A survey on filter techniques for feature selection in gene expression microarray analysis. IEEE/ACM Trans. Comput. Biol. Bioinf. (TCBB) 9(4), 1106–1119 (2012)CrossRef Lazar, C.; Taminau, J.; Meganck, S.; Steenhoff, D.; Coletta, A.; Molter, C.; de Schaetzen, V.; Duque, R.; Bersini, H.; Nowe, A.: A survey on filter techniques for feature selection in gene expression microarray analysis. IEEE/ACM Trans. Comput. Biol. Bioinf. (TCBB) 9(4), 1106–1119 (2012)CrossRef
29.
go back to reference Tabakhi, S.; Moradi, P.; Akhlaghian, F.: An unsupervised feature selection algorithm based on ant colony optimization. Eng. Appl. Artif. Intell. 32, 112–123 (2014)CrossRef Tabakhi, S.; Moradi, P.; Akhlaghian, F.: An unsupervised feature selection algorithm based on ant colony optimization. Eng. Appl. Artif. Intell. 32, 112–123 (2014)CrossRef
30.
go back to reference Liao, B.; Jiang, Y.; Liang, W.; Zhu, W.; Cai, L.; Cao, Z.: Gene selection using locality sensitive laplacian score. IEEE/ACM Trans. Comput. Biol. Bioinf. (TCBB) 11(6), 1146–1156 (2014)CrossRef Liao, B.; Jiang, Y.; Liang, W.; Zhu, W.; Cai, L.; Cao, Z.: Gene selection using locality sensitive laplacian score. IEEE/ACM Trans. Comput. Biol. Bioinf. (TCBB) 11(6), 1146–1156 (2014)CrossRef
31.
go back to reference He, X.; Cai, D.; Niyogi, P.: Laplacian score for feature selection. In: Advances in neural information processing systems, pp. 507–514. (2006) He, X.; Cai, D.; Niyogi, P.: Laplacian score for feature selection. In: Advances in neural information processing systems, pp. 507–514. (2006)
32.
go back to reference Cai, R.; Hao, Z.; Yang, X.; Wen, W.: An efficient gene selection algorithm based on mutual information. Neurocomputing 72(4–6), 991–999 (2009)CrossRef Cai, R.; Hao, Z.; Yang, X.; Wen, W.: An efficient gene selection algorithm based on mutual information. Neurocomputing 72(4–6), 991–999 (2009)CrossRef
33.
go back to reference Raileanu, L.E.; Stoffel, K.: Theoretical comparison between the gini index and information gain criteria. Ann. Math. Artif. Intell. 41(1), 77–93 (2004)MathSciNetMATHCrossRef Raileanu, L.E.; Stoffel, K.: Theoretical comparison between the gini index and information gain criteria. Ann. Math. Artif. Intell. 41(1), 77–93 (2004)MathSciNetMATHCrossRef
34.
go back to reference Ding, C.; Peng, H.: Minimum redundancy feature selection from microarray gene expression data. J. Bioinf. Comput. Biol. 3(02), 185–205 (2005)CrossRef Ding, C.; Peng, H.: Minimum redundancy feature selection from microarray gene expression data. J. Bioinf. Comput. Biol. 3(02), 185–205 (2005)CrossRef
35.
go back to reference Bertoni, A.; Folgieri, R.; Valentini, G.: Bio-molecular cancer prediction with random subspace ensembles of support vector machines. Neurocomputing 63, 535–539 (2005)CrossRef Bertoni, A.; Folgieri, R.; Valentini, G.: Bio-molecular cancer prediction with random subspace ensembles of support vector machines. Neurocomputing 63, 535–539 (2005)CrossRef
36.
go back to reference Lai, C.; Reinders, M.J.; Wessels, L.: Random subspace method for multivariate feature selection. Pattern Recognit. Lett. 27(10), 1067–1076 (2006)CrossRef Lai, C.; Reinders, M.J.; Wessels, L.: Random subspace method for multivariate feature selection. Pattern Recognit. Lett. 27(10), 1067–1076 (2006)CrossRef
37.
