Skip to main content
Top
Published in: Metallurgical and Materials Transactions B 2/2015

01-04-2015

Fluid Flow Characteristics and Porosity Behavior in Full Penetration Laser Welding of a Titanium Alloy

Authors: Baohua Chang, Chris Allen, Jon Blackburn, Paul Hilton, Dong Du

Published in: Metallurgical and Materials Transactions B | Issue 2/2015

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this paper, a computational fluid mechanics model is developed for full penetration laser welding of titanium alloy Ti6Al4V. This has been used to analyze possible porosity formation mechanisms, based on predictions of keyhole behavior and fluid flow characteristics in the weld pool. Numerical results show that when laser welding 3 mm thickness titanium alloy sheets with given laser beam focusing optics, keyhole depth oscillates before a full penetration keyhole is formed, but thereafter keyhole collapses are not predicted numerically. For lower power, lower speed welding, the fluid flow behind the keyhole is turbulent and unstable, and vortices are formed. Molten metal is predicted to flow away from the center plane of the weld pool, and leave a gap or void within the weld pool behind the keyhole. For higher power, higher speed welding, fluid flow is less turbulent, and such vortices are not formed. Corresponding experimental results show that porosity was absent in the melt runs made at higher power and higher welding speed. In contrast, large pores were present in melt runs made at lower power and lower welding speed. Based on the combination of experimental results and numerical predictions, it is proposed that porosity formation when keyhole laser welding may result from turbulent fluid flow behind the keyhole, with the larger the value of associated Reynolds number, the higher the possibility of porosity formation. For such fluid flow controlled porosities, measures to decrease Reynolds number of the fluid flow close to the keyhole could prove effective in reducing or avoiding porosity.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Swift-Hook D T, Gick A E F, 1973: Penetration welding with lasers. Welding Journal, 52(11): 492s-499s. Swift-Hook D T, Gick A E F, 1973: Penetration welding with lasers. Welding Journal, 52(11): 492s-499s.
2.
go back to reference Andrews J G and Atthey D R, 1976: Hydrodynamic limit to penetration of a material by a high-power beam. Journal of Physics D: Applied Physics, 9, 2181-2194.CrossRef Andrews J G and Atthey D R, 1976: Hydrodynamic limit to penetration of a material by a high-power beam. Journal of Physics D: Applied Physics, 9, 2181-2194.CrossRef
3.
go back to reference Klemens P G, 1976: Heat balance and flow conditions for electron beam and laser welding. J. of Applied Physics, 47: 2165-2174.CrossRef Klemens P G, 1976: Heat balance and flow conditions for electron beam and laser welding. J. of Applied Physics, 47: 2165-2174.CrossRef
4.
go back to reference Cline H E, Anthony T R, 1977: Heat treating and melting material with a scanning laser or electron beam. J. of Applied Physics, 48(9): 3895-3900.CrossRef Cline H E, Anthony T R, 1977: Heat treating and melting material with a scanning laser or electron beam. J. of Applied Physics, 48(9): 3895-3900.CrossRef
5.
go back to reference Mazumder J and Steen W M, 1980: Heat transfer model for cw laser material processing, J. of Applied Physics, 51(2): 941-947.CrossRef Mazumder J and Steen W M, 1980: Heat transfer model for cw laser material processing, J. of Applied Physics, 51(2): 941-947.CrossRef
6.
go back to reference Davis M, Kapadia P, Dowden J, 1986: Modelling the fluid flow in laser beam welding. Welding Journal, 65(7): 167-172. Davis M, Kapadia P, Dowden J, 1986: Modelling the fluid flow in laser beam welding. Welding Journal, 65(7): 167-172.
