Skip to main content
Top
Published in: Journal of Nanoparticle Research 11/2012

01-11-2012 | Research Paper

Flame synthesis of carbon nanostructures using mixed fuel in oxygen-enriched environment

Authors: Shuhn-Shyurng Hou, Wei-Cheng Huang, Ta-Hui Lin

Published in: Journal of Nanoparticle Research | Issue 11/2012

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The effects of key parameters, namely oxygen concentration, mixed fuel, and sampling positions, on the formation of carbon nano-onions (CNOs) and carbon nanotubes (CNTs) were investigated in oxy-fuel inverse diffusion flames. Particular focus was put on the intermediate species in connection with the synthesis of CNOs and CNTs. Three patterns of carbon nanostructures were observed: CNTs only, CNOs only, and CNTs/CNOs cogeneration. An appropriate temperature range in the synthesis of CNTs was identified to lie between 400 and 1,000 °C, whereas the temperature range for the synthesis of CNOs was higher, within 800–1,250 °C. A threshold value of oxygen concentration, 30 %, existed for onset of CNO synthesis. Gas composition analysis indicated that no carbon nanomaterial was formed at low CO and C2H2 concentration as well as low substrate temperature (lower than 400 °C). Compared with the synthesis condition of CNTs only, the C2H2 concentration was higher for the onset of CNTs/CNOs cogeneration, whereas the CO concentration was maintained at the same level. Additionally, the critical C2H2 concentration for the onset of CNOs only was found to be 0.4 %. A large quantity of CNOs was observed for C2H2 concentration greater than 0.4 % and CO concentration greater than 4 %.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Cabioch T, Jaouen M, Thune E, Guérin P, Fayoux C, Denanot MF (2000) Carbon onions formation by high-dose carbon ion implantation into copper and silver. Surf Coat Tech 128(129):43–50CrossRef Cabioch T, Jaouen M, Thune E, Guérin P, Fayoux C, Denanot MF (2000) Carbon onions formation by high-dose carbon ion implantation into copper and silver. Surf Coat Tech 128(129):43–50CrossRef
go back to reference Chen XH, Deng FM, Wang JX, Yang HS, Wu GT, Zhang XB, Peng JC, Li WZ (2001) New method of carbon onion growth by radio-frequency plasma-enhanced chemical vapor deposition. Chem Phys Lett 336:201–204CrossRef Chen XH, Deng FM, Wang JX, Yang HS, Wu GT, Zhang XB, Peng JC, Li WZ (2001) New method of carbon onion growth by radio-frequency plasma-enhanced chemical vapor deposition. Chem Phys Lett 336:201–204CrossRef
go back to reference Chen XC, Wang H, He JH (2008) Synthesis of carbon nanotubes and nanospheres with controlled morphology using different catalyst precursors. Nanotechnology 19:325607CrossRef Chen XC, Wang H, He JH (2008) Synthesis of carbon nanotubes and nanospheres with controlled morphology using different catalyst precursors. Nanotechnology 19:325607CrossRef
go back to reference Choi M, Altman IS, Kim YJ, Pikhitsa PV, Lee S, Park GS, Jeong T, Yoo JB (2004) Formation of shell-shaped carbon nanoparticles above a critical laser power in irradiated acetylene. Adv Mater 16:1721–1725CrossRef Choi M, Altman IS, Kim YJ, Pikhitsa PV, Lee S, Park GS, Jeong T, Yoo JB (2004) Formation of shell-shaped carbon nanoparticles above a critical laser power in irradiated acetylene. Adv Mater 16:1721–1725CrossRef
go back to reference Chung DH, Lin TH, Hou SS (2010) Flame synthesis of carbon nano-onions enhanced by acoustic modulation. Nanotechnology 21:435604CrossRef Chung DH, Lin TH, Hou SS (2010) Flame synthesis of carbon nano-onions enhanced by acoustic modulation. Nanotechnology 21:435604CrossRef
go back to reference Collis DC, Williams MJ (1959) Two dimensional convection from heated wires at low Reynolds numbers. J Fluid Mech 6:357–384CrossRef Collis DC, Williams MJ (1959) Two dimensional convection from heated wires at low Reynolds numbers. J Fluid Mech 6:357–384CrossRef