go back to reference Li, X.; Zhao, H.: Weighted random subspace method for high dimensional data classification. Statistics and its Interface 2(2), 153 (2009)MathSciNetMATHCrossRef Li, X.; Zhao, H.: Weighted random subspace method for high dimensional data classification. Statistics and its Interface 2(2), 153 (2009)MathSciNetMATHCrossRef
38.
go back to reference Haindl, M.; Somol, P.; Ververidis, D.; Kotropoulos, C.: Feature selection based on mutual correlation. In: Iberoamerican Congress on Pattern Recognition, Springer, pp. 569–577 (2006) Haindl, M.; Somol, P.; Ververidis, D.; Kotropoulos, C.: Feature selection based on mutual correlation. In: Iberoamerican Congress on Pattern Recognition, Springer, pp. 569–577 (2006)
39.
go back to reference Ghazavi, S.N.; Liao, T.W.: Medical data mining by fuzzy modeling with selected features. Artif. Intell. Med. 43(3), 195–206 (2008)CrossRef Ghazavi, S.N.; Liao, T.W.: Medical data mining by fuzzy modeling with selected features. Artif. Intell. Med. 43(3), 195–206 (2008)CrossRef
40.
go back to reference Ferreira, A.J.; Figueiredo, M.A.: An unsupervised approach to feature discretization and selection. Pattern Recognit. 45(9), 3048–3060 (2012)CrossRef Ferreira, A.J.; Figueiredo, M.A.: An unsupervised approach to feature discretization and selection. Pattern Recognit. 45(9), 3048–3060 (2012)CrossRef
41.
go back to reference Ferreira, A.J.; Figueiredo, M.A.: Efficient feature selection filters for high-dimensional data. Pattern Recognit. Lett. 33(13), 1794–1804 (2012)CrossRef Ferreira, A.J.; Figueiredo, M.A.: Efficient feature selection filters for high-dimensional data. Pattern Recognit. Lett. 33(13), 1794–1804 (2012)CrossRef
42.
go back to reference Yu, L.; Liu, H.: Feature selection for high-dimensional data: A fast correlation-based filter solution. In: Proceedings of the 20th International Conference on Machine Learning (ICML-03), 2003, pp. 856–863 Yu, L.; Liu, H.: Feature selection for high-dimensional data: A fast correlation-based filter solution. In: Proceedings of the 20th International Conference on Machine Learning (ICML-03), 2003, pp. 856–863
43.
go back to reference Yu, L.; Liu, H.: Efficient feature selection via analysis of relevance and redundancy. J. Mach. Learn. Res. 5(Oct), 1205–1224 (2004)MathSciNetMATH Yu, L.; Liu, H.: Efficient feature selection via analysis of relevance and redundancy. J. Mach. Learn. Res. 5(Oct), 1205–1224 (2004)MathSciNetMATH
44.
go back to reference Gheyas, I.A.; Smith, L.S.: Feature subset selection in large dimensionality domains. Pattern recognition 43(1), 5–13 (2010)MATHCrossRef Gheyas, I.A.; Smith, L.S.: Feature subset selection in large dimensionality domains. Pattern recognition 43(1), 5–13 (2010)MATHCrossRef
45.
go back to reference Saeys, Y.; Inza, I.; Larrañaga, P.: A review of feature selection techniques in bioinformatics. Bioinformatics 23(19), 2507–2517 (2007)CrossRef Saeys, Y.; Inza, I.; Larrañaga, P.: A review of feature selection techniques in bioinformatics. Bioinformatics 23(19), 2507–2517 (2007)CrossRef
46.
go back to reference Sahu, B.; Mishra, D.: A novel feature selection algorithm using particle swarm optimization for cancer microarray data. Procedia Eng. 38, 27–31 (2012)CrossRef Sahu, B.; Mishra, D.: A novel feature selection algorithm using particle swarm optimization for cancer microarray data. Procedia Eng. 38, 27–31 (2012)CrossRef
47.
go back to reference Martinez, E.; Alvarez, M.M.; Trevino, V.: Compact cancer biomarkers discovery using a swarm intelligence feature selection algorithm. Comput. Biol. Chem. 34(4), 244–250 (2010)CrossRef Martinez, E.; Alvarez, M.M.; Trevino, V.: Compact cancer biomarkers discovery using a swarm intelligence feature selection algorithm. Comput. Biol. Chem. 34(4), 244–250 (2010)CrossRef
48.
