Skip to main content
Top
Published in: Knowledge and Information Systems 10/2020

13-08-2020 | Regular Paper

Fisher-regularized supervised and semi-supervised extreme learning machine

Authors: Jun Ma, Yakun Wen, Liming Yang

Published in: Knowledge and Information Systems | Issue 10/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The structural information of data contains useful prior knowledge and thus is important for designing classifiers. Extreme learning machine (ELM) has been a potential technique in handling classification problems. However, it only simply considers the prior class-based structural information and ignores the prior knowledge from statistics and geometry of data. In this paper, to capture more structural information of the data, we first propose a Fisher-regularized extreme learning machine (called Fisher-ELM) by applying Fisher regularization into the ELM learning framework, the main goals of which is to build an optimal hyperplane such that the output weight and within-class scatter are minimized simultaneously. The proposed Fisher-ELM reflects both the global characteristics and local properties of samples. Intuitively, the Fisher-ELM can approximatively fulfill the Fisher criterion and can obtain good statistical separability. Then, we exploit graph structural formulation to obtain semi-supervised Fisher-ELM version (called Lap-FisherELM) by introducing manifold regularization that characterizes the geometric information of the marginal distribution embedded in unlabeled samples. An efficient successive overrelaxation algorithm is used to solve the proposed Fisher-ELM and Lap-FisherELM, which converges linearly to a solution, and can process very large datasets that need not reside in memory. The proposed Fisher-ELM and Lap-FisherELM do not need to deal with the extra matrix and burden the computations related to the variable switching, which makes them more suitable for relatively large-scale problems. Experiments on several datasets verify the effectiveness of the proposed methods.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Huang GB, Chen YQ, Babri HA (2002) Classification ability of single hidden layer feedforward neural networks. IEEE Trans Neural Netw 11(3):799–801CrossRef Huang GB, Chen YQ, Babri HA (2002) Classification ability of single hidden layer feedforward neural networks. IEEE Trans Neural Netw 11(3):799–801CrossRef
2.
go back to reference Rumelhart DE (1986) Learning representations by back-propagating errors. Nature 323:533–536MATHCrossRef Rumelhart DE (1986) Learning representations by back-propagating errors. Nature 323:533–536MATHCrossRef
3.
go back to reference Hagan MT, Menhaj MB (1994) Training feedforward networks with the marquardt algorithm. IEEE Trans Neural Netw 5(6):989–993CrossRef Hagan MT, Menhaj MB (1994) Training feedforward networks with the marquardt algorithm. IEEE Trans Neural Netw 5(6):989–993CrossRef
4.
go back to reference Chng ES, Yang HH, Bos S (1996) Orthogonal least-squares learning algorithm with local adaptation process for the radial basis function networks. IEEE Signal Process Lett 3(8):253–255CrossRef Chng ES, Yang HH, Bos S (1996) Orthogonal least-squares learning algorithm with local adaptation process for the radial basis function networks. IEEE Signal Process Lett 3(8):253–255CrossRef
5.
go back to reference Huang G, Song S, Wu C (2012) Orthogonal least squares algorithm for training cascade neural networks. IEEE Trans Circuits Syst I Regul Pap 59(11):2629–2637MathSciNetCrossRef Huang G, Song S, Wu C (2012) Orthogonal least squares algorithm for training cascade neural networks. IEEE Trans Circuits Syst I Regul Pap 59(11):2629–2637MathSciNetCrossRef
6.
go back to reference Cortes C, Vapnik V (1995) Support-vector networks. Mach Learn 20(3):273–297MATH Cortes C, Vapnik V (1995) Support-vector networks. Mach Learn 20(3):273–297MATH
7.
go back to reference Vapnik Vladimir N (2002) The nature of statistical learning theory. IEEE Trans Neural Netw 8(6:1564–1564 Vapnik Vladimir N (2002) The nature of statistical learning theory. IEEE Trans Neural Netw 8(6:1564–1564
8.
go back to reference Huang GB, Zhu QY, Siew CK (2004) Extreme learning machine: a new learning scheme of feedforward neural networks. In: Proceedings 2004 IEEE International Joint Conference on Neural Networks. IEEE Huang GB, Zhu QY, Siew CK (2004) Extreme learning machine: a new learning scheme of feedforward neural networks. In: Proceedings 2004 IEEE International Joint Conference on Neural Networks. IEEE