go back to reference de Heer WA, Ugarte D (1993) Carbon onions produced by heat treatment of carbon soot and their relation to the 217.5 nm interstellar absorption feature. Chem Phys Lett 207:480–486CrossRef de Heer WA, Ugarte D (1993) Carbon onions produced by heat treatment of carbon soot and their relation to the 217.5 nm interstellar absorption feature. Chem Phys Lett 207:480–486CrossRef
go back to reference Guo J, Yang X, Yao Y, Wang X, Liu X, Xu B (2006) Pt/onion-like fullerenes as catalyst for direct methanol fuel cell. Rare Met 25:305–308CrossRef Guo J, Yang X, Yao Y, Wang X, Liu X, Xu B (2006) Pt/onion-like fullerenes as catalyst for direct methanol fuel cell. Rare Met 25:305–308CrossRef
go back to reference Height MJ, Howard JB, Tester JW (2005) Flame synthesis of single walled carbon nanotubes. Proc Combust Inst 30:2537–2543CrossRef Height MJ, Howard JB, Tester JW (2005) Flame synthesis of single walled carbon nanotubes. Proc Combust Inst 30:2537–2543CrossRef
go back to reference Hou SS, Chung DH, Lin TH (2009a) Flame synthesis of carbon nanotubes in a rotating counterflow. J Nanosci Nanotechnol 9:4826–4833CrossRef Hou SS, Chung DH, Lin TH (2009a) Flame synthesis of carbon nanotubes in a rotating counterflow. J Nanosci Nanotechnol 9:4826–4833CrossRef
go back to reference Hou SS, Chung DH, Lin TH (2009b) High-yield synthesis of carbon nano-onions in counterflow diffusion flames. Carbon 47:938–947CrossRef Hou SS, Chung DH, Lin TH (2009b) High-yield synthesis of carbon nano-onions in counterflow diffusion flames. Carbon 47:938–947CrossRef
go back to reference Koudoumas E, Kokkinaki O, Konstantaki M, Couris S, Korovin S, Detkov P, Kuznetsov V, Pimenov S, Pustovoi V (2002) Onion-like carbon and diamond nanoparticles for optical limiting. Chem Phys Lett 357:336–340CrossRef Koudoumas E, Kokkinaki O, Konstantaki M, Couris S, Korovin S, Detkov P, Kuznetsov V, Pimenov S, Pustovoi V (2002) Onion-like carbon and diamond nanoparticles for optical limiting. Chem Phys Lett 357:336–340CrossRef
go back to reference Lee GW, Jurng J, Hwang J (2004) Synthesis of carbon nanotubes on a catalytic metal substrate by using an ethylene inverse diffusion flame. Carbon 42:682–685CrossRef Lee GW, Jurng J, Hwang J (2004) Synthesis of carbon nanotubes on a catalytic metal substrate by using an ethylene inverse diffusion flame. Carbon 42:682–685CrossRef
go back to reference Li YL, Zhang LH, Zhong XH, Windle AH (2007) Synthesis of high purity single-walled carbon nanotubes from ethanol by catalytic gas flow CVD reactions. Nanotechnology 18:225604CrossRef Li YL, Zhang LH, Zhong XH, Windle AH (2007) Synthesis of high purity single-walled carbon nanotubes from ethanol by catalytic gas flow CVD reactions. Nanotechnology 18:225604CrossRef
go back to reference Li TX, Kuwana K, Saito K, Zhang H, Chen Z (2009) Temperature and carbon source effects on methane–air flame synthesis of CNTs. Proc Combust Inst 32:1855–1861CrossRef Li TX, Kuwana K, Saito K, Zhang H, Chen Z (2009) Temperature and carbon source effects on methane–air flame synthesis of CNTs. Proc Combust Inst 32:1855–1861CrossRef
go back to reference Liu TC, Li YY (2006) Synthesis of carbon nanocapsules and carbon nanotubes by an acetylene flame method. Carbon 44:2045–2050CrossRef Liu TC, Li YY (2006) Synthesis of carbon nanocapsules and carbon nanotubes by an acetylene flame method. Carbon 44:2045–2050CrossRef
go back to reference Loutfy R, Pugazhendhi P, Tasaki K, Venkatesan A (2005) Fullerene-based electrolyte for fuel cells. US Patent Specification 6949304 Loutfy R, Pugazhendhi P, Tasaki K, Venkatesan A (2005) Fullerene-based electrolyte for fuel cells. US Patent Specification 6949304
go back to reference Lowe H (2006) Fullerene lubricant. US Patent Specification 02219955 Lowe H (2006) Fullerene lubricant. US Patent Specification 02219955
go back to reference Maksimenko SA, Rodionova VN, Slepyan GY, Karpovich VA, Shenderova O, Walsh J, Kuznetsov VL, Mazov IN, Moseenkov SI, Okotrub AV, Lambin P (2007) Attenuation of electromagnetic waves in onion-like carbon composites. Diam Relat Mater 16:1231–1235CrossRef Maksimenko SA, Rodionova VN, Slepyan GY, Karpovich VA, Shenderova O, Walsh J, Kuznetsov VL, Mazov IN, Moseenkov SI, Okotrub AV, Lambin P (2007) Attenuation of electromagnetic waves in onion-like carbon composites. Diam Relat Mater 16:1231–1235CrossRef
