Skip to main content
Top

2013 | OriginalPaper | Chapter

10. Feedforward Control of Flexible and Nonlinear Piezoelectric Actuators

Author : Micky Rakotondrabe

Published in: Smart Materials-Based Actuators at the Micro/Nano-Scale

Publisher: Springer New York

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this chapter, the control without sensors, also called feedforward control, of piezoelectric actuators is proposed. Typified by hysteresis and creep nonlinearities and by badly damped vibration, the design of the controller (compensator) is based on precise models and on the inversion of the latter. For that, the hysteresis is first modeled and compensated by using the Prandtl–Ishlinskii technique. Then, the creep is treated. Finally, the badly damped vibration is modeled and controlled. Experimental results along the chapter demonstrate the efficiency of the approach.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference J. Agnus, N. Chaillet, C. Clévy, S. Dembélé, M. Gauthier, Y. Haddab, G. Laurent, P. Lutz, N. Piat, K. Rabenorosoa, M. Rakotondrabe, B. Tamadazte, Robotic microassembly and micromanipulation at FEMTO-ST. J. Micro. Bio. Robot. (JMBR), 8(2), 91–106 (2013) J. Agnus, N. Chaillet, C. Clévy, S. Dembélé, M. Gauthier, Y. Haddab, G. Laurent, P. Lutz, N. Piat, K. Rabenorosoa, M. Rakotondrabe, B. Tamadazte, Robotic microassembly and micromanipulation at FEMTO-ST. J. Micro. Bio. Robot. (JMBR), 8(2), 91–106 (2013)
2.
go back to reference M. Rakotondrabe, C. Clévy, P. Lutz, Modelling and robust position/force control of a piezoelectric microgripper, in IEEE - International Conference on Automation Science and Engineering (CASE), Scottsdale, AZ, USA, 2007, pp. 39–44 M. Rakotondrabe, C. Clévy, P. Lutz, Modelling and robust position/force control of a piezoelectric microgripper, in IEEE - International Conference on Automation Science and Engineering (CASE), Scottsdale, AZ, USA, 2007, pp. 39–44
3.
go back to reference M. Rakotondrabe, Y. Haddab, P. Lutz, Quadrilateral modelling and robust control of a nonlinear piezoelectric cantilever. IEEE - Trans. Contr. Syst. Technol. (T-CST) 17(3), 528–539 (2009) M. Rakotondrabe, Y. Haddab, P. Lutz, Quadrilateral modelling and robust control of a nonlinear piezoelectric cantilever. IEEE - Trans. Contr. Syst. Technol. (T-CST) 17(3), 528–539 (2009)
4.
go back to reference M. Rakotondrabe, K. Rabenorosoa, J. Agnus, N. Chaillet, Robust feedforward-feedback control of a nonlinear and oscillating 2-dof piezocantilever. IEEE - Trans. Autom. Sci. Eng. (T-ASE) 8(3), 506–519 (2011) M. Rakotondrabe, K. Rabenorosoa, J. Agnus, N. Chaillet, Robust feedforward-feedback control of a nonlinear and oscillating 2-dof piezocantilever. IEEE - Trans. Autom. Sci. Eng. (T-ASE) 8(3), 506–519 (2011)
5.
go back to reference S. Khadraoui, M. Rakotondrabe, P. Lutz, Interval modeling and robust control of piezoelectric microactuators. IEEE - Trans. Contr. Syst. Technol. (T-CST) 20(2), 486–494 (2012) S. Khadraoui, M. Rakotondrabe, P. Lutz, Interval modeling and robust control of piezoelectric microactuators. IEEE - Trans. Contr. Syst. Technol. (T-CST) 20(2), 486–494 (2012)
6.
7.
go back to reference A. Sebastian, A. Gannepalli, M.V. Salapaka, A review of the systems approach to teh analysis of dynamic-mode atomic force microscopy. IEEE Trans. Contr. Syst. Technol. 15(5), 952–959 (2007)CrossRef A. Sebastian, A. Gannepalli, M.V. Salapaka, A review of the systems approach to teh analysis of dynamic-mode atomic force microscopy. IEEE Trans. Contr. Syst. Technol. 15(5), 952–959 (2007)CrossRef
8.
go back to reference Q. Xu, Y. Li, Model predictive discrete-time sliding mode control of a nanopositioning piezostage without modeling hysteresis. IEEE Trans. Contr. Syst. Technol. 20(4), 983–994 (2012)CrossRef Q. Xu, Y. Li, Model predictive discrete-time sliding mode control of a nanopositioning piezostage without modeling hysteresis. IEEE Trans. Contr. Syst. Technol. 20(4), 983–994 (2012)CrossRef
9.