go back to reference Li, Y.; Wang, G.; Chen, H.; Shi, L.; Qin, L.: An ant colony optimization based dimension reduction method for high-dimensional datasets. J. Bionic Eng. 10(2), 231–241 (2013)CrossRef Li, Y.; Wang, G.; Chen, H.; Shi, L.; Qin, L.: An ant colony optimization based dimension reduction method for high-dimensional datasets. J. Bionic Eng. 10(2), 231–241 (2013)CrossRef
49.
go back to reference Kabir, M.M.; Shahjahan, M.; Murase, K.: A new hybrid ant colony optimization algorithm for feature selection. Expert Syst. Appl. 39(3), 3747–3763 (2012)CrossRef Kabir, M.M.; Shahjahan, M.; Murase, K.: A new hybrid ant colony optimization algorithm for feature selection. Expert Syst. Appl. 39(3), 3747–3763 (2012)CrossRef
50.
go back to reference Yu, H.; Gu, G.; Liu, H.; Shen, J.; Zhao, J.: A modified ant colony optimization algorithm for tumor marker gene selection. Genomics Proteomics Bioinf. 7(4), 200–208 (2009)CrossRef Yu, H.; Gu, G.; Liu, H.; Shen, J.; Zhao, J.: A modified ant colony optimization algorithm for tumor marker gene selection. Genomics Proteomics Bioinf. 7(4), 200–208 (2009)CrossRef
51.
go back to reference Srivastava, A.; Chakrabarti, S.; Das, S.; Ghosh, S.; Jayaraman, V.K.: Hybrid firefly based simultaneous gene selection and cancer classification using support vector machines and random forests. In: Proceedings of Seventh International Conference on Bio-Inspired Computing: Theories and Applications (BIC-TA 2012), Springer, pp. 485–494 (2013) Srivastava, A.; Chakrabarti, S.; Das, S.; Ghosh, S.; Jayaraman, V.K.: Hybrid firefly based simultaneous gene selection and cancer classification using support vector machines and random forests. In: Proceedings of Seventh International Conference on Bio-Inspired Computing: Theories and Applications (BIC-TA 2012), Springer, pp. 485–494 (2013)
52.
go back to reference Inza, I.; Sierra, B.; Blanco, R.; Larrañaga, P.: Gene selection by sequential search wrapper approaches in microarray cancer class prediction. J. Intell. Fuzzy Syst. 12(1), 25–33 (2002)MATH Inza, I.; Sierra, B.; Blanco, R.; Larrañaga, P.: Gene selection by sequential search wrapper approaches in microarray cancer class prediction. J. Intell. Fuzzy Syst. 12(1), 25–33 (2002)MATH
53.
go back to reference Inza, I.; Larrañaga, P.; Blanco, R.; Cerrolaza, A.J.: Filter versus wrapper gene selection approaches in DNA microarray domains. Artif. Intell. Med. 31(2), 91–103 (2004)CrossRef Inza, I.; Larrañaga, P.; Blanco, R.; Cerrolaza, A.J.: Filter versus wrapper gene selection approaches in DNA microarray domains. Artif. Intell. Med. 31(2), 91–103 (2004)CrossRef
54.
go back to reference Ghoneimy, M.; Nabil, E.; Badr, A.; El-Khamisy, S.F.: Bioscience research. Ghoneimy, M.; Nabil, E.; Badr, A.; El-Khamisy, S.F.: Bioscience research.
