Skip to main content
Top
Published in: Acta Mechanica 7/2023

31-03-2023 | Original Paper

Finite element analysis of compressible transversely isotropic hyperelastic shells

Authors: Alireza Beheshti, Reza Ansari

Published in: Acta Mechanica | Issue 7/2023

Login to get access

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The focus of the current work is on the large deformation analysis of shells made of a transversely isotropic material. For this purpose, a higher-order shell model is adopted and strains are derived and subsequently the stress field of a hyperelastic medium is extracted. Then, by taking advantage of the principle of virtual work, the so-called weak form is obtained. A four-node shell element is developed enriched by remedies for alleviation of locking incorporating transverse shear, membrane and curvature-thickness locking for a compressible anisotropic medium. Finally, some examples are addressed to show the performance of the proposed element as well as anisotropy effects.
Literature
1.
go back to reference Cai, R., Holweck, F., Feng, Z.-Q., Peyraut, F.: Integrity basis of polyconvex invariants for modeling hyperelastic orthotropic materials—Application to the mechanical response of passive ventricular myocardium. Int. J. Non-Linear Mech. 133, 103713 (2021)CrossRef Cai, R., Holweck, F., Feng, Z.-Q., Peyraut, F.: Integrity basis of polyconvex invariants for modeling hyperelastic orthotropic materials—Application to the mechanical response of passive ventricular myocardium. Int. J. Non-Linear Mech. 133, 103713 (2021)CrossRef
2.
go back to reference Beheshti, A., Sedaghati, R., Rakheja, S.: Transversely isotropic magnetoactive elastomers: theory and experiments. Arch. Appl. Mech. 91(1), 375–392 (2020)CrossRef Beheshti, A., Sedaghati, R., Rakheja, S.: Transversely isotropic magnetoactive elastomers: theory and experiments. Arch. Appl. Mech. 91(1), 375–392 (2020)CrossRef
3.
go back to reference Breslavsky, I.D., Amabili, M., Legrand, M.: Static and dynamic behavior of circular cylindrical shell made of hyperelastic arterial material. J. Appl. Mech. 83(5), 051002 (2016)CrossRef Breslavsky, I.D., Amabili, M., Legrand, M.: Static and dynamic behavior of circular cylindrical shell made of hyperelastic arterial material. J. Appl. Mech. 83(5), 051002 (2016)CrossRef
4.
go back to reference Amabili, M., Breslavsky, I.D., Reddy, J.N.: Nonlinear higher-order shell theory for incompressible biological hyperelastic materials. Comput. Methods Appl. Mech. Eng. 346, 841–861 (2019)MathSciNetCrossRefMATH Amabili, M., Breslavsky, I.D., Reddy, J.N.: Nonlinear higher-order shell theory for incompressible biological hyperelastic materials. Comput. Methods Appl. Mech. Eng. 346, 841–861 (2019)MathSciNetCrossRefMATH
5.
go back to reference Bonet, J., Burton, A.J.: A simple orthotropic, transversely isotropic hyperelastic constitutive equation for large strain computations. Comput. Methods Appl. Mech. Eng. 162(1–4), 151–164 (1998)CrossRefMATH Bonet, J., Burton, A.J.: A simple orthotropic, transversely isotropic hyperelastic constitutive equation for large strain computations. Comput. Methods Appl. Mech. Eng. 162(1–4), 151–164 (1998)CrossRefMATH
6.
go back to reference Zdunek, A., Rachowicz, W.: A mixed higher order FEM for fully coupled compressible transversely isotropic finite hyperelasticity. Comput. Math. Appl. 74(7), 1727–1750 (2017)MathSciNetCrossRefMATH Zdunek, A., Rachowicz, W.: A mixed higher order FEM for fully coupled compressible transversely isotropic finite hyperelasticity. Comput. Math. Appl. 74(7), 1727–1750 (2017)MathSciNetCrossRefMATH
7.
go back to reference Zdunek, A., Rachowicz, W.: A 3-field formulation for strongly transversely isotropic compressible finite hyperelasticity. Comput. Methods Appl. Mech. Eng. 315, 478–500 (2017)MathSciNetCrossRefMATH Zdunek, A., Rachowicz, W.: A 3-field formulation for strongly transversely isotropic compressible finite hyperelasticity. Comput. Methods Appl. Mech. Eng. 315, 478–500 (2017)MathSciNetCrossRefMATH
8.
go back to reference Zdunek, A., Rachowicz, W., Eriksson, T.: A novel computational formulation for nearly incompressible and nearly inextensible finite hyperelasticity. Comput. Methods Appl. Mech. Eng. 281, 220–249 (2014)MathSciNetCrossRefMATH Zdunek, A., Rachowicz, W., Eriksson, T.: A novel computational formulation for nearly incompressible and nearly inextensible finite hyperelasticity. Comput. Methods Appl. Mech. Eng. 281, 220–249 (2014)MathSciNetCrossRefMATH
