Skip to main content
Top
Published in: Archive of Applied Mechanics 5/2018

11-12-2017 | Original

Finite element modeling of cable galloping vibrations—Part I: Formulation of mechanical and aerodynamic co-rotational elements

Authors: Francesco Foti, Luca Martinelli

Published in: Archive of Applied Mechanics | Issue 5/2018

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Cables are widely used lightweight and efficient structural members affected by various nonlinearities. This paper is devoted to the development of a finite element approach to the study of the nonlinear dynamic behavior of cable structures under wind loading. Firstly, the formulation of a co-rotational beam-cable element is presented to account for cable geometrical nonlinearities within the context of an Updated Lagrangian approach. The Euler–Bernoulli kinematics is adopted in the co-rotated frame assuming small or moderate displacements and strains. Secondly, the formulation of an aerodynamic element, meant to be superimposed to the mechanical beam element, is developed to fully account for the nonlinearity of the aerodynamic forces. The wind interaction forces are computed within the framework of the quasi-steady theory. Appropriate procedures for applying the aforementioned elements in static and dynamic analyses are presented and applied to the study of the static configuration and the galloping vibrations of a suspended cable under steady and turbulent wind conditions. The results point out the importance of the first anti-symmetric in-plane mode on the galloping response of the iconic selected structure, and reveal the role of the mechanical and aerodynamic model by comparison with a different discretization based on cable finite elements. A mechanical model, such as the proposed co-rotational finite element formulation, which includes the description of torsional rotations is required to properly model the aerodynamic loads in dynamic galloping analyses under steady wind. The mechanical and aerodynamic assumptions, instead, play a less important role in the case of turbulent wind conditions, leading to an eminently buffeting response entailing a strong effect of the swing of the structure.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference Argyris, J.: An excursion into large finite rotations. Comput. Methods Appl. Mech. Eng. 32, 85–155 (1982)CrossRefMATH Argyris, J.: An excursion into large finite rotations. Comput. Methods Appl. Mech. Eng. 32, 85–155 (1982)CrossRefMATH
2.
go back to reference Benedettini, F., Rega, G., Alaggio, R.: Non-linear oscillations of a four-degree-of-freedom model of a suspended cable under multiple internal resonance conditions. J. Sound Vib. 182, 775–798 (1995)CrossRef Benedettini, F., Rega, G., Alaggio, R.: Non-linear oscillations of a four-degree-of-freedom model of a suspended cable under multiple internal resonance conditions. J. Sound Vib. 182, 775–798 (1995)CrossRef
3.
go back to reference Blevins, R.D.: Flow-Induced Vibration, 2nd edn. Krieger Publishing Company, Malabar (2001)MATH Blevins, R.D.: Flow-Induced Vibration, 2nd edn. Krieger Publishing Company, Malabar (2001)MATH
4.
go back to reference Borri, C., Höffer, R.: Aeroelastic wind forces on flexible bridge girders. Meccanica 35, 1–15 (2000)CrossRefMATH Borri, C., Höffer, R.: Aeroelastic wind forces on flexible bridge girders. Meccanica 35, 1–15 (2000)CrossRefMATH
5.
go back to reference Cardou, A., Jolicoeur, C.: Mechanical models of helical strands. Appl. Mech. Rev. 50, 1–14 (1997)CrossRef Cardou, A., Jolicoeur, C.: Mechanical models of helical strands. Appl. Mech. Rev. 50, 1–14 (1997)CrossRef
6.
go back to reference CEN - European Committee for Standardization: Eurocode 1: Basis of Design and Actions on Structures, Part 2-1: Densities, Self Weight and Imposed Loads, ENV 1991-2-1 (1994) CEN - European Committee for Standardization: Eurocode 1: Basis of Design and Actions on Structures, Part 2-1: Densities, Self Weight and Imposed Loads, ENV 1991-2-1 (1994)
