Skip to main content
Top
Published in: Journal of Electronic Materials 12/2023

15-09-2023 | Original Research Article

First-Principles Calculation Study on the Structure and Electrochemical Properties of Nb- and V-Doped Ni-Rich Ternary (NCM911) Cathode Materials

Authors: Junxiong Lin, Minglin Li, Zhi Lv, Jing Luo, Bo Wu, Ruoyu Hong

Published in: Journal of Electronic Materials | Issue 12/2023

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Nickel-rich ternary layered cathodes for lithium-ion batteries are promising and widely used materials, with high energy density and discharge capacity. However, nickel-rich cathodes present serious mixing and structural instability. At present, doping is one of the most effective modification methods. We studied the modification of high-valence elements Nb5+ and V5+ doped in LiNi0.89Co0.055Mn0.055O2 (NCM911) through first-principles calculation and analyzed the structure and electrochemical mechanism of the material at the atomic level. It was found that the electrochemical performance of the doped material was improved. The dopants effectively shortened the bandgap of the material and inhibited the formation of oxygen vacancies. In addition, through the calculation of Li+ diffusion paths, V doping more efficiently reduced the diffusion barrier of Li+ [~15% decrease in oxygen dumbbell hop (ODH) path and ~40% decrease in tetrahedral site hop (TSH) path], which is conducive to the diffusion of Li+. This theoretical study provides insights into the dopants of high-valence transition metals and is a necessary complement to experimental research.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference S.B. Chikkannanavar, D.M. Bernardi, and L. Liu, A review of blended cathode materials for use in Li-ion batteries. J. Power Sources 248, 91 (2014).CrossRef S.B. Chikkannanavar, D.M. Bernardi, and L. Liu, A review of blended cathode materials for use in Li-ion batteries. J. Power Sources 248, 91 (2014).CrossRef
2.
go back to reference Y. Li, S. Wang, Y. Chen, T. Lei, S. Deng, J. Zhu, J. Zhang, and J. Guo, Achieving superior electrochemical performances on LiNi0.8Co0.15Al0.05O2 cathode materials by cadmium oxide modification. Mater. Chem. Phys. 240, 15 (2020).CrossRef Y. Li, S. Wang, Y. Chen, T. Lei, S. Deng, J. Zhu, J. Zhang, and J. Guo, Achieving superior electrochemical performances on LiNi0.8Co0.15Al0.05O2 cathode materials by cadmium oxide modification. Mater. Chem. Phys. 240, 15 (2020).CrossRef
3.
go back to reference X. Yu, E. Hu, S. Bak, Y.-N. Zhou, and X.-Q. Yang, Strategies to curb structural changes of lithium/transition metal oxide cathode materials & the changes’ effects on thermal & cycling stability. Chin. Phys. B 25, 72 (2016). X. Yu, E. Hu, S. Bak, Y.-N. Zhou, and X.-Q. Yang, Strategies to curb structural changes of lithium/transition metal oxide cathode materials & the changes’ effects on thermal & cycling stability. Chin. Phys. B 25, 72 (2016).
4.
go back to reference H.-J. Noh, S. Youn, C.S. Yoon, and Y.-K. Sun, Comparison of the structural and electrochemical properties of layered Li [NixCoyMnz]O2 (x = 1/3, 0.5, 0.6, 0.7, 0.8 and 0.85) cathode material for lithium-ion batteries. J. Power Sources 233, 121 (2013).CrossRef H.-J. Noh, S. Youn, C.S. Yoon, and Y.-K. Sun, Comparison of the structural and electrochemical properties of layered Li [NixCoyMnz]O2 (x = 1/3, 0.5, 0.6, 0.7, 0.8 and 0.85) cathode material for lithium-ion batteries. J. Power Sources 233, 121 (2013).CrossRef
5.
go back to reference M.-H. Kim, H.-S. Shin, D. Shin, and Y.-K. Sun, Synthesis and electrochemical properties of Li [Ni0.8Co0.1Mn0.1]O2 and Li [Ni0.8Co0.2]O2 via co-precipitation. J. Power Sources 159, 1328 (2006).CrossRef M.-H. Kim, H.-S. Shin, D. Shin, and Y.-K. Sun, Synthesis and electrochemical properties of Li [Ni0.8Co0.1Mn0.1]O2 and Li [Ni0.8Co0.2]O2 via co-precipitation. J. Power Sources 159, 1328 (2006).CrossRef
6.
