Skip to main content
Top
Published in: Intelligent Industrial Systems 4/2016

01-12-2016 | Original Paper

Flatness-Based Adaptive Neurofuzzy Control of Chaotic Dynamical Systems

Authors: G. Rigatos, P. Siano

Published in: Intelligent Industrial Systems | Issue 4/2016

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The paper proposes a solution to the problem of control of nonlinear chaotic dynamical systems, which is based on differential flatness theory and on adaptive fuzzy control. An adaptive fuzzy controller is designed for chaotic dynamical systems, under the constraint that the system’s model is unknown. The control algorithm aims at satisfying the \(H_\infty \) tracking performance criterion, which means that the influence of the modeling errors and the external disturbances on the tracking error is attenuated to an arbitrary desirable level. After transforming the chaotic system’s model into a linear form, the resulting control inputs are shown to contain nonlinear elements which depend on the system’s parameters. The nonlinear terms which appear in the control inputs are approximated with the use of neuro-fuzzy networks. It is shown that a suitable learning law can be defined for the aforementioned neuro-fuzzy approximators so as to preserve the closed-loop system stability. With the use of Lyapunov stability analysis it is proven that the proposed adaptive fuzzy control scheme results in \(H_{\infty }\) tracking performance. The efficiency of the adaptive fuzzy control method is checked through simulation experiments, using as case study the Lorenz chaotic oscillator.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Chang, Y.C.: A robust tracking control for chaotic Chua’s circuits via fuzzy approach. IEEE Trans. Circuits Syst. Part I 48(7), 889–895 (2001)CrossRef Chang, Y.C.: A robust tracking control for chaotic Chua’s circuits via fuzzy approach. IEEE Trans. Circuits Syst. Part I 48(7), 889–895 (2001)CrossRef
2.
go back to reference Kim, J.H., Hyun, C.H., Kim, E., Park, M.: Adaptive synchronization of chaotic systems based on T-S fuzzy model. IEEE Trans. Fuzzy Syst. 15(3), 359–369 (2007)CrossRef Kim, J.H., Hyun, C.H., Kim, E., Park, M.: Adaptive synchronization of chaotic systems based on T-S fuzzy model. IEEE Trans. Fuzzy Syst. 15(3), 359–369 (2007)CrossRef
3.
go back to reference Wu, Z.G., Shi, P., Su, H., Chu, J.: Sampled-data fuzzy control of chaotic systems based on T-S Fuzzy model. IEEE Trans. Fuzzy Syst. 22(1), 153–163 (2014)MathSciNetCrossRef Wu, Z.G., Shi, P., Su, H., Chu, J.: Sampled-data fuzzy control of chaotic systems based on T-S Fuzzy model. IEEE Trans. Fuzzy Syst. 22(1), 153–163 (2014)MathSciNetCrossRef
4.
go back to reference Sira-Ramirez, H., Luviano-Juarez, A., Cortes-Romero, J.: A disturbance rejection flatness-based linear output feedback control approach for tracking tasks of Chua’s circuit, 50th IEEE Conference on Decision and Control and European Control Conference (CDC-ECC), Orlando, Florida (2011) Sira-Ramirez, H., Luviano-Juarez, A., Cortes-Romero, J.: A disturbance rejection flatness-based linear output feedback control approach for tracking tasks of Chua’s circuit, 50th IEEE Conference on Decision and Control and European Control Conference (CDC-ECC), Orlando, Florida (2011)
5.
go back to reference Fradkov, A.I., Andrievsky, B., Andrievsky, A.: Practically stable observer-based synchronization of discrete-time chaotic systems over the limited-band communication channel, 3rd International Conference on Physics and Control PhysCon 2007, Potsdam, Sept 2007 Fradkov, A.I., Andrievsky, B., Andrievsky, A.: Practically stable observer-based synchronization of discrete-time chaotic systems over the limited-band communication channel, 3rd International Conference on Physics and Control PhysCon 2007, Potsdam, Sept 2007
6.
go back to reference Posznyak, A.S., Yu, W., Sanchez, E.N.: Identification and control of unknown chaotic systems via dynamic neural network. IEEE Trans. Circuits Syst. Part I 46(12), 1491–1495 (1999)CrossRef Posznyak, A.S., Yu, W., Sanchez, E.N.: Identification and control of unknown chaotic systems via dynamic neural network. IEEE Trans. Circuits Syst. Part I 46(12), 1491–1495 (1999)CrossRef
7.