7.
go back to reference CIGRE - International Council on Large Electric Systems: State of the Art of Conductor Galloping, CIGRE Publication, Technical Brochure No. 322, Paris, France (2007) CIGRE - International Council on Large Electric Systems: State of the Art of Conductor Galloping, CIGRE Publication, Technical Brochure No. 322, Paris, France (2007)
8.
go back to reference Crisfield, M.A.: Non linear finite element analysis of solids and structures. Volume 1: Essentials. Volume 2: Advanced topics. Wiley and Sons, New York (1997) Crisfield, M.A.: Non linear finite element analysis of solids and structures. Volume 1: Essentials. Volume 2: Advanced topics. Wiley and Sons, New York (1997)
9.
go back to reference Domaneschi, M., Martinelli, L.: Refined optimal passive control of buffeting-induced wind loading of a suspension bridge. Wind Struct. 18, 1–20 (2014)CrossRef Domaneschi, M., Martinelli, L.: Refined optimal passive control of buffeting-induced wind loading of a suspension bridge. Wind Struct. 18, 1–20 (2014)CrossRef
10.
go back to reference Foti ,F.: A corotational beam element and a refined mechanical model for the nonlinear dynamic analysis of cables, Doctoral Dissertation, Politecnico di Milano, Milano, Italy (2013) Foti ,F.: A corotational beam element and a refined mechanical model for the nonlinear dynamic analysis of cables, Doctoral Dissertation, Politecnico di Milano, Milano, Italy (2013)
12.
go back to reference Foti, F., Martinelli, L.: Mechanical modeling of metallic strands subjected to tension, torsion and bending. Int. J. Solids Struct. 91, 1–17 (2016)CrossRef Foti, F., Martinelli, L.: Mechanical modeling of metallic strands subjected to tension, torsion and bending. Int. J. Solids Struct. 91, 1–17 (2016)CrossRef
13.
go back to reference Foti, F., Martinelli, L., Perotti, F.: Numerical integration of the equations of motion of structural systems undergoing large 3D rotations: dynamics of corotational slender beam elements. Meccanica 50, 751–765 (2015)MathSciNetCrossRef Foti, F., Martinelli, L., Perotti, F.: Numerical integration of the equations of motion of structural systems undergoing large 3D rotations: dynamics of corotational slender beam elements. Meccanica 50, 751–765 (2015)MathSciNetCrossRef
14.
go back to reference Gattulli, V., Martinelli, L., Perotti, F., Vestroni, F.: Nonlinear oscillations of cables under harmonic loading using analytical and finite element models. Comput. Methods Appl. Mech. Eng. 193, 69–85 (2004)CrossRefMATH Gattulli, V., Martinelli, L., Perotti, F., Vestroni, F.: Nonlinear oscillations of cables under harmonic loading using analytical and finite element models. Comput. Methods Appl. Mech. Eng. 193, 69–85 (2004)CrossRefMATH
15.
go back to reference Gattulli, V., Martinelli, L., Perotti, F., Vestroni, F.: Dynamics of suspended cables under turbulence loading: reduced models of wind field and mechanical system. J. Wind Eng. Ind. Aerodyn. 95, 183–207 (2007)CrossRef Gattulli, V., Martinelli, L., Perotti, F., Vestroni, F.: Dynamics of suspended cables under turbulence loading: reduced models of wind field and mechanical system. J. Wind Eng. Ind. Aerodyn. 95, 183–207 (2007)CrossRef
16.
go back to reference Géradin, M., Rixen, D.: Parametrization of finite rotations in computational dynamics: a review. Revue Européenne des Éléments Finis 4, 497–553 (1995)MathSciNetCrossRefMATH Géradin, M., Rixen, D.: Parametrization of finite rotations in computational dynamics: a review. Revue Européenne des Éléments Finis 4, 497–553 (1995)MathSciNetCrossRefMATH
17.
go back to reference Hao, H., Oliveira, C.S., Penzien, J.: Multiple-station ground motion processing and simulation based on SMART-1 array data. Nucl. Eng. Des. 111, 293–310 (1989)CrossRef Hao, H., Oliveira, C.S., Penzien, J.: Multiple-station ground motion processing and simulation based on SMART-1 array data. Nucl. Eng. Des. 111, 293–310 (1989)CrossRef
