Skip to main content
Top

2013 | OriginalPaper | Chapter

9. Compensation of Rate-Dependent Hysteresis in a Piezomicropositioning Actuator

Author : Mohammad Al Janaideh

Published in: Smart Materials-Based Actuators at the Micro/Nano-Scale

Publisher: Springer New York

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Piezomicropositioning actuators exhibit strong rate-dependent hysteresis nonlinearities that affect the accuracy of these micropositioning systems in open-loop system and may even lead to system instability of the closed-loop control system. Compensation of rate-dependent hysteresis effects using inverse rate-independent hysteresis models may yield high compensation error at high-excitation frequencies since these hysteresis effects increase as the excitation frequency of the input voltage increases. The inverse rate-dependent Prandtl–Ishlinskii model is utilized for compensation of the rate-dependent hysteresis nonlinearities in a piezomicropositioning stage. The exact inversion of the rate-dependent model is on hold under the condition that the distances between the thresholds do not decrease in time. The inverse of the rate-dependent model is applied as a feedforward compensator to compensate for the rate-dependent hysteresis nonlinearities of a piezomicropositioning actuator at different excitation frequencies between 0.1 and 50 Hz. The results show that the inverse compensator suppresses the hysteresis percent and the maximum positioning error in the output displacement of the piezomicropositioning actuator at different excitation frequencies, respectively.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference A. Cavallo, C. Natale, S. Pirozzi, C.Visone, A. Formisano, Feedback control systems for micropositioning tasks with hysteresis compensation. IEEE Trans. Magn. 40(2), 876–879 (2004)CrossRef A. Cavallo, C. Natale, S. Pirozzi, C.Visone, A. Formisano, Feedback control systems for micropositioning tasks with hysteresis compensation. IEEE Trans. Magn. 40(2), 876–879 (2004)CrossRef
2.
go back to reference M. Rakotondrabe, C. Clevy, P. Lutz, Complete open loop control of hysteretic, creeped, and oscillating piezoelectric cantilevers. IEEE Trans. Autom. Sci. Eng. 7(3), 440–450 (2010)CrossRef M. Rakotondrabe, C. Clevy, P. Lutz, Complete open loop control of hysteretic, creeped, and oscillating piezoelectric cantilevers. IEEE Trans. Autom. Sci. Eng. 7(3), 440–450 (2010)CrossRef
3.
go back to reference Y. Li, Q. Xu, A totally decoupled piezo-driven XYZ flexure parallel micropositioning stage for micro/nanomanipulation. IEEE Trans. Autom. Sci. Eng. 8(2), 265–279 (2011)CrossRef Y. Li, Q. Xu, A totally decoupled piezo-driven XYZ flexure parallel micropositioning stage for micro/nanomanipulation. IEEE Trans. Autom. Sci. Eng. 8(2), 265–279 (2011)CrossRef
4.
go back to reference D. Davinoa, C. Nataleb, S. Pirozzib, C. Visone, A phenomenological dynamic model of a magnetostrictive actuator. Physica B 343(1–4), 112116 (2004) D. Davinoa, C. Nataleb, S. Pirozzib, C. Visone, A phenomenological dynamic model of a magnetostrictive actuator. Physica B 343(1–4), 112116 (2004)
5.
go back to reference B. Choi, M. Han, Vibration control of a rotating cantilevered beam using piezoactuators: experimental work. J. Sound Vib. 277(1–2), 436–442 (2004)CrossRef B. Choi, M. Han, Vibration control of a rotating cantilevered beam using piezoactuators: experimental work. J. Sound Vib. 277(1–2), 436–442 (2004)CrossRef
6.
go back to reference B. Agrawal, M. Elshafei, G. Song, Adaptive antenna shape control using piezoelectric actuators. Acta Astronaut. 40(11), 821–826 (1997)CrossRef B. Agrawal, M. Elshafei, G. Song, Adaptive antenna shape control using piezoelectric actuators. Acta Astronaut. 40(11), 821–826 (1997)CrossRef
7.