go back to reference Khanesar, M.A., Teshnehlab, M., Kaynak, O.: Observer-based indirect model reference fuzzy control system with application to control of chaotic systems. J. Frankl. Inst. 350, 419–436 (2013)MathSciNetCrossRefMATH Khanesar, M.A., Teshnehlab, M., Kaynak, O.: Observer-based indirect model reference fuzzy control system with application to control of chaotic systems. J. Frankl. Inst. 350, 419–436 (2013)MathSciNetCrossRefMATH
8.
go back to reference Chen, B., Liu, X., Tong, S.: Adaptive fuzzy approach to control unified chaotic systems. Chaos Solitons Fractals 34, 1180–1187 (2007)MathSciNetCrossRefMATH Chen, B., Liu, X., Tong, S.: Adaptive fuzzy approach to control unified chaotic systems. Chaos Solitons Fractals 34, 1180–1187 (2007)MathSciNetCrossRefMATH
9.
go back to reference Khanesar, M.A., Teshnehlab, M., Kaynak, O.: Control and synchronization of chaotic systems using a novel indirect model reference fuzzy controller. Soft Comput. 16(7), 1253–1265 (2012)CrossRefMATH Khanesar, M.A., Teshnehlab, M., Kaynak, O.: Control and synchronization of chaotic systems using a novel indirect model reference fuzzy controller. Soft Comput. 16(7), 1253–1265 (2012)CrossRefMATH
10.
go back to reference Chen, D., Zhao, W., Sprott, J.C., Ma, X.: Application of Takagi-Sugeno fuzzy model to a class of chaotic synchronization and anti-synchronization. Nonlinear Dyn. 73, 1495–1505 (2013)MathSciNetCrossRefMATH Chen, D., Zhao, W., Sprott, J.C., Ma, X.: Application of Takagi-Sugeno fuzzy model to a class of chaotic synchronization and anti-synchronization. Nonlinear Dyn. 73, 1495–1505 (2013)MathSciNetCrossRefMATH
11.
go back to reference Loria, A.: Control of the 4th order hyper-chaotic system with one input. Commun. Nonlinear Sci. Numer. Simul. 15(6), 1621–1630 (2010)MathSciNetCrossRefMATH Loria, A.: Control of the 4th order hyper-chaotic system with one input. Commun. Nonlinear Sci. Numer. Simul. 15(6), 1621–1630 (2010)MathSciNetCrossRefMATH
12.
go back to reference Zhang, X., Khadra, A., Li, D., Yang, D.: Impulsive stability of chaotic systems represented by Takagi-Sugeno model. Chaos Solitons Fractals 41(4), 1863–1869 (2009)MathSciNetCrossRefMATH Zhang, X., Khadra, A., Li, D., Yang, D.: Impulsive stability of chaotic systems represented by Takagi-Sugeno model. Chaos Solitons Fractals 41(4), 1863–1869 (2009)MathSciNetCrossRefMATH
13.
go back to reference Wang, L.X.: A Course in Fuzzy Systems and Control. Prentice-Hall, Englewood Cliffs (1998) Wang, L.X.: A Course in Fuzzy Systems and Control. Prentice-Hall, Englewood Cliffs (1998)
14.
go back to reference Crespo, L., Agrawal, S.: Differential flatness and cooperative tracking in the Lorenz System. In: Proceedings of the American Control Conference Denver, Colorado, USA, June 2003 Crespo, L., Agrawal, S.: Differential flatness and cooperative tracking in the Lorenz System. In: Proceedings of the American Control Conference Denver, Colorado, USA, June 2003
15.
go back to reference Wai, R.J., Chang, J.M.: Implementation of robust wavelet-neural-network sliding-mode control for induction servo motor drive. IEEE Trans. Ind. Electron. 50(6), 1317–1334 (2003)CrossRef Wai, R.J., Chang, J.M.: Implementation of robust wavelet-neural-network sliding-mode control for induction servo motor drive. IEEE Trans. Ind. Electron. 50(6), 1317–1334 (2003)CrossRef
16.
go back to reference Nounou, H.N., Rehman, H.: Application of adaptive fuzzy control to AC machines. Appl. Soft Comput. 7(3), 899–907 (2007)CrossRef Nounou, H.N., Rehman, H.: Application of adaptive fuzzy control to AC machines. Appl. Soft Comput. 7(3), 899–907 (2007)CrossRef
17.