go back to reference W. Li, S. Lee, and A. Manthiram, High-nickel NMA: a cobalt-free alternative to NMC and NCA cathodes for lithium-ion batteries. Adv. Mater. 32, 2002718 (2020).CrossRef W. Li, S. Lee, and A. Manthiram, High-nickel NMA: a cobalt-free alternative to NMC and NCA cathodes for lithium-ion batteries. Adv. Mater. 32, 2002718 (2020).CrossRef
7.
go back to reference A. Sannyal, K. Byun, S.A. Mian, and J. Jang, Stabilizing a nickel-rich (LiNi0.89Co0.055Mn0.055O2) cathode material by doping zirconium or molybdenum: a first-principles study. J. Phys. Chem. C 125, 27543 (2021).CrossRef A. Sannyal, K. Byun, S.A. Mian, and J. Jang, Stabilizing a nickel-rich (LiNi0.89Co0.055Mn0.055O2) cathode material by doping zirconium or molybdenum: a first-principles study. J. Phys. Chem. C 125, 27543 (2021).CrossRef
8.
go back to reference M. Dixit, B. Markovsky, D. Aurbach, and D.T. Major, Unraveling the effects of Al doping on the electrochemical properties of LiNi0.5Co0.2Mn0.3O2 using first principles. J. Electrochem. Soc. 164, A6359 (2017).CrossRef M. Dixit, B. Markovsky, D. Aurbach, and D.T. Major, Unraveling the effects of Al doping on the electrochemical properties of LiNi0.5Co0.2Mn0.3O2 using first principles. J. Electrochem. Soc. 164, A6359 (2017).CrossRef
9.
go back to reference S.F. Amalraj, R. Raman, A. Chakraborty, N. Leifer, R. Nanda, S. Kunnikuruvan, T. Kravchuk, J. Grinblat, V. Ezersky, and R. Sun, Boron doped Ni-rich LiNi0.85Co0.10Mn0.05O2 cathode materials studied by structural analysis, solid state NMR, computational modeling, and electrochemical performance. Energy Storage Mater. 42, 594 (2021).CrossRef S.F. Amalraj, R. Raman, A. Chakraborty, N. Leifer, R. Nanda, S. Kunnikuruvan, T. Kravchuk, J. Grinblat, V. Ezersky, and R. Sun, Boron doped Ni-rich LiNi0.85Co0.10Mn0.05O2 cathode materials studied by structural analysis, solid state NMR, computational modeling, and electrochemical performance. Energy Storage Mater. 42, 594 (2021).CrossRef
10.
go back to reference F. Schipper, M. Dixit, D. Kovacheva, M. Talianker, O. Haik, J. Grinblat, E.M. Erickson, C. Ghanty, D.T. Major, B. Markovsky, and D. Aurbach, Stabilizing nickel-rich layered cathode materials by a high-charge cation doping strategy: zirconium-doped LiNi0.6Co0.2Mn0.2O2. J. Mater. Chem. A 4, 16073 (2016).CrossRef F. Schipper, M. Dixit, D. Kovacheva, M. Talianker, O. Haik, J. Grinblat, E.M. Erickson, C. Ghanty, D.T. Major, B. Markovsky, and D. Aurbach, Stabilizing nickel-rich layered cathode materials by a high-charge cation doping strategy: zirconium-doped LiNi0.6Co0.2Mn0.2O2. J. Mater. Chem. A 4, 16073 (2016).CrossRef
11.
go back to reference Y.-H. Chen, J. Zhang, Y. Li, Y.-F. Zhang, S.-P. Huang, W. Lin, and W.-K. Chen, Effects of doping high-valence transition metal (V, Nb and Zr) ions on the structure and electrochemi-cal performance of LIB cathode material LiNi0.8Co0.1Mn0.1O2. Phys. Chem. Chem. Phys. 23, 11528 (2021).CrossRef Y.-H. Chen, J. Zhang, Y. Li, Y.-F. Zhang, S.-P. Huang, W. Lin, and W.-K. Chen, Effects of doping high-valence transition metal (V, Nb and Zr) ions on the structure and electrochemi-cal performance of LIB cathode material LiNi0.8Co0.1Mn0.1O2. Phys. Chem. Chem. Phys. 23, 11528 (2021).CrossRef
12.
