Skip to main content
Top
Published in: Journal of Materials Science: Materials in Electronics 7/2017

20-12-2016

Formation mechanism and kinetic analysis of the morphology of Cu6Sn5 in the spherical solder joints at the Sn/Cu liquid–solid interface during soldering cooling stage

Authors: Bingfeng Guo, Haitao Ma, Chengrong Jiang, Yunpeng Wang, Anil Kunwar, Ning Zhao, Mingliang Huang

Published in: Journal of Materials Science: Materials in Electronics | Issue 7/2017

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The morphology evolution mechanism and dynamics of Cu6Sn5 intermetallic compound (IMC) in cooling stage were studied by using pure Sn solder ball with a diameter of 1 mm to react with polycrystalline Cu substrate and form Cu6Sn5. A nearly uniform height of the scallop-like IMC grains is attained by using high pressurized air to remove excess liquid solder (that is, for acquisition of the IMC morphology identical to heat preservation stage). But the morphology evolution of IMC in the solder joint was greatly affected by the cooling phase of interfacial reaction, and IMC morphology partition phenomenon was found in the spherical joints. The IMC at the edge portion characterized scallop morphology whereas the central portion possessed prismatic shape morphology. Finite element simulation for the temperature field distribution in the solder ball-substrate domain showed temperature gradient in solder’s internal core was significantly greater than that at the edge. Using this simulation results with kinetic equations, it could be understood that the central core region is conducive to the formation of small plane structure morphology. These small planes would eventually form the prismatic morphology IMC in the central region. As the soldering temperature increases, the area ratio of IMC with scallop-like morphology to the prismatic shaped IMC reduced from 0.2178 down to 0.1680. Moreover, for an elevated temperature of 300 °C, it is observed that the central region IMC (with prismatic structure) grows upto an average thickness of 7.7245 μm, whereas the thickness value for scalloped IMC at the edge portion is around 4.556 μm.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
5.
go back to reference H. Ardebili, M. Pecht, Electronic Packaging Technology and Reliability (Chemical Industry Press, Beijing, 2012), pp. 5–8 H. Ardebili, M. Pecht, Electronic Packaging Technology and Reliability (Chemical Industry Press, Beijing, 2012), pp. 5–8
6.
go back to reference D.K. Shangguan, Lead-free Solder Interconnects and Reliability (Publishing House of Electronics Industry, Beijing, 2008), pp. 60–66 D.K. Shangguan, Lead-free Solder Interconnects and Reliability (Publishing House of Electronics Industry, Beijing, 2008), pp. 60–66
7.
go back to reference M. Yang, M.M. Li, L. Wang, Y. Fu, J. Kim, J. Electron. Mater. 40, 176–188 (2001)CrossRef M. Yang, M.M. Li, L. Wang, Y. Fu, J. Kim, J. Electron. Mater. 40, 176–188 (2001)CrossRef
8.
go back to reference H.T. Lee, H.M. Chen, H.M. Jao, T.L. Liao, Mater. Sci. Eng. A358, 134–141 (2003) H.T. Lee, H.M. Chen, H.M. Jao, T.L. Liao, Mater. Sci. Eng. A358, 134–141 (2003)
9.
go back to reference H.T. Ma, L. Qu, M.L. Huang, L.Y. Gu, N. Zhao, L. Wang, J. Alloys Compd. 537, 286–290 (2012)CrossRef H.T. Ma, L. Qu, M.L. Huang, L.Y. Gu, N. Zhao, L. Wang, J. Alloys Compd. 537, 286–290 (2012)CrossRef
10.
go back to reference L. Qu, N. Zhao, H.J. Zhao, M.L. Huang, H.T. Ma, Scr. Mater. 72–73, 43–46 (2014)CrossRef L. Qu, N. Zhao, H.J. Zhao, M.L. Huang, H.T. Ma, Scr. Mater. 7273, 43–46 (2014)CrossRef
11.
go back to reference N. Yan, Physical Basis of Crystal Growth (Shanghai Science and Technology, Shanghai, 1982), pp. 189–451 N. Yan, Physical Basis of Crystal Growth (Shanghai Science and Technology, Shanghai, 1982), pp. 189–451
12.
go back to reference K. Zhang, L. Zhang, Crystal Growth of Science and Technology (Science Press, Beijing, 1997), p. 39 K. Zhang, L. Zhang, Crystal Growth of Science and Technology (Science Press, Beijing, 1997), p. 39
13.
go back to reference G. Hu, Material Science Basis (Profile of Shanghai Jiao Tong University Press, Shanghai, 2001), pp. 199–224 G. Hu, Material Science Basis (Profile of Shanghai Jiao Tong University Press, Shanghai, 2001), pp. 199–224
14.
go back to reference M.V. Peralta-Martinez, W.A. Wakeham, Thermal conductivity of liquid tin and indium. Int. J. Thermophys. 22, 395–403 (2001)CrossRef M.V. Peralta-Martinez, W.A. Wakeham, Thermal conductivity of liquid tin and indium. Int. J. Thermophys. 22, 395–403 (2001)CrossRef
15.
16.
go back to reference M. Yang, Y. Cao, S.M. Joo, H.T. Chen, X. Ma, M.Y. Li, J. Alloys Compd. 582, 688–695 (2014)CrossRef M. Yang, Y. Cao, S.M. Joo, H.T. Chen, X. Ma, M.Y. Li, J. Alloys Compd. 582, 688–695 (2014)CrossRef
17.
go back to reference X.Y. Liu, M.L. Huang, Y.H. Zhao, C.M.L. Wu, L. Wang, J. Alloys Compd. 492, 433–438 (2010)CrossRef X.Y. Liu, M.L. Huang, Y.H. Zhao, C.M.L. Wu, L. Wang, J. Alloys Compd. 492, 433–438 (2010)CrossRef
Metadata
Title
Formation mechanism and kinetic analysis of the morphology of Cu6Sn5 in the spherical solder joints at the Sn/Cu liquid–solid interface during soldering cooling stage
Authors
Bingfeng Guo
Haitao Ma
Chengrong Jiang
Yunpeng Wang
Anil Kunwar
Ning Zhao
Mingliang Huang
Publication date
20-12-2016
Publisher
Springer US
Published in
Journal of Materials Science: Materials in Electronics / Issue 7/2017
Print ISSN: 0957-4522
Electronic ISSN: 1573-482X
DOI
https://doi.org/10.1007/s10854-016-6200-z

Other articles of this Issue 7/2017

Journal of Materials Science: Materials in Electronics 7/2017 Go to the issue