9.
go back to reference Rüter, M., Stein, E.: Analysis, finite element computation and error estimation in transversely isotropic nearly incompressible finite elasticity. Comput. Methods Appl. Mech. Eng. 190(5–7), 519–541 (2000)MathSciNetCrossRefMATH Rüter, M., Stein, E.: Analysis, finite element computation and error estimation in transversely isotropic nearly incompressible finite elasticity. Comput. Methods Appl. Mech. Eng. 190(5–7), 519–541 (2000)MathSciNetCrossRefMATH
10.
go back to reference Schröder, J., Viebahn, N., Balzani, D., Wriggers, P.: A novel mixed finite element for finite anisotropic elasticity; the SKA-element Simplified Kinematics for Anisotropy. Comput. Methods Appl. Mech. Eng. 310, 475–494 (2016)MathSciNetCrossRefMATH Schröder, J., Viebahn, N., Balzani, D., Wriggers, P.: A novel mixed finite element for finite anisotropic elasticity; the SKA-element Simplified Kinematics for Anisotropy. Comput. Methods Appl. Mech. Eng. 310, 475–494 (2016)MathSciNetCrossRefMATH
11.
go back to reference Basar, Y., Ding, Y.: Finite-element analysis of hyperelastic thin shells with large strains. Comput. Mech. 18(3), 200–214 (1996)CrossRefMATH Basar, Y., Ding, Y.: Finite-element analysis of hyperelastic thin shells with large strains. Comput. Mech. 18(3), 200–214 (1996)CrossRefMATH
12.
go back to reference Betsch, P., Gruttmann, F., Stein, E.: A 4-node finite shell element for the implementation of general hyperelastic 3D-elasticity at finite strains. Comput. Methods Appl. Mech. Eng. 130(1–2), 57–79 (1996)MathSciNetCrossRefMATH Betsch, P., Gruttmann, F., Stein, E.: A 4-node finite shell element for the implementation of general hyperelastic 3D-elasticity at finite strains. Comput. Methods Appl. Mech. Eng. 130(1–2), 57–79 (1996)MathSciNetCrossRefMATH
13.
go back to reference Sze, K.Y., Zheng, S.J., Lo, S.H.: A stabilized eighteen-node solid element for hyperelastic analysis of shells. Finite Elem. Anal. Des. 40(3), 319–340 (2004)CrossRef Sze, K.Y., Zheng, S.J., Lo, S.H.: A stabilized eighteen-node solid element for hyperelastic analysis of shells. Finite Elem. Anal. Des. 40(3), 319–340 (2004)CrossRef
14.
go back to reference Toscano, R.G., Dvorkin, E.N.: A shell element for finite strain analyses: hyperelastic material models. Eng. Comput. 24(5), 514–535 (2007)CrossRefMATH Toscano, R.G., Dvorkin, E.N.: A shell element for finite strain analyses: hyperelastic material models. Eng. Comput. 24(5), 514–535 (2007)CrossRefMATH
15.
go back to reference Balzani, D., Gruttmann, F., Schröder, J.: Analysis of thin shells using anisotropic polyconvex energy densities. Comput. Methods Appl. Mech. Eng. 197(9–12), 1015–1032 (2008)MathSciNetCrossRefMATH Balzani, D., Gruttmann, F., Schröder, J.: Analysis of thin shells using anisotropic polyconvex energy densities. Comput. Methods Appl. Mech. Eng. 197(9–12), 1015–1032 (2008)MathSciNetCrossRefMATH
16.
go back to reference Lavrenčič, M., Brank, B.: Hybrid-mixed low-order finite elements for geometrically exact shell models: overview and comparison. Arch. Comput. Methods Eng. 28(5), 3917–3951 (2021)MathSciNetCrossRef Lavrenčič, M., Brank, B.: Hybrid-mixed low-order finite elements for geometrically exact shell models: overview and comparison. Arch. Comput. Methods Eng. 28(5), 3917–3951 (2021)MathSciNetCrossRef
17.
go back to reference Amabili, M.: Non-linearities in rotation and thickness deformation in a new third-order thickness deformation theory for static and dynamic analysis of isotropic and laminated doubly curved shells. Int. J. Non-Linear Mech. 69, 109–128 (2015)CrossRef Amabili, M.: Non-linearities in rotation and thickness deformation in a new third-order thickness deformation theory for static and dynamic analysis of isotropic and laminated doubly curved shells. Int. J. Non-Linear Mech. 69, 109–128 (2015)CrossRef
18.
go back to reference Amabili, M., Reddy, J.N.: The nonlinear, third-order thickness and shear deformation theory for statics and dynamics of laminated composite shells. Compos. Struct. 244, 112265 (2020)CrossRef Amabili, M., Reddy, J.N.: The nonlinear, third-order thickness and shear deformation theory for statics and dynamics of laminated composite shells. Compos. Struct. 244, 112265 (2020)CrossRef
19.