go back to reference J. Li, M. Zhang, D. Zhang, Y. Yan, and Z. Li, An effective doping strategy to improve the cyclic stability and rate capability of Ni-rich LiNi0.8Co0.1Mn0.1O2 cathode. Chem. Eng. J. 402, 15 (2020).CrossRef J. Li, M. Zhang, D. Zhang, Y. Yan, and Z. Li, An effective doping strategy to improve the cyclic stability and rate capability of Ni-rich LiNi0.8Co0.1Mn0.1O2 cathode. Chem. Eng. J. 402, 15 (2020).CrossRef
13.
go back to reference F.A. Susai, D. Kovacheva, T. Kravchuk, Y. Kauffmann, S. Maiti, A. Chakraborty, S. Kunnikuruvan, M. Talianker, H. Sclar, and Y. Fleger, Studies of nickel-rich LiNi0.85Co0.10Mn0.05O2 cathode materials doped with molybdenum ions for lithium-ion batteries. Materials 14, 2070 (2021).CrossRef F.A. Susai, D. Kovacheva, T. Kravchuk, Y. Kauffmann, S. Maiti, A. Chakraborty, S. Kunnikuruvan, M. Talianker, H. Sclar, and Y. Fleger, Studies of nickel-rich LiNi0.85Co0.10Mn0.05O2 cathode materials doped with molybdenum ions for lithium-ion batteries. Materials 14, 2070 (2021).CrossRef
14.
go back to reference F.A. Susai, H. Sclar, S. Maiti, L. Burstein, O. Perkal, J. Grinblat, M. Talianker, S. Ruthstein, C. Erk, and P. Hartmann, Stabilized behavior of LiNi0.85Co0.10Mn0.05O2 cathode materials induced by their treatment with SO2. ACS Appl. Energy Mater. 3, 3609 (2020).CrossRef F.A. Susai, H. Sclar, S. Maiti, L. Burstein, O. Perkal, J. Grinblat, M. Talianker, S. Ruthstein, C. Erk, and P. Hartmann, Stabilized behavior of LiNi0.85Co0.10Mn0.05O2 cathode materials induced by their treatment with SO2. ACS Appl. Energy Mater. 3, 3609 (2020).CrossRef
15.
go back to reference S. Liu, X. Chen, J. Zhao, J. Su, C. Zhang, T. Huang, J. Wu, and A. Yu, Uncovering the role of Nb modification in improving the structure stability and electrochemical performance of LiNi0.6Co0.2Mn0.2O2 cathode charged at higher voltage of 4.5 V. J. Power Sources 374, 149 (2018).CrossRef S. Liu, X. Chen, J. Zhao, J. Su, C. Zhang, T. Huang, J. Wu, and A. Yu, Uncovering the role of Nb modification in improving the structure stability and electrochemical performance of LiNi0.6Co0.2Mn0.2O2 cathode charged at higher voltage of 4.5 V. J. Power Sources 374, 149 (2018).CrossRef
16.
go back to reference S.-J. Sim, S.-H. Lee, B.-S. Jin, and H.-S. Kim, Improving the electrochemical performances using a V-doped Ni- rich NCM cathode. Sci. Rep. 9, 8952 (2019).CrossRef S.-J. Sim, S.-H. Lee, B.-S. Jin, and H.-S. Kim, Improving the electrochemical performances using a V-doped Ni- rich NCM cathode. Sci. Rep. 9, 8952 (2019).CrossRef
17.
go back to reference G. Kresse and J. Furthmuller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15 (1996).CrossRef G. Kresse and J. Furthmuller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15 (1996).CrossRef
18.
go back to reference G. Kresse and J. Furthmuller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169 (1996).CrossRef G. Kresse and J. Furthmuller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169 (1996).CrossRef
19.
go back to reference G. Kresse and D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758 (1999).CrossRef G. Kresse and D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758 (1999).CrossRef
20.
go back to reference M.A. Kebede, M.J. Phasha, N. Kunjuzwa, L.J. Le Roux, D. Mkhonto, K.I. Ozoemena, and M.K. Mathe, Structural and electrochemical properties of aluminium doped LiMn2O4 cathode materials for Li battery: experimental and ab initio calculations. Sustain. Energy Technol. 5, 44 (2014). M.A. Kebede, M.J. Phasha, N. Kunjuzwa, L.J. Le Roux, D. Mkhonto, K.I. Ozoemena, and M.K. Mathe, Structural and electrochemical properties of aluminium doped LiMn2O4 cathode materials for Li battery: experimental and ab initio calculations. Sustain. Energy Technol. 5, 44 (2014).