go back to reference Lin, Y.J., Wang, W.: Adaptive fuzzy control for a class of uncertain non-affine nonlinear systems. Inf. Sci. 177, 3901–3917 (2007)CrossRefMATH Lin, Y.J., Wang, W.: Adaptive fuzzy control for a class of uncertain non-affine nonlinear systems. Inf. Sci. 177, 3901–3917 (2007)CrossRefMATH
18.
go back to reference Qi, R., Tao, G., Tan, C., Yao, X.: Adaptive control of discrete-time state-space TS fuzzy systems with general relative degree. Fuzzy Sets Syst. 217, 22–40 (2013)MathSciNetCrossRefMATH Qi, R., Tao, G., Tan, C., Yao, X.: Adaptive control of discrete-time state-space TS fuzzy systems with general relative degree. Fuzzy Sets Syst. 217, 22–40 (2013)MathSciNetCrossRefMATH
19.
go back to reference Yang, Y., Zhou, C., Jia, X.: Robust adaptive fuzzy control and its application to ship roll stabilization. Inf. Sci. 142, 177–194 (2002)CrossRefMATH Yang, Y., Zhou, C., Jia, X.: Robust adaptive fuzzy control and its application to ship roll stabilization. Inf. Sci. 142, 177–194 (2002)CrossRefMATH
20.
go back to reference Tong, S., Li, H.-X., Chen, G.: Adaptive fuzzy decentralized control for a class of large-scale nonlinear systems. IEEE Trans. Syst. Man Cybern. B 34(1), 770–775 (2004)CrossRef Tong, S., Li, H.-X., Chen, G.: Adaptive fuzzy decentralized control for a class of large-scale nonlinear systems. IEEE Trans. Syst. Man Cybern. B 34(1), 770–775 (2004)CrossRef
21.
go back to reference Fliess, M., Mounier, H.: Tracking control and \(\pi \)-freeness of infinite dimensional linear systems. In: Picci, G., Gilliam, D.S. (eds.) Dynamical Systems Control Coding and Computer Vision, vol. 258, pp. 41–68. Birkhaüser, Basel (1999) Fliess, M., Mounier, H.: Tracking control and \(\pi \)-freeness of infinite dimensional linear systems. In: Picci, G., Gilliam, D.S. (eds.) Dynamical Systems Control Coding and Computer Vision, vol. 258, pp. 41–68. Birkhaüser, Basel (1999)
22.
go back to reference Laroche, B., Martin, P., Petit, N.: Commande par platitude: Equations différentielles ordinaires et aux derivées partielles. Ecole Nationale Supérieure des Techniques Avancées, Paris (2007) Laroche, B., Martin, P., Petit, N.: Commande par platitude: Equations différentielles ordinaires et aux derivées partielles. Ecole Nationale Supérieure des Techniques Avancées, Paris (2007)
23.
go back to reference Lévine, J.: On necessary and sufficient conditions for differential flatness. Appl. Algebra Eng. Commun. Comput. 22, 47–90 (2011)MathSciNetCrossRefMATH Lévine, J.: On necessary and sufficient conditions for differential flatness. Appl. Algebra Eng. Commun. Comput. 22, 47–90 (2011)MathSciNetCrossRefMATH
24.
go back to reference Martin, P., Rouchon, P.: Systèmes plats: planification et suivi des trajectoires. Journées X-UPS, École des Mines de Paris, Centre Automatique et Systèmes (1999) Martin, P., Rouchon, P.: Systèmes plats: planification et suivi des trajectoires. Journées X-UPS, École des Mines de Paris, Centre Automatique et Systèmes (1999)
25.
go back to reference Rudolph, J.: Flatness Based Control of Distributed Parameter Systems: Examples and Computer Exercises from Various Technological Domains. Shaker Verlag, Aachen (2003) Rudolph, J.: Flatness Based Control of Distributed Parameter Systems: Examples and Computer Exercises from Various Technological Domains. Shaker Verlag, Aachen (2003)
26.
go back to reference Sira-Ramirez, H., Agrawal, S.: Differentially Flat Systems. Marcel Dekker, New York (2004)MATH Sira-Ramirez, H., Agrawal, S.: Differentially Flat Systems. Marcel Dekker, New York (2004)MATH
27.