55.
go back to reference Alshamlan, H.M.; Badr, G.H.; Alohali, Y.A.: Abc-svm: artificial bee colony and svm method for microarray gene selection and multi class cancer classification. Int. J. Mach. Learn. Comput. 6(3), 184 (2016)CrossRef Alshamlan, H.M.; Badr, G.H.; Alohali, Y.A.: Abc-svm: artificial bee colony and svm method for microarray gene selection and multi class cancer classification. Int. J. Mach. Learn. Comput. 6(3), 184 (2016)CrossRef
56.
go back to reference Alba, E.; Garcia-Nieto, J.; Jourdan, L.; Talbi, E.-G.: Gene selection in cancer classification using PSO, SVM and GA, SVM hybrid algorithms. In: IEEE Congress on Evolutionary Computation. IEEE 2007, 284–290 (2007) Alba, E.; Garcia-Nieto, J.; Jourdan, L.; Talbi, E.-G.: Gene selection in cancer classification using PSO, SVM and GA, SVM hybrid algorithms. In: IEEE Congress on Evolutionary Computation. IEEE 2007, 284–290 (2007)
57.
go back to reference Rani, R.R.; Ramyachitra, D.: Microarray cancer gene feature selection using spider monkey optimization algorithm and cancer classification using SVM. Procedia Comput. Sci. 143, 108–116 (2018)CrossRef Rani, R.R.; Ramyachitra, D.: Microarray cancer gene feature selection using spider monkey optimization algorithm and cancer classification using SVM. Procedia Comput. Sci. 143, 108–116 (2018)CrossRef
58.
go back to reference Almugren, N.; Alshamlan, H.: Ff-svm: New firefly-based gene selection algorithm for microarray cancer classification. In: 2019 IEEE Conference on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB), IEEE, pp. 1–6 (2019) Almugren, N.; Alshamlan, H.: Ff-svm: New firefly-based gene selection algorithm for microarray cancer classification. In: 2019 IEEE Conference on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB), IEEE, pp. 1–6 (2019)
59.
go back to reference Maulik, U.; Chakraborty, D.: Fuzzy preference based feature selection and semisupervised svm for cancer classification. IEEE Trans. Nanobiosci. 13(2), 152–160 (2014)CrossRef Maulik, U.; Chakraborty, D.: Fuzzy preference based feature selection and semisupervised svm for cancer classification. IEEE Trans. Nanobiosci. 13(2), 152–160 (2014)CrossRef
60.
go back to reference Chen, M.-S.; Ho, T.-Y.; Huang, D.-Y.: Online transductive support vector machines for classification. In: 2012 International Conference on Information Security and Intelligent Control, IEEE, pp. 258–261 (2012) Chen, M.-S.; Ho, T.-Y.; Huang, D.-Y.: Online transductive support vector machines for classification. In: 2012 International Conference on Information Security and Intelligent Control, IEEE, pp. 258–261 (2012)
61.
go back to reference Zhang, L.; Zhou, W.; Wang, B.; Zhang, Z.; Li, F.: Applying 1-norm svm with squared loss to gene selection for cancer classification. Appl. Intell. 48(7), 1878–1890 (2018)CrossRef Zhang, L.; Zhou, W.; Wang, B.; Zhang, Z.; Li, F.: Applying 1-norm svm with squared loss to gene selection for cancer classification. Appl. Intell. 48(7), 1878–1890 (2018)CrossRef
62.
go back to reference Zhao, W.; Wang, G.; Wang, H.; Chen, H.; Dong, H.; Zhao, Z.: A novel framework for gene selection. Int. J. Adv. Comput. Technol. 3(3), 184–191 (2011) Zhao, W.; Wang, G.; Wang, H.; Chen, H.; Dong, H.; Zhao, Z.: A novel framework for gene selection. Int. J. Adv. Comput. Technol. 3(3), 184–191 (2011)
63.
go back to reference Lee, C.-P.; Leu, Y.: A novel hybrid feature selection method for microarray data analysis. Appl. Soft Comput. 11(1), 208–213 (2011)CrossRef Lee, C.-P.; Leu, Y.: A novel hybrid feature selection method for microarray data analysis. Appl. Soft Comput. 11(1), 208–213 (2011)CrossRef
64.
go back to reference Leung, Y.; Hung, Y.: A multiple-filter-multiple-wrapper approach to gene selection and microarray data classification. IEEE/ACM Trans. Comput. Biol. Bioinf. (TCBB) 7(1), 108–117 (2010)CrossRef Leung, Y.; Hung, Y.: A multiple-filter-multiple-wrapper approach to gene selection and microarray data classification. IEEE/ACM Trans. Comput. Biol. Bioinf. (TCBB) 7(1), 108–117 (2010)CrossRef
65.