21.
go back to reference J.P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996).CrossRef J.P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996).CrossRef
22.
go back to reference M. Aykol, S. Kim, and C. Wolverton, Van der Waals interactions in layered lithium cobalt oxides. J. Phys. Chem. C 119, 19053 (2015).CrossRef M. Aykol, S. Kim, and C. Wolverton, Van der Waals interactions in layered lithium cobalt oxides. J. Phys. Chem. C 119, 19053 (2015).CrossRef
23.
go back to reference S. Grimme, J. Antony, S. Ehrlich, and H. Krieg, A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. Chin. J. Chem. Phys. 132, 154104 (2010).CrossRef S. Grimme, J. Antony, S. Ehrlich, and H. Krieg, A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. Chin. J. Chem. Phys. 132, 154104 (2010).CrossRef
24.
go back to reference G. Henkelman, B.P. Uberuaga, and H. Jónsson, A climbing image nudged elastic band method for finding saddle points and minimum energy paths. Chin. J. Chem. Phys. 113, 9901 (2000).CrossRef G. Henkelman, B.P. Uberuaga, and H. Jónsson, A climbing image nudged elastic band method for finding saddle points and minimum energy paths. Chin. J. Chem. Phys. 113, 9901 (2000).CrossRef
25.
go back to reference G. Henkelman and H. Jónsson, Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points. Chin. J. Chem. Phys. 113, 9978 (2000).CrossRef G. Henkelman and H. Jónsson, Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points. Chin. J. Chem. Phys. 113, 9978 (2000).CrossRef
26.
go back to reference K. Momma and F. Izumi, VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr. 44, 1272 (2011).CrossRef K. Momma and F. Izumi, VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr. 44, 1272 (2011).CrossRef
27.
go back to reference D. Zeng, J. Cabana, J. Bréger, W.-S. Yoon, and C.P. Grey, Cation ordering in Li [NixMnxCo(1–2x)]O2-layered cathode materials: a nuclear magnetic resonance (NMR), pair distribution function, x-ray absorption spectroscopy, and electrochemical study. Chem. Mater. 19, 6277 (2007).CrossRef D. Zeng, J. Cabana, J. Bréger, W.-S. Yoon, and C.P. Grey, Cation ordering in Li [NixMnxCo(1–2x)]O2-layered cathode materials: a nuclear magnetic resonance (NMR), pair distribution function, x-ray absorption spectroscopy, and electrochemical study. Chem. Mater. 19, 6277 (2007).CrossRef
28.
go back to reference W.-S. Yoon, S. Iannopollo, C.P. Grey, D. Carlier, J. Gorman, J. Reed, and G. Ceder, Local structure and cation ordering in O3 lithium nickel manganese oxides with stoichiometry Li [NixMn(2–x)/3Li(1–2x)/3]O2: NMR studies and first principles calculations. Electrochem. Solid State Lett. 7, A167 (2004).CrossRef W.-S. Yoon, S. Iannopollo, C.P. Grey, D. Carlier, J. Gorman, J. Reed, and G. Ceder, Local structure and cation ordering in O3 lithium nickel manganese oxides with stoichiometry Li [NixMn(2–x)/3Li(1–2x)/3]O2: NMR studies and first principles calculations. Electrochem. Solid State Lett. 7, A167 (2004).CrossRef
29.
go back to reference M. Dixit, B. Markovsky, F. Schipper, D. Aurbach, and D.T. Major, Origin of structural degradation during cycling and low thermal stability of Ni-rich layered transition metal-based electrode materials. J. Phys. Chem. C 121, 22628 (2017).CrossRef M. Dixit, B. Markovsky, F. Schipper, D. Aurbach, and D.T. Major, Origin of structural degradation during cycling and low thermal stability of Ni-rich layered transition metal-based electrode materials. J. Phys. Chem. C 121, 22628 (2017).CrossRef
30.
