Skip to main content
Top
Published in: Journal of Materials Engineering and Performance 6/2016

01-06-2016

Formability Evaluation of Sheet Metals Based on Global Strain Distribution

Authors: Ling Zhang, Jianping Lin, Junying Min, You Ye, Liugen Kang

Published in: Journal of Materials Engineering and Performance | Issue 6/2016

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

According to the conventional methods for formability evaluation, e.g., forming limit curve (FLC), limit dome height, and total elongation, inconsistent results are observed when comparing the formability of four advanced high-strength steels (AHSS) with an ultimate tensile strength grade of 1000 MPa. The strain distribution analysis with the aid of digital image correlation technique shows that different uniform deformation capabilities of sheet metals under the same loading conditions are responsible for this inconsistency. In addition, metallurgical analysis suggests that inhomogeneous microstructure distribution and phase transformation during deformation in some materials play important roles in the uniform deformation capability of sheet metal. Limit strains on the commonly used FLC only relate to the major and minor strains of local deforming elements associated with the onset of necking. However, the formability of a sheet metal component is determined by the strain magnitudes of all deforming elements involved during the forming process. Hence, the formability evaluation of sheet metals from a global aspect is more applicable for practical engineering. A new method based on two indices (i.e., which represent global formability and uniform deformation capability, respectively) is proposed to evaluate the formability of sheet metals based on global strain distribution. The formability and evolution of deformation uniformity of the investigated AHSS at different stress states are studied with this new method. Compared with other formability evaluation methods, the new method is demonstrated to be more appropriate for practical engineering, and it is applicable to both in-plane and out-of-plane deformation. Additionally, the global formability of sheet metals can be more comprehensively understood with this new method.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Z.H. Cai, H. Ding, R.D.K. Misra, and Z.Y. Ying, Austenite Stability and Deformation Behavior in a Cold-rolled Transformation-Induced Plasticity Steel with Medium Manganese Content, Acta Mater., 2015, 84, p 229–236CrossRef Z.H. Cai, H. Ding, R.D.K. Misra, and Z.Y. Ying, Austenite Stability and Deformation Behavior in a Cold-rolled Transformation-Induced Plasticity Steel with Medium Manganese Content, Acta Mater., 2015, 84, p 229–236CrossRef
2.
go back to reference J. Chiang, J.D. Boyd, and A.K. Pilkey, Effect of Microstructure on Retained Austenite Stability and Tensile Behaviour in an Aluminum-Alloyed TRIP Steel, Mat. Sci. Eng. A, 2015, 638, p 132–142CrossRef J. Chiang, J.D. Boyd, and A.K. Pilkey, Effect of Microstructure on Retained Austenite Stability and Tensile Behaviour in an Aluminum-Alloyed TRIP Steel, Mat. Sci. Eng. A, 2015, 638, p 132–142CrossRef
3.
go back to reference X.L. Ma, C.X. Huang, W.Z. Xu, H. Zhou, X.L. Wu, and Y.T. Zhu, Strain Hardening and Ductility in a Coarse-Grain/Nanostructure Laminate Material, Scr. Mater., 2015, 103, p 57–60CrossRef X.L. Ma, C.X. Huang, W.Z. Xu, H. Zhou, X.L. Wu, and Y.T. Zhu, Strain Hardening and Ductility in a Coarse-Grain/Nanostructure Laminate Material, Scr. Mater., 2015, 103, p 57–60CrossRef
4.
go back to reference H. Yu, and Y. Wang, Fracture Performance of High Strength Steels, Aluminium and Magnesium Alloys During Plastic Deformation, MATEC Web of Conferences, EDP Sciences, Vol 21, 2015, p 07001 H. Yu, and Y. Wang, Fracture Performance of High Strength Steels, Aluminium and Magnesium Alloys During Plastic Deformation, MATEC Web of Conferences, EDP Sciences, Vol 21, 2015, p 07001