go back to reference P. Krejčí, M. Al Janaideh, F. Deasy, Inversion of hysteresis and creep operators. Physica B 407(9), 1354–1356 (2012)CrossRef P. Krejčí, M. Al Janaideh, F. Deasy, Inversion of hysteresis and creep operators. Physica B 407(9), 1354–1356 (2012)CrossRef
8.
go back to reference J. Park, K. Yoshida, S. Yokoto, Resonantly driven piezoelectric micropump-fabrication of a micropump having high power density. Mechatronics 9(7), 687–702 (1999)CrossRef J. Park, K. Yoshida, S. Yokoto, Resonantly driven piezoelectric micropump-fabrication of a micropump having high power density. Mechatronics 9(7), 687–702 (1999)CrossRef
9.
go back to reference B. Mokaberi, A. Requicha, Compensation of scanner creep and hysteresis for AFM nanomanipulation. IEEE Trans. Autom. Sci. Eng. 5(2), 197–206 (2008)CrossRef B. Mokaberi, A. Requicha, Compensation of scanner creep and hysteresis for AFM nanomanipulation. IEEE Trans. Autom. Sci. Eng. 5(2), 197–206 (2008)CrossRef
10.
11.
go back to reference M. Al Janaideh, S. Rakheja, C.-Y. Su, Experimental characterization and modeling of rate-dependent hysteresis of a piezoceramic actuator. Mechatronics 17(5), 656–670 (2009)CrossRef M. Al Janaideh, S. Rakheja, C.-Y. Su, Experimental characterization and modeling of rate-dependent hysteresis of a piezoceramic actuator. Mechatronics 17(5), 656–670 (2009)CrossRef
12.
go back to reference S. Viswamurthy, R. Ganguli, Modeling and compensation of piezoceramic actuator hysteresis for helicopter vibration control. Sensor Actuator A: Phys. 135(2), 801–810 (2007)CrossRef S. Viswamurthy, R. Ganguli, Modeling and compensation of piezoceramic actuator hysteresis for helicopter vibration control. Sensor Actuator A: Phys. 135(2), 801–810 (2007)CrossRef
13.
go back to reference R. Ben Mrad, H. Hu, A model for voltage-to-displacement dynamics in piezoceramic actuators subject to dynamic-voltage excitations. IEEE/ASME Trans. Mechatron. 7(4), 479–489 (2002)CrossRef R. Ben Mrad, H. Hu, A model for voltage-to-displacement dynamics in piezoceramic actuators subject to dynamic-voltage excitations. IEEE/ASME Trans. Mechatron. 7(4), 479–489 (2002)CrossRef
14.
go back to reference K. Leang, Q. Zou, S. Devasia, Feedforward control of piezoactuators in atomic force microscope systems: inversion-based compensation for dynamics and hysteresis. IEEE Contr. Syst. Mag. 19(1), 70–82 (2009)MathSciNetCrossRef K. Leang, Q. Zou, S. Devasia, Feedforward control of piezoactuators in atomic force microscope systems: inversion-based compensation for dynamics and hysteresis. IEEE Contr. Syst. Mag. 19(1), 70–82 (2009)MathSciNetCrossRef
15.
go back to reference M. Grossard, M. Boukallel, N. Chaillet, C. Rotinat-Libersa, Modeling and robust control strategy for a control-optimized piezoelectric microgripper. IEEE/ASME Trans. Mechatron. 16(4), 674–683 (2011)CrossRef M. Grossard, M. Boukallel, N. Chaillet, C. Rotinat-Libersa, Modeling and robust control strategy for a control-optimized piezoelectric microgripper. IEEE/ASME Trans. Mechatron. 16(4), 674–683 (2011)CrossRef
16.
go back to reference P. Ge, M. Jouaneh, Tracking control of a piezoceramic actuator. IEEE Trans. Contr. Syst. Technol. 4(3), 209–216 (1996)CrossRef P. Ge, M. Jouaneh, Tracking control of a piezoceramic actuator. IEEE Trans. Contr. Syst. Technol. 4(3), 209–216 (1996)CrossRef
17.
go back to reference H. Hu, H. Georgiou, R. BenMrad, Enhancement of tracking ability in piezoceramic actuators subject to dynamic excitation conditions. IEEE/ASME Trans. Mechatron. 10(2), 230–240 (2005)CrossRef H. Hu, H. Georgiou, R. BenMrad, Enhancement of tracking ability in piezoceramic actuators subject to dynamic excitation conditions. IEEE/ASME Trans. Mechatron. 10(2), 230–240 (2005)CrossRef
18.