go back to reference A. Bazaei, Y.K. Yong, S.O.R. Moheimani, A. Sebastian, Tracking of triangular references using signal transformation for control of a novel AFM scanner stage. IEEE Trans. Contr. Syst. Technol. 20(2), 453–464 (2012)CrossRef A. Bazaei, Y.K. Yong, S.O.R. Moheimani, A. Sebastian, Tracking of triangular references using signal transformation for control of a novel AFM scanner stage. IEEE Trans. Contr. Syst. Technol. 20(2), 453–464 (2012)CrossRef
10.
go back to reference S. Devasia, E.E. Eleftheriou, R. Moheimani, A survey of control issues in nanopositioning. IEEE Trans. Contr. Syst. Technol. 15(5), 802–823 (2007)CrossRef S. Devasia, E.E. Eleftheriou, R. Moheimani, A survey of control issues in nanopositioning. IEEE Trans. Contr. Syst. Technol. 15(5), 802–823 (2007)CrossRef
11.
go back to reference D. Croft, G. Shed, S. Devasia, Creep, hysteresis and vibration compensation for piezoactuators: atomic force microscopy application. ASME J. Dyn. Syst. Meas. Contr. 123(1), 35–43 (2001)CrossRef D. Croft, G. Shed, S. Devasia, Creep, hysteresis and vibration compensation for piezoactuators: atomic force microscopy application. ASME J. Dyn. Syst. Meas. Contr. 123(1), 35–43 (2001)CrossRef
12.
go back to reference A. Dubra, J. Massa, C.l. Paterson, Preisach classical and nonlinear modeling of hysteresis in piezoceramic deformable mirrors. Optic. Express 13(22), 9062–9070 (2005) A. Dubra, J. Massa, C.l. Paterson, Preisach classical and nonlinear modeling of hysteresis in piezoceramic deformable mirrors. Optic. Express 13(22), 9062–9070 (2005)
13.
go back to reference M. Rakotondrabe, C. Clévy, P. Lutz, Complete open loop control of hysteretic, creeped and oscillating piezoelectric cantilever. IEEE Trans. Autom. Sci. Eng. (TASE) 7(3), 440–450 (2010) M. Rakotondrabe, C. Clévy, P. Lutz, Complete open loop control of hysteretic, creeped and oscillating piezoelectric cantilever. IEEE Trans. Autom. Sci. Eng. (TASE) 7(3), 440–450 (2010)
14.
go back to reference W.T. Ang, P.K. Kholsa, C.N. Riviere, Feedforward controller with inverse rate-dependent model for piezoelectric actuators in trajectory-tracking applications. IEEE/ASME Trans. Mechatron. 12(2), 134–142 (2007)CrossRef W.T. Ang, P.K. Kholsa, C.N. Riviere, Feedforward controller with inverse rate-dependent model for piezoelectric actuators in trajectory-tracking applications. IEEE/ASME Trans. Mechatron. 12(2), 134–142 (2007)CrossRef
15.
go back to reference B. Mokaberi, A.A.G. Requicha, Compensation of scanner creep and hysteresis for AFM nanomanipulation. IEEE Trans. ASE 5(2), 197–0208 (2008) B. Mokaberi, A.A.G. Requicha, Compensation of scanner creep and hysteresis for AFM nanomanipulation. IEEE Trans. ASE 5(2), 197–0208 (2008)
16.
go back to reference M. Al Janaideh, P. Krejci, Inverse rate-dependent Prandtl–Ishlinskii model for feedforward compensation of hysteresis in a piezomicropositioning actuator. IEEE/ASME Trans. Mechatron. (2012). doi:10.1109/TMECH.2012.2205265 M. Al Janaideh, P. Krejci, Inverse rate-dependent Prandtl–Ishlinskii model for feedforward compensation of hysteresis in a piezomicropositioning actuator. IEEE/ASME Trans. Mechatron. (2012). doi:10.1109/TMECH.2012.2205265
17.
go back to reference M. Rakotondrabe, Classical Prandtl–Ishlinskii modeling and inverse multiplicative structure to compensate hysteresis in piezoactuators, in ACC (American Control Conference), Montréal, Canada, June 2012, pp. 1646–1651 M. Rakotondrabe, Classical Prandtl–Ishlinskii modeling and inverse multiplicative structure to compensate hysteresis in piezoactuators, in ACC (American Control Conference), Montréal, Canada, June 2012, pp. 1646–1651
18.
go back to reference M. Rakotondrabe, Bouc–Wen modeling and inverse multiplicative structure to compensate hysteresis nonlinearity in piezoelectric actuators. IEEE Trans. ASE 8(2), 428–431 (2011) M. Rakotondrabe, Bouc–Wen modeling and inverse multiplicative structure to compensate hysteresis nonlinearity in piezoelectric actuators. IEEE Trans. ASE 8(2), 428–431 (2011)
19.