go back to reference Merchan-Merchan W, Saveliev A, Kennedy LA, Fridman A (2002) Formation of carbon nanotubes in counter-flow, oxy-methane diffusion flames without catalyst. Chem Phys Lett 354:20–24CrossRef Merchan-Merchan W, Saveliev A, Kennedy LA, Fridman A (2002) Formation of carbon nanotubes in counter-flow, oxy-methane diffusion flames without catalyst. Chem Phys Lett 354:20–24CrossRef
go back to reference Merchan-Merchan W, Saveliev AV, Kennedy LA (2004) High-rate flame synthesis of vertically aligned carbon nanotubes using electric field control. Carbon 42:599–608CrossRef Merchan-Merchan W, Saveliev AV, Kennedy LA (2004) High-rate flame synthesis of vertically aligned carbon nanotubes using electric field control. Carbon 42:599–608CrossRef
go back to reference Merchan-Merchan W, Saveliev AV, Kennedy L, Jimenez WC (2010) Combustion synthesis of carbon nanotubes and related nanostructures. Prog Energy Combust Sci 36:696–727CrossRef Merchan-Merchan W, Saveliev AV, Kennedy L, Jimenez WC (2010) Combustion synthesis of carbon nanotubes and related nanostructures. Prog Energy Combust Sci 36:696–727CrossRef
go back to reference Mo YH, Kibria AKMF, Nahm KS (2001) The growth mechanism of carbon nanotubes from thermal cracking of acetylene over nickel catalyst supported on alumina. Synth Met 122:443–447CrossRef Mo YH, Kibria AKMF, Nahm KS (2001) The growth mechanism of carbon nanotubes from thermal cracking of acetylene over nickel catalyst supported on alumina. Synth Met 122:443–447CrossRef
go back to reference Nakazawa S, Yokomori T, Mizomoto M (2005) Flame synthesis of carbon nanotubes in a wall stagnation flow. Chem Phys Lett 403:158–162CrossRef Nakazawa S, Yokomori T, Mizomoto M (2005) Flame synthesis of carbon nanotubes in a wall stagnation flow. Chem Phys Lett 403:158–162CrossRef
go back to reference Nasibulin AG, Moisala A, Brown DP, Kauppinen EI (2003) Carbon nanotubes and onions from carbon monoxide using Ni(acac)2 and Cu(acac)2 as catalyst precursors. Carbon 41:2711–2724CrossRef Nasibulin AG, Moisala A, Brown DP, Kauppinen EI (2003) Carbon nanotubes and onions from carbon monoxide using Ni(acac)2 and Cu(acac)2 as catalyst precursors. Carbon 41:2711–2724CrossRef
go back to reference Ruoff RS, Lorents DC, Chan B, Malhotra R, Subramoney S (1993) Single-crystal metals encapsulated in carbon nanoparticles. Science 259:346–348CrossRef Ruoff RS, Lorents DC, Chan B, Malhotra R, Subramoney S (1993) Single-crystal metals encapsulated in carbon nanoparticles. Science 259:346–348CrossRef
go back to reference Saito Y, Yoshikawa T, Inagaki M, Tomita M, Hayashi T (1993) Growth and structure of graphitic tubules and polyhedral particles in arc-discharge. Chem Phys Lett 204:277–282CrossRef Saito Y, Yoshikawa T, Inagaki M, Tomita M, Hayashi T (1993) Growth and structure of graphitic tubules and polyhedral particles in arc-discharge. Chem Phys Lett 204:277–282CrossRef
go back to reference Sano N, Wang H, Chhowalla M, Alexandrou I, Amaratunga GAJ (2001) Nanotechnology: synthesis of carbon ‘onions’ in water. Nature 414:506–507CrossRef Sano N, Wang H, Chhowalla M, Alexandrou I, Amaratunga GAJ (2001) Nanotechnology: synthesis of carbon ‘onions’ in water. Nature 414:506–507CrossRef
go back to reference Saveliev AV, Kennedy LA, Merchan-Merchan W (2003) Metal catalyzed synthesis of carbon nanostructures in an opposed flow methane oxygen flame. Combust Flame 135:27–33CrossRef Saveliev AV, Kennedy LA, Merchan-Merchan W (2003) Metal catalyzed synthesis of carbon nanostructures in an opposed flow methane oxygen flame. Combust Flame 135:27–33CrossRef
go back to reference Shenderova O, Tyler T, Cunningham G, Ray M, Walsh J, Casulli M, Hens S, McGuire G, Kuznetsov V, Lipa S (2007) Nanodiamond and onion-like carbon polymer nanocomposites. Diamond Relat Mater 16:1213–1217CrossRef Shenderova O, Tyler T, Cunningham G, Ray M, Walsh J, Casulli M, Hens S, McGuire G, Kuznetsov V, Lipa S (2007) Nanodiamond and onion-like carbon polymer nanocomposites. Diamond Relat Mater 16:1213–1217CrossRef