7.
go back to reference Dowden J, Postacioglu N, Davis M, and Kapadia P, 1987: A keyhole model in penetration welding with a laser. J. of Physics D: Applied Physics, 20, 36-42.CrossRef Dowden J, Postacioglu N, Davis M, and Kapadia P, 1987: A keyhole model in penetration welding with a laser. J. of Physics D: Applied Physics, 20, 36-42.CrossRef
8.
go back to reference Steen W M, Dowden J, Davis M and Kapadia P, 1988: A point and line source model of laser keyhole welding. J. of Physics D: Applied Physics, 21:1255-1260.CrossRef Steen W M, Dowden J, Davis M and Kapadia P, 1988: A point and line source model of laser keyhole welding. J. of Physics D: Applied Physics, 21:1255-1260.CrossRef
9.
go back to reference Postacioglu N, Kapadia P and Dowden J, 1991: A theoretical model of thermocapillary flows in laser welding, J. of Physics D: Applied Physics, 24(1): 15-20.CrossRef Postacioglu N, Kapadia P and Dowden J, 1991: A theoretical model of thermocapillary flows in laser welding, J. of Physics D: Applied Physics, 24(1): 15-20.CrossRef
10.
go back to reference J. Mazumder, M.M. Chen, C.L. Chan, D. Voelkel, and R. Zehr: Proc. of Symposium on Joining of Materials for 2000 AD, 1991, 693–708. J. Mazumder, M.M. Chen, C.L. Chan, D. Voelkel, and R. Zehr: Proc. of Symposium on Joining of Materials for 2000 AD, 1991, 693–708.
11.
go back to reference Mundra K, DebRoy T, Zacharia T and David S A, 1992: Role of thermophysical properties in weld pool modelling. Welding Journal, 71(9): 313s-320s. Mundra K, DebRoy T, Zacharia T and David S A, 1992: Role of thermophysical properties in weld pool modelling. Welding Journal, 71(9): 313s-320s.
12.
go back to reference Kroos J, Gratzke U and Simon G, 1993: Towards a self-consistent model of the keyhole in penetration laser beam welding. J. of Physics D: Applied Physics, 26: 474-480.CrossRef Kroos J, Gratzke U and Simon G, 1993: Towards a self-consistent model of the keyhole in penetration laser beam welding. J. of Physics D: Applied Physics, 26: 474-480.CrossRef
13.
go back to reference Metzbower E A, 1993: Keyhole formation. Metallurgical Transactions B, 24(5), 875-880.CrossRef Metzbower E A, 1993: Keyhole formation. Metallurgical Transactions B, 24(5), 875-880.CrossRef
14.
go back to reference Sudnik W, Radaj D and Erofeew W, 1996: Computerized simulation of laser beam welding, modelling and verification. J. Phys. D: Appl. Phys., 29: 2811–2817.CrossRef Sudnik W, Radaj D and Erofeew W, 1996: Computerized simulation of laser beam welding, modelling and verification. J. Phys. D: Appl. Phys., 29: 2811–2817.CrossRef
15.
go back to reference Semak V V, Damkroger B and Kempka S, 1999: Temporal evolution of the temperature field in the beam interaction zone during laser material processing. J. of Physics D: Applied Physics, 32, 1819-1825.CrossRef Semak V V, Damkroger B and Kempka S, 1999: Temporal evolution of the temperature field in the beam interaction zone during laser material processing. J. of Physics D: Applied Physics, 32, 1819-1825.CrossRef
16.
go back to reference Zhao H, DebRoy T, 2003: Macroporosity free aluminium alloy weldments through numerical simulation of keyhole mode laser welding. J. of Applied Physics, 93(12): 10089-10096.CrossRef Zhao H, DebRoy T, 2003: Macroporosity free aluminium alloy weldments through numerical simulation of keyhole mode laser welding. J. of Applied Physics, 93(12): 10089-10096.CrossRef
17.
go back to reference Jin X, Li L and Zhang Y, 2002: A study on Fresnel absorption and reflections in the keyhole in deep penetration laser welding. J. Phys. D: Appl. Phys., 35(18): 2304–2310.CrossRef Jin X, Li L and Zhang Y, 2002: A study on Fresnel absorption and reflections in the keyhole in deep penetration laser welding. J. Phys. D: Appl. Phys., 35(18): 2304–2310.CrossRef
18.
go back to reference Jin X, Berger P and Graf T, 2006: Multiple reflections and Fresnel absorption in an actual 3D keyhole during deep penetration laser welding. Journal of Physics D: Applied Physics, 39(21): 4703-4712.CrossRef Jin X, Berger P and Graf T, 2006: Multiple reflections and Fresnel absorption in an actual 3D keyhole during deep penetration laser welding. Journal of Physics D: Applied Physics, 39(21): 4703-4712.CrossRef
19.