go back to reference Villagra, J., d’Andrea-Novel, B., Mounier, H., Pengov, M.: Flatness-based vehicle steering control strategy with SDRE feedback gains tuned via a sensitivity approach. IEEE Trans. Control Syst. Technol. 15, 554–565 (2007)CrossRef Villagra, J., d’Andrea-Novel, B., Mounier, H., Pengov, M.: Flatness-based vehicle steering control strategy with SDRE feedback gains tuned via a sensitivity approach. IEEE Trans. Control Syst. Technol. 15, 554–565 (2007)CrossRef
28.
go back to reference Yue, H., Li, J.: Output-feedback adaptive fuzzy control for a class of nonlinear time-varying delay systems with unknown control directions. IET Control Theory Appl. 6, 1266–1280 (2012)MathSciNetCrossRef Yue, H., Li, J.: Output-feedback adaptive fuzzy control for a class of nonlinear time-varying delay systems with unknown control directions. IET Control Theory Appl. 6, 1266–1280 (2012)MathSciNetCrossRef
29.
go back to reference Cho, Y.W., Park, C.W., Kim, J.H., Park, M.: Indirect model reference adaptive fuzzy control of dynamic fuzzy-state space model. IET Proc. Control Theory Appl. 148(4), 273–282 (2005)MathSciNetCrossRef Cho, Y.W., Park, C.W., Kim, J.H., Park, M.: Indirect model reference adaptive fuzzy control of dynamic fuzzy-state space model. IET Proc. Control Theory Appl. 148(4), 273–282 (2005)MathSciNetCrossRef
30.
go back to reference Rigatos, G., Al-Khazraji, A.: Flatness-Based Adaptive Fuzzy Control for MIMO Nonlinear Dynamical Systems. In: Nonlinear Estimation and Applications to Industrial Systems Control, Nova Publications (2011) Rigatos, G., Al-Khazraji, A.: Flatness-Based Adaptive Fuzzy Control for MIMO Nonlinear Dynamical Systems. In: Nonlinear Estimation and Applications to Industrial Systems Control, Nova Publications (2011)
31.
go back to reference Rigatos, G.G.: Adaptive fuzzy control with output feedback for \(H_{\infty }\) tracking of SISO nonlinear systems. Int. J. Neural Syst. 18(4), 1–16 (2008)CrossRef Rigatos, G.G.: Adaptive fuzzy control with output feedback for \(H_{\infty }\) tracking of SISO nonlinear systems. Int. J. Neural Syst. 18(4), 1–16 (2008)CrossRef
32.
go back to reference Rigatos, G.G.: A Differential Flatness Theory Approach to Observer-Based Adaptive Fuzzy Control of MIMO Nonlinear Dynamical Systems, Nonlinear Dynamics. Springer, Berlin (2014)MATH Rigatos, G.G.: A Differential Flatness Theory Approach to Observer-Based Adaptive Fuzzy Control of MIMO Nonlinear Dynamical Systems, Nonlinear Dynamics. Springer, Berlin (2014)MATH
33.
go back to reference Rigatos, G.G., Tzafestas, S.G.: Adaptive fuzzy control for the ship steering problem. J. Mechatron. 16(6), 479–489 (2006)CrossRef Rigatos, G.G., Tzafestas, S.G.: Adaptive fuzzy control for the ship steering problem. J. Mechatron. 16(6), 479–489 (2006)CrossRef
34.
go back to reference Rigatos, G.G.: Adaptive fuzzy control for non-linear dynamical systems based on differential flatness theory. IET Control Theory Appl. 6(17), 2644–2656 (2012)MathSciNetCrossRef Rigatos, G.G.: Adaptive fuzzy control for non-linear dynamical systems based on differential flatness theory. IET Control Theory Appl. 6(17), 2644–2656 (2012)MathSciNetCrossRef
35.
go back to reference Rigatos, G.G.: Adaptive fuzzy control of DC motors using state and output feedback. Electr. Power Syst. Res. 79(11), 1579–1592 (2009)CrossRef Rigatos, G.G.: Adaptive fuzzy control of DC motors using state and output feedback. Electr. Power Syst. Res. 79(11), 1579–1592 (2009)CrossRef
36.