go back to reference Kant, T., Manjunatha, B.S.: An unsymmetric FRC laminate C° finite element model with 12 degrees of freedom per node. Eng. Comput. 5(4), 300–308 (1988)CrossRef Kant, T., Manjunatha, B.S.: An unsymmetric FRC laminate C° finite element model with 12 degrees of freedom per node. Eng. Comput. 5(4), 300–308 (1988)CrossRef
20.
go back to reference Spencer, A.J.M.: Continuum Theory of the Mechanics of Fibre-Reinforced Composites. Springer-Verlag, Wien (1984)CrossRefMATH Spencer, A.J.M.: Continuum Theory of the Mechanics of Fibre-Reinforced Composites. Springer-Verlag, Wien (1984)CrossRefMATH
21.
go back to reference Hartmann, S., Neff, P.: Polyconvexity of generalized polynomial-type hyperelastic strain energy functions for near-incompressibility. Int. J. Solids Struct. 40(11), 2767–2791 (2003)MathSciNetCrossRefMATH Hartmann, S., Neff, P.: Polyconvexity of generalized polynomial-type hyperelastic strain energy functions for near-incompressibility. Int. J. Solids Struct. 40(11), 2767–2791 (2003)MathSciNetCrossRefMATH
22.
go back to reference Beheshti, A.: Novel quadrilateral elements based on explicit Hermite polynomials for bending of Kirchhoff-Love plates. Comput. Mech. 62(5), 1199–1211 (2018)MathSciNetCrossRefMATH Beheshti, A.: Novel quadrilateral elements based on explicit Hermite polynomials for bending of Kirchhoff-Love plates. Comput. Mech. 62(5), 1199–1211 (2018)MathSciNetCrossRefMATH
23.
go back to reference Dvorkin, E.N., Bathe, K.J.: A continuum mechanics based four-node shell element for general non-linear analysis. Eng. Comput. 1(1), 77–88 (1984)CrossRef Dvorkin, E.N., Bathe, K.J.: A continuum mechanics based four-node shell element for general non-linear analysis. Eng. Comput. 1(1), 77–88 (1984)CrossRef
24.
go back to reference Ko, Y., Lee, P.-S., Bathe, K.-J.: The MITC4+ shell element in geometric nonlinear analysis. Comput. Struct. 185, 1–14 (2017)CrossRef Ko, Y., Lee, P.-S., Bathe, K.-J.: The MITC4+ shell element in geometric nonlinear analysis. Comput. Struct. 185, 1–14 (2017)CrossRef
25.
go back to reference Betsch, P., Stein, E.: An assumed strain approach avoiding artificial thickness straining for a non-linear 4-node shell element. Commun. Numer. Methods Eng. 11(11), 899–909 (1995)CrossRefMATH Betsch, P., Stein, E.: An assumed strain approach avoiding artificial thickness straining for a non-linear 4-node shell element. Commun. Numer. Methods Eng. 11(11), 899–909 (1995)CrossRefMATH
26.
go back to reference Schieck, B., Pietraszkiewicz, W., Stumpf, H.: Theory and numerical analysis of shells undergoing large elastic strains. Int. J. Solids Struct. 29(6), 689–709 (1992)CrossRefMATH Schieck, B., Pietraszkiewicz, W., Stumpf, H.: Theory and numerical analysis of shells undergoing large elastic strains. Int. J. Solids Struct. 29(6), 689–709 (1992)CrossRefMATH
27.
go back to reference Hauptmann, R., Schweizerhof, K., Doll, S.: Extension of the ?solid-shell? concept for application to large elastic and large elastoplastic deformations. Int. J. Numer. Methods Eng. 49(9), 1121–1141 (2000)CrossRefMATH Hauptmann, R., Schweizerhof, K., Doll, S.: Extension of the ?solid-shell? concept for application to large elastic and large elastoplastic deformations. Int. J. Numer. Methods Eng. 49(9), 1121–1141 (2000)CrossRefMATH
28.
go back to reference Büchter, N., Ramm, E., Roehl, D.: Three-dimensional extension of non-linear shell formulation based on the enhanced assumed strain concept. Int. J. Numer. Methods Eng. 37(15), 2551–2568 (1994)CrossRefMATH Büchter, N., Ramm, E., Roehl, D.: Three-dimensional extension of non-linear shell formulation based on the enhanced assumed strain concept. Int. J. Numer. Methods Eng. 37(15), 2551–2568 (1994)CrossRefMATH
29.
go back to reference Basar, Y., Grytz, R.: Incompressibility at large strains and finite-element implementation. Acta Mech. 168(1–2), 75–101 (2004)CrossRefMATH Basar, Y., Grytz, R.: Incompressibility at large strains and finite-element implementation. Acta Mech. 168(1–2), 75–101 (2004)CrossRefMATH
Metadata
Title
Finite element analysis of compressible transversely isotropic hyperelastic shells
Authors
Alireza Beheshti
Reza Ansari
Publication date
31-03-2023
Publisher
Springer Vienna
Published in
Acta Mechanica / Issue 7/2023
Print ISSN: 0001-5970
Electronic ISSN: 1619-6937
DOI
https://doi.org/10.1007/s00707-023-03536-z

Other articles of this Issue 7/2023

Acta Mechanica 7/2023 Go to the issue

Premium Partners