go back to reference H. Jung, J.Y. Shim, D. Gweon, New open-loop actuating method of piezoelectric actuators for removing hysteresis and creep. Rev. Sci. Instrum. 71(9), 3436–3440 (2000)CrossRef H. Jung, J.Y. Shim, D. Gweon, New open-loop actuating method of piezoelectric actuators for removing hysteresis and creep. Rev. Sci. Instrum. 71(9), 3436–3440 (2000)CrossRef
20.
go back to reference G.M. Clayton, S. Tien, S. Devasia, A.J. Fleming, S.O.R. Moheimani, Inverse-feedforward of charge-controlled piezopositioners. Mechatronics 18, 273–281 (2008)CrossRef G.M. Clayton, S. Tien, S. Devasia, A.J. Fleming, S.O.R. Moheimani, Inverse-feedforward of charge-controlled piezopositioners. Mechatronics 18, 273–281 (2008)CrossRef
21.
go back to reference M. Rakotondrabe, C. Clévy, P. Lutz, Hysteresis and vibration compensation in a nonlinear unimorph piezocantilever, in IEEE/RSJ - IROS, (International Conference on Intelligent Robots and Systems), Nice, France, Sept 2008, pp. 558–563 M. Rakotondrabe, C. Clévy, P. Lutz, Hysteresis and vibration compensation in a nonlinear unimorph piezocantilever, in IEEE/RSJ - IROS, (International Conference on Intelligent Robots and Systems), Nice, France, Sept 2008, pp. 558–563
22.
go back to reference M. Rakotondrabe, Piezoelectric Cantilevered Structures: Modeling Control and Measurement/Estimation Aspects (Springer, Berlin, 2013) M. Rakotondrabe, Piezoelectric Cantilevered Structures: Modeling Control and Measurement/Estimation Aspects (Springer, Berlin, 2013)
23.
go back to reference R. Bouc, Forced vibration of mechanical systems with hysteresis, in Conference on Nonlinear Oscillation, Prague, 1967 R. Bouc, Forced vibration of mechanical systems with hysteresis, in Conference on Nonlinear Oscillation, Prague, 1967
24.
go back to reference Y.K. Wen, Method for random vibration of hysteresis systems. J. Eng. Mech. Div. 102(2), 249–263 (1976) Y.K. Wen, Method for random vibration of hysteresis systems. J. Eng. Mech. Div. 102(2), 249–263 (1976)
25.
go back to reference M. Jouaneh, H. Tian, Accuracy enhancement of a piezoelectric actuators with hysteresis, in ASME Japan/USA Symp. Flexible Automation, Proceedings of the Japan-USA Symposium on Flexible Automation, A Pacific Rim Conference, San Francisco, California, USA, ASME/ISCIE, ISBN 0-7918-0765-8, 1992, pp. 631–637 M. Jouaneh, H. Tian, Accuracy enhancement of a piezoelectric actuators with hysteresis, in ASME Japan/USA Symp. Flexible Automation, Proceedings of the Japan-USA Symposium on Flexible Automation, A Pacific Rim Conference, San Francisco, California, USA, ASME/ISCIE, ISBN 0-7918-0765-8, 1992, pp. 631–637
26.
go back to reference T.S. Low, W. Guo, Modeling of a three-layer piezoelectric bimorph beam with hysteresis. J. Microelectromech. Syst. 4(4), 230–237 (1995)CrossRef T.S. Low, W. Guo, Modeling of a three-layer piezoelectric bimorph beam with hysteresis. J. Microelectromech. Syst. 4(4), 230–237 (1995)CrossRef
27.
go back to reference L. Ljung, System identification toolbox, for use with Matlab. The Matworks (1995) L. Ljung, System identification toolbox, for use with Matlab. The Matworks (1995)
28.
go back to reference T. Singh, W. Singhose, Tutorial on input shaping/time delay control of maneuvering flexible structures, in American Control Conference, Proceedings of the American Control Conference, Anchorage Alaska USA, 2002, pp. 1717–1731 T. Singh, W. Singhose, Tutorial on input shaping/time delay control of maneuvering flexible structures, in American Control Conference, Proceedings of the American Control Conference, Anchorage Alaska USA, 2002, pp. 1717–1731
29.
go back to reference N.C. Singer, W.P. Seering, K.A. Pasch, Shaping command inputs to minimize unwanted dynamics. Patent No. US-4.916.635, 1990 N.C. Singer, W.P. Seering, K.A. Pasch, Shaping command inputs to minimize unwanted dynamics. Patent No. US-4.916.635, 1990
Metadata
Title
Feedforward Control of Flexible and Nonlinear Piezoelectric Actuators
Author
Micky Rakotondrabe
Copyright Year
2013
Publisher
Springer New York
DOI
https://doi.org/10.1007/978-1-4614-6684-0_10