go back to reference G. Song, J. Zhao, X. Zhou, J. Abreu-Garcia, Tracking control of a piezoceramic actuator with hysteresis compensation using inverse Preisach model. IEEE/ASME Trans. Mechatron. 10(2), 198–209 (2005)CrossRef G. Song, J. Zhao, X. Zhou, J. Abreu-Garcia, Tracking control of a piezoceramic actuator with hysteresis compensation using inverse Preisach model. IEEE/ASME Trans. Mechatron. 10(2), 198–209 (2005)CrossRef
19.
go back to reference A. Esbrook, X. Tan, H. Khalil, Control of systems with hysteresis via servocompensation and its application to nanopositioning. IEEE Trans. Contr. Syst. Technol. 1–12 (2012). doi:10.1109/TCST.2012.2192734 A. Esbrook, X. Tan, H. Khalil, Control of systems with hysteresis via servocompensation and its application to nanopositioning. IEEE Trans. Contr. Syst. Technol. 1–12 (2012). doi:10.1109/TCST.2012.2192734
20.
go back to reference Y. Shan, K. Leang, Repetitive control with Prandtl–Ishlinskii hysteresis inverse for piezo-based nanopositioning, in Proceedings of the American Control Conference, St. Louis, MO, 2009, pp. 301–306 Y. Shan, K. Leang, Repetitive control with Prandtl–Ishlinskii hysteresis inverse for piezo-based nanopositioning, in Proceedings of the American Control Conference, St. Louis, MO, 2009, pp. 301–306
21.
go back to reference W. Ang, P. Khosla, C. Riviere, Feedforward controller with inverse rate-dependent model for piezoelectric actuators in trajectory-tracking applications. IEEE/ASME Trans. Mechatron. 12(2), 134–142 (2007)CrossRef W. Ang, P. Khosla, C. Riviere, Feedforward controller with inverse rate-dependent model for piezoelectric actuators in trajectory-tracking applications. IEEE/ASME Trans. Mechatron. 12(2), 134–142 (2007)CrossRef
22.
go back to reference M. Al Janaideh, P. Krejčí, An inversion formula for a Prandtl–Ishlinskii operator with time dependent thresholds. Physica B 406(8), 1528–1532 (2011)CrossRef M. Al Janaideh, P. Krejčí, An inversion formula for a Prandtl–Ishlinskii operator with time dependent thresholds. Physica B 406(8), 1528–1532 (2011)CrossRef
23.
go back to reference P. Krejci, K. Kuhnen, Inverse control of systems with hysteresis and creep. IEE Proc. Contr. Theor. Appl. 148(3), 185–192 (2001)CrossRef P. Krejci, K. Kuhnen, Inverse control of systems with hysteresis and creep. IEE Proc. Contr. Theor. Appl. 148(3), 185–192 (2001)CrossRef
24.
go back to reference A. Bergqvist, On magnetic hysteresis modeling, Ph.D. thesis, Royal Institute of Technology, Stockholm, Sweden, 1994 A. Bergqvist, On magnetic hysteresis modeling, Ph.D. thesis, Royal Institute of Technology, Stockholm, Sweden, 1994
25.
26.
27.
go back to reference K. Kuhnen, P. Krejčí, Compensation of complex hysteresis and creep effects in piezoelectrically actuated systems: a new preisach modeling approach. IEEE Trans. Automat. Contr. 54(3), 537–550 (2009)CrossRef K. Kuhnen, P. Krejčí, Compensation of complex hysteresis and creep effects in piezoelectrically actuated systems: a new preisach modeling approach. IEEE Trans. Automat. Contr. 54(3), 537–550 (2009)CrossRef
28.
go back to reference K. Kuhnen, Modeling, identification and compensation of complex hysteretic nonlinearities—a modified Prandtl–Ishlinskii approach. Eur. J. Contr. 9(4), 407–418 (2003)CrossRef K. Kuhnen, Modeling, identification and compensation of complex hysteretic nonlinearities—a modified Prandtl–Ishlinskii approach. Eur. J. Contr. 9(4), 407–418 (2003)CrossRef
29.
go back to reference C. Visone, M. Sjöström, Exact invertible hysteresis models based on play operators. Physica B 343(1–4), 148–152 (2004)CrossRef C. Visone, M. Sjöström, Exact invertible hysteresis models based on play operators. Physica B 343(1–4), 148–152 (2004)CrossRef
Metadata
Title
Compensation of Rate-Dependent Hysteresis in a Piezomicropositioning Actuator
Author
Mohammad Al Janaideh
Copyright Year
2013
Publisher
Springer New York
DOI
https://doi.org/10.1007/978-1-4614-6684-0_9