9.
go back to reference Huang GB, Zhu QY, Siew CK (2006) Extreme learning machine: theory and applications. Neurocomputing 70(1):489–501CrossRef Huang GB, Zhu QY, Siew CK (2006) Extreme learning machine: theory and applications. Neurocomputing 70(1):489–501CrossRef
10.
go back to reference Huang GB, Chen L, Siew CK (2006) Universal approximation using incremental constructive feedforward networks with random hidden nodes. IEEE Trans Neural Netw 17(4):879–892CrossRef Huang GB, Chen L, Siew CK (2006) Universal approximation using incremental constructive feedforward networks with random hidden nodes. IEEE Trans Neural Netw 17(4):879–892CrossRef
11.
go back to reference Wang Y, Cao F, Yuan Y (2011) A study on effectiveness of extreme learning machine. Neurocomputing 74(16):2483–2490CrossRef Wang Y, Cao F, Yuan Y (2011) A study on effectiveness of extreme learning machine. Neurocomputing 74(16):2483–2490CrossRef
12.
go back to reference Huang GB, Zhou H, Ding X, Zhang R (2012) Extreme learning machine for regression and multiclass classification. IEEE Trans Syst Man Cybern Part B Cybern A Publ IEEE Syst Man Cybern Soc 42(2):513–529CrossRef Huang GB, Zhou H, Ding X, Zhang R (2012) Extreme learning machine for regression and multiclass classification. IEEE Trans Syst Man Cybern Part B Cybern A Publ IEEE Syst Man Cybern Soc 42(2):513–529CrossRef
13.
go back to reference Wang Z, Zhao Y, Wang G (2017) Extreme learning machine for large-scale graph classification based on mapreduce. Neurocomputing 261:106–114CrossRef Wang Z, Zhao Y, Wang G (2017) Extreme learning machine for large-scale graph classification based on mapreduce. Neurocomputing 261:106–114CrossRef
14.
go back to reference Yang L, Zhang S (2016) A sparse extreme learning machine framework by continuous optimization algorithms and its application in pattern recognition. Eng Appl Artif Intell 53:176–189CrossRef Yang L, Zhang S (2016) A sparse extreme learning machine framework by continuous optimization algorithms and its application in pattern recognition. Eng Appl Artif Intell 53:176–189CrossRef
15.
go back to reference Wang GG, Lu M, Dong YQ, Zhao XJ (2016) Self-adaptive extreme learning machine. Neural Comput Appl 27(2):291–303CrossRef Wang GG, Lu M, Dong YQ, Zhao XJ (2016) Self-adaptive extreme learning machine. Neural Comput Appl 27(2):291–303CrossRef
16.
go back to reference Zhang Y, Wu J, Cai Z, Zhang P, Chen L (2016) Memetic extreme learning machine. Pattern Recogn 58(C):135–148CrossRef Zhang Y, Wu J, Cai Z, Zhang P, Chen L (2016) Memetic extreme learning machine. Pattern Recogn 58(C):135–148CrossRef
17.
go back to reference Ding XJ, Chang BF (2014) Active set strategy of optimized extreme learning machine. Sci Bull 59(31):4152–4160CrossRef Ding XJ, Chang BF (2014) Active set strategy of optimized extreme learning machine. Sci Bull 59(31):4152–4160CrossRef
18.
go back to reference Huang GB, Ding XJ, Zhou HM (2010) Optimization method based extreme learning machine for classification. Neurocomputing 74:155–163CrossRef Huang GB, Ding XJ, Zhou HM (2010) Optimization method based extreme learning machine for classification. Neurocomputing 74:155–163CrossRef
19.
go back to reference Davis JC (1996) Introduction to statistical pattern recognition. Comput Geosci 22(7):833–834CrossRef Davis JC (1996) Introduction to statistical pattern recognition. Comput Geosci 22(7):833–834CrossRef
20.
go back to reference Gupta H, Agrawal AK, Pruthi T, Shekhar C, Chellappa R (2002) An experimental evaluation of linear and kernel-based methods for face recognition. In: IEEE workshop on applications of computer vision. IEEE Computer Society, p 13 Gupta H, Agrawal AK, Pruthi T, Shekhar C, Chellappa R (2002) An experimental evaluation of linear and kernel-based methods for face recognition. In: IEEE workshop on applications of computer vision. IEEE Computer Society, p 13
21.
go back to reference Xiong T, Cherkassky V (2005) A combined SVM and LDA approach for classification. IEEE Int Joint Conf Neural Netw 3:1455–1459 Xiong T, Cherkassky V (2005) A combined SVM and LDA approach for classification. IEEE Int Joint Conf Neural Netw 3:1455–1459
22.
go back to reference Zafeiriou S, Tefas A, Pitas I (2007) Minimum class variance support vector machines. IEEE Trans Image Process A Publ IEEE Signal Process Soc 16(10):1651MathSciNet Zafeiriou S, Tefas A, Pitas I (2007) Minimum class variance support vector machines. IEEE Trans Image Process A Publ IEEE Signal Process Soc 16(10):1651MathSciNet
23.