5.
go back to reference A. Ramazani, H. Quade, M. Abbasi, and U. Prahl, The Effect of Martensite Banding on the Mechanical Properties and Formability of TRIP steels, Mat. Sci. Eng. A, 2015 A. Ramazani, H. Quade, M. Abbasi, and U. Prahl, The Effect of Martensite Banding on the Mechanical Properties and Formability of TRIP steels, Mat. Sci. Eng. A, 2015
6.
go back to reference X. Huang, K. Suzuki, M. Yuasa, and Y. Chino, Effects of Initial Microstructure on the Microstructural Evolution and Stretch Formability of Warm Rolled Mg-3Al-1Zn Alloy Sheets, Mat. Sci. Eng. A, 2013, 587, p 150–160CrossRef X. Huang, K. Suzuki, M. Yuasa, and Y. Chino, Effects of Initial Microstructure on the Microstructural Evolution and Stretch Formability of Warm Rolled Mg-3Al-1Zn Alloy Sheets, Mat. Sci. Eng. A, 2013, 587, p 150–160CrossRef
7.
go back to reference Q. Chen, J. Lin, D. Shu, C. Hu, Z. Zhao, and F. Kang, Microstructure Development, Mechanical Properties and Formability of Mg-Zn-Y-Zr Magnesium Alloy, Mat. Sci. Eng. A, 2012, 554, p 129–141CrossRef Q. Chen, J. Lin, D. Shu, C. Hu, Z. Zhao, and F. Kang, Microstructure Development, Mechanical Properties and Formability of Mg-Zn-Y-Zr Magnesium Alloy, Mat. Sci. Eng. A, 2012, 554, p 129–141CrossRef
8.
go back to reference Y. Chino, K. Sassa, A. Kamiya, and M. Mabuchi, Microstructure and Press Formability of a Cross-Rolled Magnesium Alloy Sheet, Mater. Lett., 2007, 61(7), p 1504–1506CrossRef Y. Chino, K. Sassa, A. Kamiya, and M. Mabuchi, Microstructure and Press Formability of a Cross-Rolled Magnesium Alloy Sheet, Mater. Lett., 2007, 61(7), p 1504–1506CrossRef
9.
go back to reference GB Standard, Sheet Metal Formability and Test Methods—Part 5: Bending Test, GB/T158255, 2008 GB Standard, Sheet Metal Formability and Test MethodsPart 5: Bending Test, GB/T158255, 2008
10.
go back to reference G. Lin, S.J. Hu, and W. Cai, Evaluation of Formability In Bending/Hemming of Aluminum Alloys Using Plane-Strain Tensile Tests, J. Manuf. Sci. Eng., 2009, 131(5), p 051009CrossRef G. Lin, S.J. Hu, and W. Cai, Evaluation of Formability In Bending/Hemming of Aluminum Alloys Using Plane-Strain Tensile Tests, J. Manuf. Sci. Eng., 2009, 131(5), p 051009CrossRef
11.
go back to reference S.K. Paul, Non-linear Correlation Between Uniaxial Tensile Properties and Shear-Edge Hole Expansion Ratio, J. Mater. Eng. Perform., 2014, 23(10), p 3610–3619CrossRef S.K. Paul, Non-linear Correlation Between Uniaxial Tensile Properties and Shear-Edge Hole Expansion Ratio, J. Mater. Eng. Perform., 2014, 23(10), p 3610–3619CrossRef
12.
go back to reference L. Chen, J.K. Kim, S.K. Kim, G.S. Kim, K.G. Chin, and B.C. De Cooman, Stretch—Flangeability of High Mn TWIP Steel, Steel Res. Int., 2010, 81(7), p 552–568CrossRef L. Chen, J.K. Kim, S.K. Kim, G.S. Kim, K.G. Chin, and B.C. De Cooman, Stretch—Flangeability of High Mn TWIP Steel, Steel Res. Int., 2010, 81(7), p 552–568CrossRef
13.
go back to reference M. Stanton, R. Bhattacharya, I. Dargue, R. Aylmore, and G. Williams, Hole Expansion of Aluminum Alloys for the Automotive Industry, The 14th International Esaform Conference On Material Forming: Esaform 2011, Vol 1353, AIP Publishing, 2011, p 1488–1493 M. Stanton, R. Bhattacharya, I. Dargue, R. Aylmore, and G. Williams, Hole Expansion of Aluminum Alloys for the Automotive Industry, The 14th International Esaform Conference On Material Forming: Esaform 2011, Vol 1353, AIP Publishing, 2011, p 1488–1493
14.
go back to reference S.P. Keeler and W.A. Backofen, Plastic Instability and Fracture in Sheets Stretched Over Rigid Punches, Asm. Trans. Q., 1963, 56(1), p 25–48 S.P. Keeler and W.A. Backofen, Plastic Instability and Fracture in Sheets Stretched Over Rigid Punches, Asm. Trans. Q., 1963, 56(1), p 25–48
15.