go back to reference Zibakhsh, A.; Abadeh, M.S.: Gene selection for cancer tumor detection using a novel memetic algorithm with a multi-view fitness function. Eng. Appl. Artif. Intell. 26(4), 1274–1281 (2013)CrossRef Zibakhsh, A.; Abadeh, M.S.: Gene selection for cancer tumor detection using a novel memetic algorithm with a multi-view fitness function. Eng. Appl. Artif. Intell. 26(4), 1274–1281 (2013)CrossRef
66.
go back to reference Alshamlan, H.; Badr, G;, Alohali, Y.: mrmr-abc: a hybrid gene selection algorithm for cancer classification using microarray gene expression profiling. Biomed. Res. Int. (2015) Alshamlan, H.; Badr, G;, Alohali, Y.: mrmr-abc: a hybrid gene selection algorithm for cancer classification using microarray gene expression profiling. Biomed. Res. Int. (2015)
67.
go back to reference Alshamlan, H.M.; Badr, G.H.; Alohali, Y.A.: Genetic bee colony (gbc) algorithm: a new gene selection method for microarray cancer classification. Comput. Biol. Chem. 56, 49–60 (2015)CrossRef Alshamlan, H.M.; Badr, G.H.; Alohali, Y.A.: Genetic bee colony (gbc) algorithm: a new gene selection method for microarray cancer classification. Comput. Biol. Chem. 56, 49–60 (2015)CrossRef
68.
go back to reference Díaz-Uriarte, R.; De Andres, S.A.: Gene selection and classification of microarray data using random forest. BMC Bioinf. 7(1), 3 (2006)CrossRef Díaz-Uriarte, R.; De Andres, S.A.: Gene selection and classification of microarray data using random forest. BMC Bioinf. 7(1), 3 (2006)CrossRef
69.
go back to reference Wang, G.; Song, Q.; Xu, B.; Zhou, Y.: Selecting feature subset for high dimensional data via the propositional foil rules. Pattern Recognit. 46(1), 199–214 (2013)CrossRef Wang, G.; Song, Q.; Xu, B.; Zhou, Y.: Selecting feature subset for high dimensional data via the propositional foil rules. Pattern Recognit. 46(1), 199–214 (2013)CrossRef
70.
go back to reference Duan, K.-B.; Rajapakse, J.C.; Wang, H.; Azuaje, F.: Multiple SVM-RFE for gene selection in cancer classification with expression data. IEEE trans. Nanobiosci. 4(3), 228–234 (2005)CrossRef Duan, K.-B.; Rajapakse, J.C.; Wang, H.; Azuaje, F.: Multiple SVM-RFE for gene selection in cancer classification with expression data. IEEE trans. Nanobiosci. 4(3), 228–234 (2005)CrossRef
71.
go back to reference Duan, K.-B.; Rajapakse, J.C.; Nguyen, M.N.: One-versus-one and one-versus-all multiclass svm-rfe for gene selection in cancer classification. In: European Conference on Evolutionary Computation, Machine Learning and Data Mining in Bioinformatics, Springer, pp. 47–56 (2007) Duan, K.-B.; Rajapakse, J.C.; Nguyen, M.N.: One-versus-one and one-versus-all multiclass svm-rfe for gene selection in cancer classification. In: European Conference on Evolutionary Computation, Machine Learning and Data Mining in Bioinformatics, Springer, pp. 47–56 (2007)
72.
go back to reference Ghosh, K.K.; Guha, R.; Bera, S.K.; Kumar, N.; Sarkar, R.: S-shaped versus v-shaped transfer functions for binary manta ray foraging optimization in feature selection problem. Ghosh, K.K.; Guha, R.; Bera, S.K.; Kumar, N.; Sarkar, R.: S-shaped versus v-shaped transfer functions for binary manta ray foraging optimization in feature selection problem.