18.
go back to reference Hilber, H.M., Hughes, T.J.R., Taylor, R.L.: Improved numerical dissipation for time integration algorithms in structural dynamics. Earthquake Eng. Struct. Dyn. 5, 283–292 (1977)CrossRef Hilber, H.M., Hughes, T.J.R., Taylor, R.L.: Improved numerical dissipation for time integration algorithms in structural dynamics. Earthquake Eng. Struct. Dyn. 5, 283–292 (1977)CrossRef
19.
go back to reference Irvine, H.M.: Cable Structures. MIT Press, Cambridge (1981) Irvine, H.M.: Cable Structures. MIT Press, Cambridge (1981)
20.
go back to reference Lee, C.L., Perkins, N.C.: Nonlinear oscillations of suspended cables containing a two-to-one internal resonance. Nonlinear Dyn. 3, 465–490 (1992) Lee, C.L., Perkins, N.C.: Nonlinear oscillations of suspended cables containing a two-to-one internal resonance. Nonlinear Dyn. 3, 465–490 (1992)
21.
go back to reference Lee, C.L., Perkins, N.C.: Three-dimensional oscillations of suspended cables involving simultaneous internal resonances. Nonlinear Dyn. 8, 45–63 (1995)MathSciNet Lee, C.L., Perkins, N.C.: Three-dimensional oscillations of suspended cables involving simultaneous internal resonances. Nonlinear Dyn. 8, 45–63 (1995)MathSciNet
22.
go back to reference Luongo, A., Piccardo, G.: Non-linear galloping of sagged cables in 1:2 internal resonance. J. Sound Vib. 214, 915–940 (1998)CrossRef Luongo, A., Piccardo, G.: Non-linear galloping of sagged cables in 1:2 internal resonance. J. Sound Vib. 214, 915–940 (1998)CrossRef
23.
go back to reference Luongo, A., Piccardo, G.: A continuous approach to the aeroelastic stability of suspended cables in 1:2 internal resonance. J. Vib. Control 14, 135–157 (2008)MathSciNetCrossRefMATH Luongo, A., Piccardo, G.: A continuous approach to the aeroelastic stability of suspended cables in 1:2 internal resonance. J. Vib. Control 14, 135–157 (2008)MathSciNetCrossRefMATH
24.
go back to reference Luongo, A., Zulli, D., Piccardo, G.: A linear curved-beam model for the analysis of galloping in suspended cables. J. Mech. Mater. Struct. 2, 675–694 (2007)CrossRef Luongo, A., Zulli, D., Piccardo, G.: A linear curved-beam model for the analysis of galloping in suspended cables. J. Mech. Mater. Struct. 2, 675–694 (2007)CrossRef
25.
go back to reference Luongo, A., Zulli, D., Piccardo, G.: Analytical and numerical approaches to nonlinear galloping of internally resonant suspended cables. J. Sound Vib. 315, 375–393 (2008)CrossRef Luongo, A., Zulli, D., Piccardo, G.: Analytical and numerical approaches to nonlinear galloping of internally resonant suspended cables. J. Sound Vib. 315, 375–393 (2008)CrossRef
26.
go back to reference Luongo, A., Zulli, D., Piccardo, G.: On the effect of twist angle on nonlinear galloping of suspended cables. Comput. Struct. 87, 1003–1014 (2009)CrossRef Luongo, A., Zulli, D., Piccardo, G.: On the effect of twist angle on nonlinear galloping of suspended cables. Comput. Struct. 87, 1003–1014 (2009)CrossRef
27.
go back to reference Martinelli, L., Perotti, F.: Numerical analysis of the nonlinear dynamic behaviour of suspended cables under turbulent wind excitation. Int. J. Struct. Stab. Dyn. 1, 207–233 (2001)MathSciNetCrossRefMATH Martinelli, L., Perotti, F.: Numerical analysis of the nonlinear dynamic behaviour of suspended cables under turbulent wind excitation. Int. J. Struct. Stab. Dyn. 1, 207–233 (2001)MathSciNetCrossRefMATH
28.
go back to reference Migliore, H.J., Webster, R.L.: Current methods for analyzing the dynamic cable response. Shock Vib. Dig. 11, 3–16 (1979)CrossRef Migliore, H.J., Webster, R.L.: Current methods for analyzing the dynamic cable response. Shock Vib. Dig. 11, 3–16 (1979)CrossRef
29.
go back to reference Migliore, H.J., Webster, R.L.: Current methods for analyzing the dynamic cable response—1979 to the present. Shock Vib. Dig. 14, 19–24 (1982)CrossRef Migliore, H.J., Webster, R.L.: Current methods for analyzing the dynamic cable response—1979 to the present. Shock Vib. Dig. 14, 19–24 (1982)CrossRef