go back to reference M.I. Aroyo, J.M. Perez-Mato, C. Capillas, E. Kroumova, S. Ivantchev, G. Madariaga, A. Kirov, and H. Wondratschek, Bilbao crystallographic server: I. Databases and crystallographic computing programs. Z. Krist. Cryst. Mater. 221, 15 (2006).CrossRef M.I. Aroyo, J.M. Perez-Mato, C. Capillas, E. Kroumova, S. Ivantchev, G. Madariaga, A. Kirov, and H. Wondratschek, Bilbao crystallographic server: I. Databases and crystallographic computing programs. Z. Krist. Cryst. Mater. 221, 15 (2006).CrossRef
31.
go back to reference Q. Zhou, W. Liu, L. Lv, J. Zhu, Y. Dai, H. Li, and W. Hu, Study on d0 transition metals doped Ni-rich cathode materials for Li-ion batteries: insights from first-principles calculations. Colloids Surf. A 656, 130421 (2023).CrossRef Q. Zhou, W. Liu, L. Lv, J. Zhu, Y. Dai, H. Li, and W. Hu, Study on d0 transition metals doped Ni-rich cathode materials for Li-ion batteries: insights from first-principles calculations. Colloids Surf. A 656, 130421 (2023).CrossRef
32.
go back to reference W.-T. Lo, C. Yu, E.G. Leggesse, S. Nachimuthu, and J.-C. Jiang, Understanding the role of dopant metal atoms on the structural and electronic properties of lithium-rich Li1.2Ni0.2Mn0.6O2 cathode material for lithium-ion batteries. J. Phys. Chem. Lett. 10, 4842 (2019).CrossRef W.-T. Lo, C. Yu, E.G. Leggesse, S. Nachimuthu, and J.-C. Jiang, Understanding the role of dopant metal atoms on the structural and electronic properties of lithium-rich Li1.2Ni0.2Mn0.6O2 cathode material for lithium-ion batteries. J. Phys. Chem. Lett. 10, 4842 (2019).CrossRef
33.
go back to reference S. Niu, J. Xu, K. Wu, C. Liang, G. Zhu, Q. Qu, and H. Zheng, Different mechanical and electrochemical behavior between the two major Ni-rich cathode materials in Li-Ion batteries. Mater. Chem. Phys. 260, 124046 (2021).CrossRef S. Niu, J. Xu, K. Wu, C. Liang, G. Zhu, Q. Qu, and H. Zheng, Different mechanical and electrochemical behavior between the two major Ni-rich cathode materials in Li-Ion batteries. Mater. Chem. Phys. 260, 124046 (2021).CrossRef
34.
go back to reference S.-M. Bak, E. Hu, Y. Zhou, X. Yu, S.D. Senanayake, S.-J. Cho, K.-B. Kim, K.Y. Chung, X.-Q. Yang, and K.-W. Nam, Structural changes and thermal stability of charged LiNixMnyCozO2 cathode materials studied by combined in situ time-resolved XRD and mass spectroscopy. ACS Appl. Mater. Interfaces 6, 22594 (2014).CrossRef S.-M. Bak, E. Hu, Y. Zhou, X. Yu, S.D. Senanayake, S.-J. Cho, K.-B. Kim, K.Y. Chung, X.-Q. Yang, and K.-W. Nam, Structural changes and thermal stability of charged LiNixMnyCozO2 cathode materials studied by combined in situ time-resolved XRD and mass spectroscopy. ACS Appl. Mater. Interfaces 6, 22594 (2014).CrossRef
35.
go back to reference A. Van der Ven, M. Aydinol, G. Ceder, G. Kresse, and J. Hafner, First-principles investigation of phase stability in Lix CoO2. Phys. Rev. B 58, 2975 (1998).CrossRef A. Van der Ven, M. Aydinol, G. Ceder, G. Kresse, and J. Hafner, First-principles investigation of phase stability in Lix CoO2. Phys. Rev. B 58, 2975 (1998).CrossRef
36.