go back to reference T. Gao, Y. Liu, P. Chen, and Z. Wang, Analysis of Bulging Process of Aluminum Alloy by Overlapping Sheet Metal and Its Formability, Trans. Nonferr. Met. Soc., 2015, 25(4), p 1050–1055CrossRef T. Gao, Y. Liu, P. Chen, and Z. Wang, Analysis of Bulging Process of Aluminum Alloy by Overlapping Sheet Metal and Its Formability, Trans. Nonferr. Met. Soc., 2015, 25(4), p 1050–1055CrossRef
16.
go back to reference M.S. Rashid, Dual Phase Steels, Ann. Rev. Mater. Sci., 1981, 11(1), p 245–266CrossRef M.S. Rashid, Dual Phase Steels, Ann. Rev. Mater. Sci., 1981, 11(1), p 245–266CrossRef
17.
go back to reference J.G. Speer, D.K. Matlock, B.C. De Cooman et al., Carbon Partitioning into Austenite after Martensite Transformation, Acta Mater., 2003, 51(9), p 2611–2622CrossRef J.G. Speer, D.K. Matlock, B.C. De Cooman et al., Carbon Partitioning into Austenite after Martensite Transformation, Acta Mater., 2003, 51(9), p 2611–2622CrossRef
18.
go back to reference J.G. Speer, F.C. Rizzo-Assunção, D.K. Matlock, and D.V. Edmonds, The “Quenching and Partitioning” Process: Background and Recent Progress, Mater. Res., 2005, 8(4), p 417–423CrossRef J.G. Speer, F.C. Rizzo-Assunção, D.K. Matlock, and D.V. Edmonds, The “Quenching and Partitioning” Process: Background and Recent Progress, Mater. Res., 2005, 8(4), p 417–423CrossRef
19.
go back to reference D.V. Edmonds, K. He, F.C. Rizzo, B.C. De Cooman, D.K. Matlock, and J.G. Speer, Quenching and Partitioning Martensite—A Novel Steel Heat Treatment, Mater. Sci. Eng. A, 2006, 438, p 25–34CrossRef D.V. Edmonds, K. He, F.C. Rizzo, B.C. De Cooman, D.K. Matlock, and J.G. Speer, Quenching and Partitioning Martensite—A Novel Steel Heat Treatment, Mater. Sci. Eng. A, 2006, 438, p 25–34CrossRef
20.
go back to reference ISO Standard, Metallic Materials—Tensile Testing—Part 1: Method of Test at Room Temperature, ISO E N. 6892-1, 2009 ISO Standard, Metallic MaterialsTensile TestingPart 1: Method of Test at Room Temperature, ISO E N. 6892-1, 2009
21.
go back to reference ISO Standard, Metallic Materials—Sheet And Strip—Determination of Forming Limit Curves—Part 2: Determination of Forming Limit Curves in the Laboratory, International Organization for Standardization 20087, ISO/DIS 12004-2, 2008 ISO Standard, Metallic MaterialsSheet And StripDetermination of Forming Limit CurvesPart 2: Determination of Forming Limit Curves in the Laboratory, International Organization for Standardization 20087, ISO/DIS 12004-2, 2008
22.
go back to reference L. Zhang, J. Lin, L. Sun, C. Wang, and L. Wang, A New Method for Determination of Forming Limit Diagram Based on Digital Image Correlation, SAE Technical Paper, 2013 L. Zhang, J. Lin, L. Sun, C. Wang, and L. Wang, A New Method for Determination of Forming Limit Diagram Based on Digital Image Correlation, SAE Technical Paper, 2013
23.
go back to reference P.L. Charpentier, Influence of Punch Curvature on the Stretching Limits of Sheet Steel, Metall. Mater. Trans. A, 1975, 6(8), p 1665–1669CrossRef P.L. Charpentier, Influence of Punch Curvature on the Stretching Limits of Sheet Steel, Metall. Mater. Trans. A, 1975, 6(8), p 1665–1669CrossRef
24.
go back to reference M.R. Tharrett, and T.B. Stoughton, Stretch-Bend Forming Limits of 1008 AK Steel, SAE Technical Paper, 2003 M.R. Tharrett, and T.B. Stoughton, Stretch-Bend Forming Limits of 1008 AK Steel, SAE Technical Paper, 2003
25.
go back to reference F.D. Fischer, G. Reisner, E. Werner, K. Tanaka, G. Cailletaud, and T. Antretter, A New View on Transformation Induced Plasticity (TRIP), Int. J. Plast., 2000, 16(7), p 723–748CrossRef F.D. Fischer, G. Reisner, E. Werner, K. Tanaka, G. Cailletaud, and T. Antretter, A New View on Transformation Induced Plasticity (TRIP), Int. J. Plast., 2000, 16(7), p 723–748CrossRef
26.
go back to reference P.J. Jacques, Transformation-Induced Plasticity for High Strength Formable Steels, Curr. Opin. Solid State Mater. Sci., 2004, 8(3), p 259–265CrossRef P.J. Jacques, Transformation-Induced Plasticity for High Strength Formable Steels, Curr. Opin. Solid State Mater. Sci., 2004, 8(3), p 259–265CrossRef
27.