30.
go back to reference Nayfeh, A.H., Arafat, H.N., Chin, C.M., Lacarbonara, W.: Multimode interactions in suspended cables. J. Vib. Control 8, 337–387 (2002)MathSciNetMATH Nayfeh, A.H., Arafat, H.N., Chin, C.M., Lacarbonara, W.: Multimode interactions in suspended cables. J. Vib. Control 8, 337–387 (2002)MathSciNetMATH
31.
go back to reference Oran, C.: Tangent stiffness in space frames. J. Struct. Div. ASCE 99, 987–1001 (1973) Oran, C.: Tangent stiffness in space frames. J. Struct. Div. ASCE 99, 987–1001 (1973)
32.
go back to reference Piccardo, G., Pagnini, L.C., Tubino, F.: Some research perspectives in galloping phenomena: critical conditions and post-critical behavior. Contin. Mech. Thermodyn. 27, 261–285 (2015)MathSciNetCrossRefMATH Piccardo, G., Pagnini, L.C., Tubino, F.: Some research perspectives in galloping phenomena: critical conditions and post-critical behavior. Contin. Mech. Thermodyn. 27, 261–285 (2015)MathSciNetCrossRefMATH
33.
go back to reference Perkins, N.C.: Modal interaction in the non-linear response of elastic cables under parametric/external excitation. Int. J. Non-Linear Mech. 27, 233–250 (1992)CrossRefMATH Perkins, N.C.: Modal interaction in the non-linear response of elastic cables under parametric/external excitation. Int. J. Non-Linear Mech. 27, 233–250 (1992)CrossRefMATH
34.
go back to reference Rega, G., Lacarbonara, W., Nayfeh, A.H., Chin, C.M.: Multiple resonances in suspended cables: direct versus reduced-order models. Int. J. Non-Linear Mech. 34, 901–924 (1999)CrossRefMATH Rega, G., Lacarbonara, W., Nayfeh, A.H., Chin, C.M.: Multiple resonances in suspended cables: direct versus reduced-order models. Int. J. Non-Linear Mech. 34, 901–924 (1999)CrossRefMATH
35.
go back to reference Solari, G., Piccardo, G.: Probabilistic 3D turbulence modeling for gust buffeting of structures. Probab. Eng. Mech. 16, 73–86 (2001)CrossRef Solari, G., Piccardo, G.: Probabilistic 3D turbulence modeling for gust buffeting of structures. Probab. Eng. Mech. 16, 73–86 (2001)CrossRef
36.
go back to reference Wilson, F.L., Penzien, J.: Evaluation of orthogonal damping matrices. Int. J. Numer. Methods Eng. 4, 5–10 (1972)CrossRefMATH Wilson, F.L., Penzien, J.: Evaluation of orthogonal damping matrices. Int. J. Numer. Methods Eng. 4, 5–10 (1972)CrossRefMATH
37.
go back to reference Yan, Z., Yan, Z., Li, Z., Tan, T.: Nonlinear galloping of internally resonant iced transmission lines considering eccentricity. J. Sound Vib. 331, 3599–3616 (2012)CrossRef Yan, Z., Yan, Z., Li, Z., Tan, T.: Nonlinear galloping of internally resonant iced transmission lines considering eccentricity. J. Sound Vib. 331, 3599–3616 (2012)CrossRef
38.
go back to reference Yan, Z., Li, Z., Savory, E., Lin, W.E.: Galloping of a single iced conductor based on curved-beam theory. J. Wind Eng. Ind. Aerodyn. 123, 77–87 (2013)CrossRef Yan, Z., Li, Z., Savory, E., Lin, W.E.: Galloping of a single iced conductor based on curved-beam theory. J. Wind Eng. Ind. Aerodyn. 123, 77–87 (2013)CrossRef
39.
go back to reference Yu, P., Desai, M., Shah, A.H., Popplewell, N.: Three-degree-of-freedom model for galloping. Part II: solutions. J. Eng. Mech. ASCE 119, 2426–2448 (1993)CrossRef Yu, P., Desai, M., Shah, A.H., Popplewell, N.: Three-degree-of-freedom model for galloping. Part II: solutions. J. Eng. Mech. ASCE 119, 2426–2448 (1993)CrossRef
Metadata
Title
Finite element modeling of cable galloping vibrations—Part I: Formulation of mechanical and aerodynamic co-rotational elements
Authors
Francesco Foti
Luca Martinelli
Publication date
11-12-2017
Publisher
Springer Berlin Heidelberg
Published in
Archive of Applied Mechanics / Issue 5/2018
Print ISSN: 0939-1533
Electronic ISSN: 1432-0681
DOI
https://doi.org/10.1007/s00419-017-1333-y

Other articles of this Issue 5/2018

Archive of Applied Mechanics 5/2018 Go to the issue

Premium Partners