go back to reference C. Yao, C. Zhou, B. Cheng, and M. Li, A first-principles study of F and Cl doping in LiNi0.83Co0.08Mn0.08O2 cathode materials. Crystals 12, 1297 (2022).CrossRef C. Yao, C. Zhou, B. Cheng, and M. Li, A first-principles study of F and Cl doping in LiNi0.83Co0.08Mn0.08O2 cathode materials. Crystals 12, 1297 (2022).CrossRef
37.
go back to reference W. Xiong, W. Hu, and H. Li, First-principles calculations of the atomic structure and electronic structure of F-doped Li (Ni0.8Co0.1Mn0.1) O2 cathode material for lithium-ion batteries. J. Electron. Mater. 51, 3944 (2022).CrossRef W. Xiong, W. Hu, and H. Li, First-principles calculations of the atomic structure and electronic structure of F-doped Li (Ni0.8Co0.1Mn0.1) O2 cathode material for lithium-ion batteries. J. Electron. Mater. 51, 3944 (2022).CrossRef
38.
go back to reference O. Breuer, A. Chakraborty, J. Liu, T. Kravchuk, L. Burstein, J. Grinblat, Y. Kauffman, A. Gladkih, P. Nayak, and M. Tsubery, Understanding the role of minor molybdenum doping in LiNi0.5Co0.2Mn0.3O2 electrodes: from structural and surface analyses and theoretical modeling to practical electrochemical cells. ACS Appl. Mater. Interfaces 10, 29608 (2018).CrossRef O. Breuer, A. Chakraborty, J. Liu, T. Kravchuk, L. Burstein, J. Grinblat, Y. Kauffman, A. Gladkih, P. Nayak, and M. Tsubery, Understanding the role of minor molybdenum doping in LiNi0.5Co0.2Mn0.3O2 electrodes: from structural and surface analyses and theoretical modeling to practical electrochemical cells. ACS Appl. Mater. Interfaces 10, 29608 (2018).CrossRef
39.
go back to reference A. Van der Ven and G. Ceder, Lithium diffusion in layered Lix CoO2. Electrochem. Solid State Lett. 3, 301 (2000). A. Van der Ven and G. Ceder, Lithium diffusion in layered Lix CoO2. Electrochem. Solid State Lett. 3, 301 (2000).
40.
go back to reference F. Tian, Y. Zhang, Z. Liu, R. de Souza Monteiro, R.M. Ribas, P. Gao, Y. Zhu, H. Yu, L. Ben, and X. Huang, Investigation of structure and cycling performance of Nb5+ doped high-nickel ternary cathode materials. Solid State Ion. 359, 115520 (2021).CrossRef F. Tian, Y. Zhang, Z. Liu, R. de Souza Monteiro, R.M. Ribas, P. Gao, Y. Zhu, H. Yu, L. Ben, and X. Huang, Investigation of structure and cycling performance of Nb5+ doped high-nickel ternary cathode materials. Solid State Ion. 359, 115520 (2021).CrossRef
41.
go back to reference H. Zhu, T. Xie, Z. Chen, L. Li, M. Xu, W. Wang, Y. Lai, and J. Li, The impact of vanadium substitution on the structure and electrochemical performance of LiNi0.5Co0.2Mn0.3O2. Electrochim. Acta 135, 77 (2014).CrossRef H. Zhu, T. Xie, Z. Chen, L. Li, M. Xu, W. Wang, Y. Lai, and J. Li, The impact of vanadium substitution on the structure and electrochemical performance of LiNi0.5Co0.2Mn0.3O2. Electrochim. Acta 135, 77 (2014).CrossRef
Metadata
Title
First-Principles Calculation Study on the Structure and Electrochemical Properties of Nb- and V-Doped Ni-Rich Ternary (NCM911) Cathode Materials
Authors
Junxiong Lin
Minglin Li
Zhi Lv
Jing Luo
Bo Wu
Ruoyu Hong
Publication date
15-09-2023
Publisher
Springer US
Published in
Journal of Electronic Materials / Issue 12/2023
Print ISSN: 0361-5235
Electronic ISSN: 1543-186X
DOI
https://doi.org/10.1007/s11664-023-10707-0

Other articles of this Issue 12/2023

Journal of Electronic Materials 12/2023 Go to the issue