go back to reference Yousef, H.A., Hamdy, M., Shafiq, M.: Flatness-based adaptive fuzzy output tracking excitation control for power system generators. J. Frankl. Ins. 350, 2334–2353 (2013)MathSciNetCrossRefMATH Yousef, H.A., Hamdy, M., Shafiq, M.: Flatness-based adaptive fuzzy output tracking excitation control for power system generators. J. Frankl. Ins. 350, 2334–2353 (2013)MathSciNetCrossRefMATH
37.
go back to reference Rigatos, G.G.: Modelling and Control for Intelligent Industrial Systems: Adaptive Algorithms in Robotics and Industrial Engineering. Springer, Berlin (2011)CrossRefMATH Rigatos, G.G.: Modelling and Control for Intelligent Industrial Systems: Adaptive Algorithms in Robotics and Industrial Engineering. Springer, Berlin (2011)CrossRefMATH
38.
go back to reference Rigatos, G.G.: Advanced Models of Neural Networks: Nonlinear Dynamics and Stochasticity of Biological Neurons. Springer, Heidelberg (2013)MATH Rigatos, G.G.: Advanced Models of Neural Networks: Nonlinear Dynamics and Stochasticity of Biological Neurons. Springer, Heidelberg (2013)MATH
39.
go back to reference Rigatos, G.G.: Differential Flatness Approaches to Nonlinear Filtering and Control: Applications to Electromechanical Systems. Springer, New York (2015)CrossRefMATH Rigatos, G.G.: Differential Flatness Approaches to Nonlinear Filtering and Control: Applications to Electromechanical Systems. Springer, New York (2015)CrossRefMATH
40.
41.
go back to reference Bassevile, M., Nikiforov, I.: Detection of Abrupt Changes: Theory and Applications. Prentice-Hall, Englewood Cliffs (1993) Bassevile, M., Nikiforov, I.: Detection of Abrupt Changes: Theory and Applications. Prentice-Hall, Englewood Cliffs (1993)
42.
go back to reference Kurylowicz, A., Jaworska, I., Tzafestas, S.G.: Robust stabilizing control: an overview. In: Tzafestas, S.G. (ed.) Applied Control: Current Trends and Modern Methodologies, pp. 289–324. Marcel Dekker, New York (1993) Kurylowicz, A., Jaworska, I., Tzafestas, S.G.: Robust stabilizing control: an overview. In: Tzafestas, S.G. (ed.) Applied Control: Current Trends and Modern Methodologies, pp. 289–324. Marcel Dekker, New York (1993)
43.
go back to reference Lublin, L., Athans, M.: An experimental comparison of and designs for interferometer testbed. In: Francis, B., Tannenbaum, A. (eds.) Lectures Notes in Control and Information Sciences: Feedback Control, Nonlinear Systems and Complexity, pp. 150–172. Springer, New York (1995)CrossRef Lublin, L., Athans, M.: An experimental comparison of and designs for interferometer testbed. In: Francis, B., Tannenbaum, A. (eds.) Lectures Notes in Control and Information Sciences: Feedback Control, Nonlinear Systems and Complexity, pp. 150–172. Springer, New York (1995)CrossRef
44.
go back to reference Doyle, J.C., Glover, K., Khargonekar, P.P., Francis, B.A.: State-space solutions to standard \(H_2\) and \(H_{\infty }\) control problems. IEEE Trans. Autom. Control 34, 831–847 (1989)MathSciNetCrossRefMATH Doyle, J.C., Glover, K., Khargonekar, P.P., Francis, B.A.: State-space solutions to standard \(H_2\) and \(H_{\infty }\) control problems. IEEE Trans. Autom. Control 34, 831–847 (1989)MathSciNetCrossRefMATH
45.
go back to reference Farinwata, S., Filev, D., Langari, R.: Fuzzy Control: Synthesis and Analysis. Wiley, Chichester (2000)MATH Farinwata, S., Filev, D., Langari, R.: Fuzzy Control: Synthesis and Analysis. Wiley, Chichester (2000)MATH
Metadata
Title
Flatness-Based Adaptive Neurofuzzy Control of Chaotic Dynamical Systems
Authors
G. Rigatos
P. Siano
Publication date
01-12-2016
Publisher
Springer Singapore
Published in
Intelligent Industrial Systems / Issue 4/2016
Print ISSN: 2363-6912
Electronic ISSN: 2199-854X
DOI
https://doi.org/10.1007/s40903-016-0055-8

Other articles of this Issue 4/2016

Intelligent Industrial Systems 4/2016 Go to the issue