go back to reference Cho J H and Na S J, 2006: Implementation of real-time multiple reflection and Fresnel absorption of laser beam in keyhole. J. of Physics D: Applied Physics, 39(24): 5372-5378.CrossRef Cho J H and Na S J, 2006: Implementation of real-time multiple reflection and Fresnel absorption of laser beam in keyhole. J. of Physics D: Applied Physics, 39(24): 5372-5378.CrossRef
21.
go back to reference H. Ki, P.S. Mohanty, and J. Mazumder: Metall. Mater. Trans. A, 2002, vol. 33A, pp. 1817–30.CrossRef H. Ki, P.S. Mohanty, and J. Mazumder: Metall. Mater. Trans. A, 2002, vol. 33A, pp. 1817–30.CrossRef
22.
go back to reference H. Ki, P.S. Mohanty, and J. Mazumder: Metall. Mater. Trans. A, 2002, vol. 33, pp. 1831–42.CrossRef H. Ki, P.S. Mohanty, and J. Mazumder: Metall. Mater. Trans. A, 2002, vol. 33, pp. 1831–42.CrossRef
23.
go back to reference Zhou J, Tsai H L and Wang P C, 2006: Transport phenomena and keyhole dynamics during pulsed laser welding. ASME J. of Heat Transfer, 128(7): 680-690.CrossRef Zhou J, Tsai H L and Wang P C, 2006: Transport phenomena and keyhole dynamics during pulsed laser welding. ASME J. of Heat Transfer, 128(7): 680-690.CrossRef
24.
go back to reference Zhou J and Tsai H L, 2006: Investigation of transport phenomena and defect formation in pulsed laser keyhole welding of zinc-coated steels. J. of Physics D: Applied Physics, 39(24): 5338-5355.CrossRef Zhou J and Tsai H L, 2006: Investigation of transport phenomena and defect formation in pulsed laser keyhole welding of zinc-coated steels. J. of Physics D: Applied Physics, 39(24): 5338-5355.CrossRef
25.
go back to reference Zhou J and Tsai H L, 2007: Porosity formation and prevention in pulsed laser welding. ASME J. of Heat Transfer, 129(8): 1014-1024.CrossRef Zhou J and Tsai H L, 2007: Porosity formation and prevention in pulsed laser welding. ASME J. of Heat Transfer, 129(8): 1014-1024.CrossRef
26.
go back to reference Zhou J and Tsai H L, 2007: Effects of electromagnetic force on melt flow and porosity prevention in pulsed laser keyhole welding. International J. of Heat and Mass Transfer, 50(11-12): 2217-2235.CrossRef Zhou J and Tsai H L, 2007: Effects of electromagnetic force on melt flow and porosity prevention in pulsed laser keyhole welding. International J. of Heat and Mass Transfer, 50(11-12): 2217-2235.CrossRef
27.
go back to reference Pang S, Chen L, Zhou J, Yin Y, Chen T, 2011: A three-dimensional sharp interface model for self-consistent keyhole and molten pool dynamics in deep penetration laser welding. J. of Physics D: Applied Physics, 44(2): 025301CrossRef Pang S, Chen L, Zhou J, Yin Y, Chen T, 2011: A three-dimensional sharp interface model for self-consistent keyhole and molten pool dynamics in deep penetration laser welding. J. of Physics D: Applied Physics, 44(2): 025301CrossRef
28.
go back to reference H.Y. Zhao, W.C. Niu, B. Zhang, Y.P. Lei, M. Kodama, T. Ishide: J. Phys. D, 2011, vol. 44 (48), p. 485302.CrossRef H.Y. Zhao, W.C. Niu, B. Zhang, Y.P. Lei, M. Kodama, T. Ishide: J. Phys. D, 2011, vol. 44 (48), p. 485302.CrossRef
29.
go back to reference Zhang W H, Zhou J, Tsai H L, 2003: Numerical modelling of keyhole dynamics in laser welding. Proc. of SPIE, Vol.4831, 180-184.CrossRef Zhang W H, Zhou J, Tsai H L, 2003: Numerical modelling of keyhole dynamics in laser welding. Proc. of SPIE, Vol.4831, 180-184.CrossRef
30.