go back to reference An W, Liang M (2013) Fuzzy support vector machine based on within-class scatter for classification problems with outliers or noises. Neurocomputing 110(6):101–110CrossRef An W, Liang M (2013) Fuzzy support vector machine based on within-class scatter for classification problems with outliers or noises. Neurocomputing 110(6):101–110CrossRef
25.
go back to reference Iosifidis A, Tefas A, Pitas I (2013) Minimum class variance extreme learning machine for human action recognition. IEEE Trans Circuits Syst Video Technol 23(11):1968–1979CrossRef Iosifidis A, Tefas A, Pitas I (2013) Minimum class variance extreme learning machine for human action recognition. IEEE Trans Circuits Syst Video Technol 23(11):1968–1979CrossRef
26.
go back to reference Iosifidis A, Tefas A, Pitas I (2015) Sparse extreme learning machine classifier exploiting intrinsic graphs. Elsevier, AmsterdamCrossRef Iosifidis A, Tefas A, Pitas I (2015) Sparse extreme learning machine classifier exploiting intrinsic graphs. Elsevier, AmsterdamCrossRef
27.
go back to reference Iosifidis A, Tefas A, Pitas I (2016) Graph embedded extreme learning machine. IEEE Trans Cybern 46(1):311CrossRef Iosifidis A, Tefas A, Pitas I (2016) Graph embedded extreme learning machine. IEEE Trans Cybern 46(1):311CrossRef
28.
go back to reference Belkin M, Niyogi P, Sindhwani V (2006) Manifold regularization: a geometric framework for learning from labeled and unlabeled examples. JMLR.org Belkin M, Niyogi P, Sindhwani V (2006) Manifold regularization: a geometric framework for learning from labeled and unlabeled examples. JMLR.org
29.
go back to reference Chapelle O, Sindhwani V, Keerthi SS (2008) Optimization techniques for semi-supervised support vector machines. J Mach Learn Res 9(1):203–233MATH Chapelle O, Sindhwani V, Keerthi SS (2008) Optimization techniques for semi-supervised support vector machines. J Mach Learn Res 9(1):203–233MATH
30.
go back to reference Melacci S, Belkin M (2009) Laplacian support vector machines trained in the primal. J Mach Learn Res 12(5):1149–1184MathSciNetMATH Melacci S, Belkin M (2009) Laplacian support vector machines trained in the primal. J Mach Learn Res 12(5):1149–1184MathSciNetMATH
31.
go back to reference Huang G, Song S, Gupta JND, Wu C (2014) Semi-supervised and unsupervised extreme learning machines. IEEE Trans Cybern 44(12):2405CrossRef Huang G, Song S, Gupta JND, Wu C (2014) Semi-supervised and unsupervised extreme learning machines. IEEE Trans Cybern 44(12):2405CrossRef
32.
go back to reference Iosifidis A, Tefas A, Pitas I (2014) Regularized extreme learning machine for multi-view semi-supervised action recognition. Neurocomputing 145(18):160–262 Iosifidis A, Tefas A, Pitas I (2014) Regularized extreme learning machine for multi-view semi-supervised action recognition. Neurocomputing 145(18):160–262
33.
go back to reference Zhou Y, Liu B, Xia S, Liu B (2015) Semi-supervised extreme learning machine with manifold and pairwise constraints regularization. Neurocomputing 149(PA):180–186CrossRef Zhou Y, Liu B, Xia S, Liu B (2015) Semi-supervised extreme learning machine with manifold and pairwise constraints regularization. Neurocomputing 149(PA):180–186CrossRef
34.
go back to reference Liu B, Xia SX, Meng FR, Zhou Y (2016) Manifold regularized extreme learning machine. Neural Comput Appl 27(2):255–269CrossRef Liu B, Xia SX, Meng FR, Zhou Y (2016) Manifold regularized extreme learning machine. Neural Comput Appl 27(2):255–269CrossRef
35.
go back to reference Pei H, Chen Y, Wu Y, Zhong P (2017) Laplacian total margin support vector machine based on within-class scatter. Knowl Based Syst 119:152–165CrossRef Pei H, Chen Y, Wu Y, Zhong P (2017) Laplacian total margin support vector machine based on within-class scatter. Knowl Based Syst 119:152–165CrossRef
36.
go back to reference Mangasarian OL, Musicant DR (1999) Successive overrelaxation for support vector machines. IEEE Trans Neural Netw 10(5):1032–7CrossRef Mangasarian OL, Musicant DR (1999) Successive overrelaxation for support vector machines. IEEE Trans Neural Netw 10(5):1032–7CrossRef
Metadata
Title
Fisher-regularized supervised and semi-supervised extreme learning machine
Authors
Jun Ma
Yakun Wen
Liming Yang
Publication date
13-08-2020
Publisher
Springer London
Published in
Knowledge and Information Systems / Issue 10/2020
Print ISSN: 0219-1377
Electronic ISSN: 0219-3116
DOI
https://doi.org/10.1007/s10115-020-01484-x

Other articles of this Issue 10/2020

Knowledge and Information Systems 10/2020 Go to the issue

Premium Partner