73.
go back to reference Fathy, A.; Rezk, H.; Yousri, D.: A robust global MPPT to mitigate partial shading of triple-junction solar cell-based system using manta ray foraging optimization algorithm. Solar Energy 207, 305–316 (2020)CrossRef Fathy, A.; Rezk, H.; Yousri, D.: A robust global MPPT to mitigate partial shading of triple-junction solar cell-based system using manta ray foraging optimization algorithm. Solar Energy 207, 305–316 (2020)CrossRef
74.
go back to reference El-Hameed, M.A.; Elkholy, M.M.; El-Fergany, A.A.: Three-diode model for characterization of industrial solar generating units using manta-rays foraging optimizer: Analysis and validations. Energy Convers. Manage. 219, 113048 (2020)CrossRef El-Hameed, M.A.; Elkholy, M.M.; El-Fergany, A.A.: Three-diode model for characterization of industrial solar generating units using manta-rays foraging optimizer: Analysis and validations. Energy Convers. Manage. 219, 113048 (2020)CrossRef
75.
go back to reference Selem, S.I.; Hasanien, H.M.; El-Fergany, A.A.: Parameters extraction of PEMFC’s model using manta rays foraging optimizer. Int. J. Energy Res. 44(6), 4629–4640 (2020)CrossRef Selem, S.I.; Hasanien, H.M.; El-Fergany, A.A.: Parameters extraction of PEMFC’s model using manta rays foraging optimizer. Int. J. Energy Res. 44(6), 4629–4640 (2020)CrossRef
76.
go back to reference El Akadi, A.; Amine, A.; El Ouardighi, A.; Aboutajdine, D.: A new gene selection approach based on minimum redundancy-maximum relevance (MRMR) and genetic algorithm (GA). In: 2009 IEEE/ACS International Conference on Computer Systems and Applications, IEEE, pp. 69–75 (2009) El Akadi, A.; Amine, A.; El Ouardighi, A.; Aboutajdine, D.: A new gene selection approach based on minimum redundancy-maximum relevance (MRMR) and genetic algorithm (GA). In: 2009 IEEE/ACS International Conference on Computer Systems and Applications, IEEE, pp. 69–75 (2009)
77.
go back to reference Liu, H.; Liu, L.; Zhang, H.: Ensemble gene selection by grouping for microarray data classification. J. Biomed. Inf. 43(1), 81–87 (2010)CrossRef Liu, H.; Liu, L.; Zhang, H.: Ensemble gene selection by grouping for microarray data classification. J. Biomed. Inf. 43(1), 81–87 (2010)CrossRef
78.
go back to reference Abdi, M.J.; Hosseini, S.M.; Rezghi, M.: A novel weighted support vector machine based on particle swarm optimization for gene selection and tumor classification. Comput. Math. Methods Med. (2012) Abdi, M.J.; Hosseini, S.M.; Rezghi, M.: A novel weighted support vector machine based on particle swarm optimization for gene selection and tumor classification. Comput. Math. Methods Med. (2012)
79.
go back to reference Yun, C.; Oh, B.; Yang, J.; Nang, J.: Feature subset selection based on bio-inspired algorithms. J. Inf. Sci. Eng. 27(5), 1667–1686 (2011)MathSciNet Yun, C.; Oh, B.; Yang, J.; Nang, J.: Feature subset selection based on bio-inspired algorithms. J. Inf. Sci. Eng. 27(5), 1667–1686 (2011)MathSciNet
80.
go back to reference Huang, T.; Wang, P.; Ye, Z.-Q.; Xu, H.; He, Z.; Feng, K.-Y.; Hu, L.; Cui, W.; Wang, K.; Dong, X.; et al.: Prediction of deleterious non-synonymous SNPS based on protein interaction network and hybrid properties. PLoS ONE 5(7), e11900 (2010)CrossRef Huang, T.; Wang, P.; Ye, Z.-Q.; Xu, H.; He, Z.; Feng, K.-Y.; Hu, L.; Cui, W.; Wang, K.; Dong, X.; et al.: Prediction of deleterious non-synonymous SNPS based on protein interaction network and hybrid properties. PLoS ONE 5(7), e11900 (2010)CrossRef
81.