go back to reference Amara E H and Fabbro R, 2008: Modelling of gas jet effect on the molten pool movements during deep penetration laser welding. Journal of Physics D: Applied Physics, 41(5), 055503.CrossRef Amara E H and Fabbro R, 2008: Modelling of gas jet effect on the molten pool movements during deep penetration laser welding. Journal of Physics D: Applied Physics, 41(5), 055503.CrossRef
31.
go back to reference Zhang L J, Zhang J X, Zhang G F, Bo W, Gong SL, 2011: An investigation on the effects of side assisting gas flow and metallic vapour jet on the stability of keyhole and molten pool during laser full-penetration welding. J. of Physics D: Applied Physics, 44(13), 135201.CrossRef Zhang L J, Zhang J X, Zhang G F, Bo W, Gong SL, 2011: An investigation on the effects of side assisting gas flow and metallic vapour jet on the stability of keyhole and molten pool during laser full-penetration welding. J. of Physics D: Applied Physics, 44(13), 135201.CrossRef
32.
go back to reference Tsukamoto S, 2011: High speed imaging technique part 2 – high speed imaging of power beam welding phenomena. Science and Technology of Welding and Joining, 2011, 16(1): 44-55.CrossRef Tsukamoto S, 2011: High speed imaging technique part 2 – high speed imaging of power beam welding phenomena. Science and Technology of Welding and Joining, 2011, 16(1): 44-55.CrossRef
33.
go back to reference S. Katayama, S. Kohsaka, M. Mizutani, K. Nishizawa, and A. Matsunawa: Proceedings of ICALEO, 1993, pp. 487–97. S. Katayama, S. Kohsaka, M. Mizutani, K. Nishizawa, and A. Matsunawa: Proceedings of ICALEO, 1993, pp. 487–97.
34.
go back to reference S. Katayama, N. Seto, M. Mizutani, and A. Matsunawa: Proceedings of ICALEO, Section C, 2000, pp. 16–25. S. Katayama, N. Seto, M. Mizutani, and A. Matsunawa: Proceedings of ICALEO, Section C, 2000, pp. 16–25.
35.
go back to reference Katayama S, Mizutani M and Matsunawa A, 2003: Development of porosity prevention procedures during laser welding. Proc. SPIE, 4831, 281-288.CrossRef Katayama S, Mizutani M and Matsunawa A, 2003: Development of porosity prevention procedures during laser welding. Proc. SPIE, 4831, 281-288.CrossRef
36.
go back to reference Matsunawa A, Kim J, Seto N, Mizutani M, S Katayama, 1998: Dynamics of keyhole and molten pool in laser welding, J. of Laser Applications, 10(6): 247-254.CrossRef Matsunawa A, Kim J, Seto N, Mizutani M, S Katayama, 1998: Dynamics of keyhole and molten pool in laser welding, J. of Laser Applications, 10(6): 247-254.CrossRef
37.
go back to reference Matsunawa A, Kim J, Seto N, Mizutani M, S Katayama, 2000: Dynamics of keyhole and molten pool in high power CO2 laser welding, Proc. SPIE, 3888: 34-45.CrossRef Matsunawa A, Kim J, Seto N, Mizutani M, S Katayama, 2000: Dynamics of keyhole and molten pool in high power CO2 laser welding, Proc. SPIE, 3888: 34-45.CrossRef
38.
go back to reference Matsunawa A, Kim J, Seto N, Mizutani M, S Katayama, 2001: Observation of keyhole and molten pool in high power laser welding mechanism of porosity formation and its suppression method, Trans. JWRI, 30: 13-27. Matsunawa A, Kim J, Seto N, Mizutani M, S Katayama, 2001: Observation of keyhole and molten pool in high power laser welding mechanism of porosity formation and its suppression method, Trans. JWRI, 30: 13-27.
39.
go back to reference Matsunawa A and Katayama S, 2003: Understanding physical mechanisms in laser welding for construction of mathematical model. Welding Research Abroad, 49 (4): 27-38. Matsunawa A and Katayama S, 2003: Understanding physical mechanisms in laser welding for construction of mathematical model. Welding Research Abroad, 49 (4): 27-38.
40.
go back to reference N. Seto, S. Katayama, and A. Matsunawa: Proceedings of ICALEO, Section E, 1999, pp. 19–27. N. Seto, S. Katayama, and A. Matsunawa: Proceedings of ICALEO, Section E, 1999, pp. 19–27.