go back to reference Tenne R, Rapoport L, Lvovsky M, Feldman Y, Leshchinsky V (2004) Hollow fullerene-like nanoparticles as solid lubricants in composite metal matrices. US Patent Specification 6710020 Tenne R, Rapoport L, Lvovsky M, Feldman Y, Leshchinsky V (2004) Hollow fullerene-like nanoparticles as solid lubricants in composite metal matrices. US Patent Specification 6710020
go back to reference Ugarte D (1992) Curling and closure of graphitic networks under electron-beam irradiation. Nature 359:707–709CrossRef Ugarte D (1992) Curling and closure of graphitic networks under electron-beam irradiation. Nature 359:707–709CrossRef
go back to reference Unrau CJ, Axelbaum RL, Biswas P, Fraundorf P (2007) Synthesis of single-walled carbon nanotubes in oxy-fuel inverse diffusion flames with online diagnostics. Proc Combust Inst 31:1865–1872CrossRef Unrau CJ, Axelbaum RL, Biswas P, Fraundorf P (2007) Synthesis of single-walled carbon nanotubes in oxy-fuel inverse diffusion flames with online diagnostics. Proc Combust Inst 31:1865–1872CrossRef
go back to reference Unrau CJ, Axelbaum RL, Fraundorf P (2010) Single-walled carbon nanotube formation on iron oxide catalysts in diffusion flames. J Nanopart Res 12:2125–2133CrossRef Unrau CJ, Axelbaum RL, Fraundorf P (2010) Single-walled carbon nanotube formation on iron oxide catalysts in diffusion flames. J Nanopart Res 12:2125–2133CrossRef
go back to reference Vander Wal RL, Hall LJ, Berger GMT (2002) The chemistry of premixed flame synthesis of carbon nanotubes using supported catalysts. Proc Combust Inst 29:1079–1085CrossRef Vander Wal RL, Hall LJ, Berger GMT (2002) The chemistry of premixed flame synthesis of carbon nanotubes using supported catalysts. Proc Combust Inst 29:1079–1085CrossRef
go back to reference Xu F, Liu X, Tse SD (2006) Synthesis of carbon nanotubes on metal alloy substrates with voltage bias in methane diffusion flames. Carbon 44:570–577CrossRef Xu F, Liu X, Tse SD (2006) Synthesis of carbon nanotubes on metal alloy substrates with voltage bias in methane diffusion flames. Carbon 44:570–577CrossRef
go back to reference Xu F, Zhao H, Tse SD (2007) Carbon nanotube synthesis on catalytic metal alloys in methane/air counterflow diffusion flames. Proc Combust Inst 31:1839–1847CrossRef Xu F, Zhao H, Tse SD (2007) Carbon nanotube synthesis on catalytic metal alloys in methane/air counterflow diffusion flames. Proc Combust Inst 31:1839–1847CrossRef
go back to reference Yuan L, Saito K, Hu W, Chen Z (2001a) Ethylene flame synthesis of well aligned multi-walled carbon nanotubes. Chem Phys Lett 346:23–28CrossRef Yuan L, Saito K, Hu W, Chen Z (2001a) Ethylene flame synthesis of well aligned multi-walled carbon nanotubes. Chem Phys Lett 346:23–28CrossRef
go back to reference Yuan L, Saito K, Pan C, Williams FA, Gordon AS (2001b) Nanotubes from methane flames. Chem Phys Lett 340:237–241CrossRef Yuan L, Saito K, Pan C, Williams FA, Gordon AS (2001b) Nanotubes from methane flames. Chem Phys Lett 340:237–241CrossRef
go back to reference Zhou Q, Li C, Gu F, Du HL (2008) Flame synthesis of carbon nanotubes with high density on stainless steel mesh. J Alloys Compd 463:317–322CrossRef Zhou Q, Li C, Gu F, Du HL (2008) Flame synthesis of carbon nanotubes with high density on stainless steel mesh. J Alloys Compd 463:317–322CrossRef
Metadata
Title
Flame synthesis of carbon nanostructures using mixed fuel in oxygen-enriched environment
Authors
Shuhn-Shyurng Hou
Wei-Cheng Huang
Ta-Hui Lin
Publication date
01-11-2012
Publisher
Springer Netherlands
Published in
Journal of Nanoparticle Research / Issue 11/2012
Print ISSN: 1388-0764
Electronic ISSN: 1572-896X
DOI
https://doi.org/10.1007/s11051-012-1243-4

Other articles of this Issue 11/2012

Journal of Nanoparticle Research 11/2012 Go to the issue

Premium Partners