go back to reference M. Koyama, T. Sawaguchi, T. Lee, C.S. Lee, and K. Tsuzaki, Work Hardening Associated With ɛ-Martensitic Transformation, Deformation Twinning and Dynamic Strain Aging in Fe-17Mn-0.6C and Fe-17Mn-0.8C TWIP Steels, Mat. Sci. Eng. A, 2011, 528(24), p 7310–7316CrossRef M. Koyama, T. Sawaguchi, T. Lee, C.S. Lee, and K. Tsuzaki, Work Hardening Associated With ɛ-Martensitic Transformation, Deformation Twinning and Dynamic Strain Aging in Fe-17Mn-0.6C and Fe-17Mn-0.8C TWIP Steels, Mat. Sci. Eng. A, 2011, 528(24), p 7310–7316CrossRef
28.
go back to reference ASTM Standard, Standard Test Method for Determining Volume Fraction by Systematic Manual Point Count, ASTM E562-08, 2008 ASTM Standard, Standard Test Method for Determining Volume Fraction by Systematic Manual Point Count, ASTM E562-08, 2008
29.
go back to reference C. Thomser, V. Uthaisangsuk, and W. Bleck, Influence of Martensite Distribution on the Mechanical Properties of Dual Phase Steels: Experiments and Simulation, Steel Res. Int., 2009, 80(8), p 582–587 C. Thomser, V. Uthaisangsuk, and W. Bleck, Influence of Martensite Distribution on the Mechanical Properties of Dual Phase Steels: Experiments and Simulation, Steel Res. Int., 2009, 80(8), p 582–587
30.
go back to reference T.K. Shan, S.H. Li, W.G. Zhang, and Z.G. Xu, Prediction of Martensitic Transformation and Deformation Behavior in the TRIP Steel Sheet Forming, Mater. Des., 2008, 29(9), p 1810–1816CrossRef T.K. Shan, S.H. Li, W.G. Zhang, and Z.G. Xu, Prediction of Martensitic Transformation and Deformation Behavior in the TRIP Steel Sheet Forming, Mater. Des., 2008, 29(9), p 1810–1816CrossRef
31.
go back to reference H. Yu and B. Li, Influences of Deformation Mode on Transformation-Induced Plasticity Effect of TRIP Steel During Plastic Deformation, Sciencepaper Online, 2010, 8, p 015 H. Yu and B. Li, Influences of Deformation Mode on Transformation-Induced Plasticity Effect of TRIP Steel During Plastic Deformation, Sciencepaper Online, 2010, 8, p 015
32.
go back to reference C.G. Lee, S.J. Kim, T.H. Lee, and S. Lee, Effects of Volume Fraction and Stability of Retained Austenite on Formability in a 0.1 C-1.5 Si-1.5 Mn-0.5 Cu TRIP-Aided Cold-Rolled Steel Sheet, Mater. Sci. Eng. A, 2004, 371(1), p 16–23CrossRef C.G. Lee, S.J. Kim, T.H. Lee, and S. Lee, Effects of Volume Fraction and Stability of Retained Austenite on Formability in a 0.1 C-1.5 Si-1.5 Mn-0.5 Cu TRIP-Aided Cold-Rolled Steel Sheet, Mater. Sci. Eng. A, 2004, 371(1), p 16–23CrossRef
33.
go back to reference O. Matsumura, Y. Sakuma, Y. Ishii, and J. Zhao, Effect of Retained Austenite on Formability of High Strength Sheet Steels, ISIJ Int., 1992, 32(10), p 1110–1116CrossRef O. Matsumura, Y. Sakuma, Y. Ishii, and J. Zhao, Effect of Retained Austenite on Formability of High Strength Sheet Steels, ISIJ Int., 1992, 32(10), p 1110–1116CrossRef
34.
go back to reference C. Shanta, N. Harsh, M. Bhargava, P. Prita, and M. Sushil, Development of Materials Model Based on Microstructure Evolution for Formability Analysis of low-Ni Austenitic Stainless Steel, IOP Conference Series: Materials Science and Engineering, Vol 82, IOP Publishing, 2015, p 012017 C. Shanta, N. Harsh, M. Bhargava, P. Prita, and M. Sushil, Development of Materials Model Based on Microstructure Evolution for Formability Analysis of low-Ni Austenitic Stainless Steel, IOP Conference Series: Materials Science and Engineering, Vol 82, IOP Publishing, 2015, p 012017
Metadata
Title
Formability Evaluation of Sheet Metals Based on Global Strain Distribution
Authors
Ling Zhang
Jianping Lin
Junying Min
You Ye
Liugen Kang
Publication date
01-06-2016
Publisher
Springer US
Published in
Journal of Materials Engineering and Performance / Issue 6/2016
Print ISSN: 1059-9495
Electronic ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-016-2054-z

Other articles of this Issue 6/2016

Journal of Materials Engineering and Performance 6/2016 Go to the issue

Premium Partners