41.
go back to reference Seto N, Katayama S and Matsunawa A, 2000: Porosity formation mechanism and suppression procedure in laser welding of aluminium alloy. Q. J. Japan Weld. Soc. 18, 243-255.CrossRef Seto N, Katayama S and Matsunawa A, 2000: Porosity formation mechanism and suppression procedure in laser welding of aluminium alloy. Q. J. Japan Weld. Soc. 18, 243-255.CrossRef
42.
go back to reference Seto N, Katayamat S, Mizutan M and Matsunawa A, 2000: Relationship between plasma and keyhole behaviour during CO2 laser welding, Proc. SPIE, 3888, 61-68.CrossRef Seto N, Katayamat S, Mizutan M and Matsunawa A, 2000: Relationship between plasma and keyhole behaviour during CO2 laser welding, Proc. SPIE, 3888, 61-68.CrossRef
43.
go back to reference Seto N, Katayama S and Matsunawa A, 2001: Porosity formation mechanism and reduction method in CO2 laser welding of stainless steel. Q. J. Japan Weld. Soc., 19, 600-609.CrossRef Seto N, Katayama S and Matsunawa A, 2001: Porosity formation mechanism and reduction method in CO2 laser welding of stainless steel. Q. J. Japan Weld. Soc., 19, 600-609.CrossRef
44.
go back to reference S. Tsukamoto, I. Kawaguchi, G. Arakane, and H. Honda: Int. Congress on Applications of Lasers & Electro-Optics (ICALEO), Jacksonville, FL, 2001, pp. 400–08. S. Tsukamoto, I. Kawaguchi, G. Arakane, and H. Honda: Int. Congress on Applications of Lasers & Electro-Optics (ICALEO), Jacksonville, FL, 2001, pp. 400–08.
45.
go back to reference I. Kawaguchi, S. Tsukamoto, H. Honda, and G. Arakane: International Congress on Applications of Lasers& Electro-Optics (ICALEO), Laser Institute of America, Section A, Orlando, FL, 2003, vol. 1006, pp. 168–75. I. Kawaguchi, S. Tsukamoto, H. Honda, and G. Arakane: International Congress on Applications of Lasers& Electro-Optics (ICALEO), Laser Institute of America, Section A, Orlando, FL, 2003, vol. 1006, pp. 168–75.
46.
go back to reference J.E. Blackburn and C.M. Allen: “Modulated Twin Spot and High Beam Quality Laser Welding of Titanium Alloys”, TWI Industrial Member Report, No. 967, 2010. J.E. Blackburn and C.M. Allen: “Modulated Twin Spot and High Beam Quality Laser Welding of Titanium Alloys”, TWI Industrial Member Report, No. 967, 2010.
47.
go back to reference Kaplan A, Mizutani M, Katayama S, Matsunawa A, 2002: Unbounded keyhole collapse and bubble formation during pulsed laser interaction with liquid zinc. J. of Physics D: Applied Physics, 35(11): 1218-1228.CrossRef Kaplan A, Mizutani M, Katayama S, Matsunawa A, 2002: Unbounded keyhole collapse and bubble formation during pulsed laser interaction with liquid zinc. J. of Physics D: Applied Physics, 35(11): 1218-1228.CrossRef
48.
go back to reference J.E. Blackburn: Ph.D. Thesis, University of Manchester, 2011. J.E. Blackburn: Ph.D. Thesis, University of Manchester, 2011.
49.
go back to reference Hughes WF and Brighton JA, 1999: Schaum’s outline of fluid dynamics, USA: McGraw-Hill. Hughes WF and Brighton JA, 1999: Schaum’s outline of fluid dynamics, USA: McGraw-Hill.
Metadata
Title
Fluid Flow Characteristics and Porosity Behavior in Full Penetration Laser Welding of a Titanium Alloy
Authors
Baohua Chang
Chris Allen
Jon Blackburn
Paul Hilton
Dong Du
Publication date
01-04-2015
Publisher
Springer US
Published in
Metallurgical and Materials Transactions B / Issue 2/2015
Print ISSN: 1073-5615
Electronic ISSN: 1543-1916
DOI
https://doi.org/10.1007/s11663-014-0242-5

Other articles of this Issue 2/2015

Metallurgical and Materials Transactions B 2/2015 Go to the issue

Premium Partners