go back to reference Rodríguez-Peérez, R.; Vogt, M.; Bajorath, J.: Support vector machine classification and regression prioritize different structural features for binary compound activity and potency value prediction. ACS Omega 2(10), 6371–6379 (2017)CrossRef Rodríguez-Peérez, R.; Vogt, M.; Bajorath, J.: Support vector machine classification and regression prioritize different structural features for binary compound activity and potency value prediction. ACS Omega 2(10), 6371–6379 (2017)CrossRef
82.
go back to reference Wang, X.; Gotoh, O.: Microarray-based cancer prediction using soft computing approach, Cancer informatics 7 CIN–S2655. (2009) Wang, X.; Gotoh, O.: Microarray-based cancer prediction using soft computing approach, Cancer informatics 7 CIN–S2655. (2009)
83.
go back to reference Shen, Q.; Shi, W.-M.; Kong, W.; Ye, B.-X.: A combination of modified particle swarm optimization algorithm and support vector machine for gene selection and tumor classification. Talanta 71(4), 1679–1683 (2007)CrossRef Shen, Q.; Shi, W.-M.; Kong, W.; Ye, B.-X.: A combination of modified particle swarm optimization algorithm and support vector machine for gene selection and tumor classification. Talanta 71(4), 1679–1683 (2007)CrossRef
84.
go back to reference Abdi, M.J.; Giveki, D.: Automatic detection of erythemato-squamous diseases using PSO-SVM based on association rules. Eng. Appl. Artif. Intell. 26(1), 603–608 (2013)CrossRef Abdi, M.J.; Giveki, D.: Automatic detection of erythemato-squamous diseases using PSO-SVM based on association rules. Eng. Appl. Artif. Intell. 26(1), 603–608 (2013)CrossRef
85.
go back to reference Huang, H.-L.; Chang, F.-L.: Esvm: Evolutionary support vector machine for automatic feature selection and classification of microarray data. Biosystems 90(2), 516–528 (2007)MathSciNetCrossRef Huang, H.-L.; Chang, F.-L.: Esvm: Evolutionary support vector machine for automatic feature selection and classification of microarray data. Biosystems 90(2), 516–528 (2007)MathSciNetCrossRef
86.
go back to reference Huang, H.-L.; Lee, C.-C.; Ho, S.-Y.: Selecting a minimal number of relevant genes from microarray data to design accurate tissue classifiers. Biosystems 90(1), 78–86 (2007)CrossRef Huang, H.-L.; Lee, C.-C.; Ho, S.-Y.: Selecting a minimal number of relevant genes from microarray data to design accurate tissue classifiers. Biosystems 90(1), 78–86 (2007)CrossRef
87.
go back to reference Yang, C.-S.; Chuang, L.-Y.; Ke, C.-H.; Yang, C.-H.: A hybrid feature selection method for microarray classification., IAENG Int. J. Comput. Sci. 35(3) Yang, C.-S.; Chuang, L.-Y.; Ke, C.-H.; Yang, C.-H.: A hybrid feature selection method for microarray classification., IAENG Int. J. Comput. Sci. 35(3)
88.
go back to reference Peng, S.; Xu, Q.; Ling, X.B.; Peng, X.; Du, W.; Chen, L.: Molecular classification of cancer types from microarray data using the combination of genetic algorithms and support vector machines. FEBS Lett. 555(2), 358–362 (2003)CrossRef Peng, S.; Xu, Q.; Ling, X.B.; Peng, X.; Du, W.; Chen, L.: Molecular classification of cancer types from microarray data using the combination of genetic algorithms and support vector machines. FEBS Lett. 555(2), 358–362 (2003)CrossRef
Metadata
Title
Gene Selection for Microarray Cancer Classification based on Manta Rays Foraging Optimization and Support Vector Machines
Authors
Essam H. Houssein
Hager N. Hassan
Mustafa M. Al-Sayed
Emad Nabil
Publication date
26-10-2021
Publisher
Springer Berlin Heidelberg
Published in
Arabian Journal for Science and Engineering / Issue 2/2022
Print ISSN: 2193-567X
Electronic ISSN: 2191-4281
DOI
https://doi.org/10.1007/s13369-021-06102-8

Other articles of this Issue 2/2022

Arabian Journal for Science and Engineering 2/2022 Go to the issue

Premium Partners