Skip to main content
Top
Published in: Bulletin of Engineering Geology and the Environment 2/2021

19-08-2020 | Original Paper

Formation mechanism and risk assessment of unstable rock mass at the Yumenkou tunnel entrance, Shanxi province, China

Authors: Zhong Fu Wang, Si Ming He, Han Dong Liu, Dong Dong Li

Published in: Bulletin of Engineering Geology and the Environment | Issue 2/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The Yumenkou tunnel is located on the left bank of the Yellow River on the border between Shanxi and Shaanxi provinces, China. It is connected to the Longmen Yellow River Bridge of the Menghua railway. Many unstable rock masses have developed on the cliff above the tunnel entrance, threatening the construction and operation of the tunnel and the bridge. Based on a high-precision three-dimensional (3D) digital terrain model obtained by unmanned air vehicle (UAV) photogrammetry, information of the structural surface which controls the stability of the rock mass in the study area was obtained by manual identification and extraction. We combined the UAV imaging with field survey data to obtain the spatial distribution, shape, scale, and potential failure modes of the unstable rock masses. A 3D numerical model of the unstable rock mass and surface morphology was constructed using a 3D discrete element method. The 3D path and impact energy of the moving unstable rock mass were analyzed. Based on the lithology, topography, structural surface, and other factors, three types of potential rock failure modes were identified in the study area: sliding, toppling, and falling. Differential weathering and the structure plane and stress-unloading cracks are two main factors affecting the stability of the unstable rock mass. According to the result of 3D discrete element method, once the unstable rock masses fail, about 50% of which might hit the portal of the tunnel, and the maximum rebound height at the portal would be about 1.2 m. To prevent such catastrophic failure, active protective net was recommend at each unstable rock zone, and retaining wall with a height of 5 m behind the portal. The results of this study confirm the effectiveness of a UAV photogrammetry-based method for reliable and cost-effective engineering geological surveying of unstable rock mass in complex terrain.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Bellian JA, Kerans C, Jennette DC (2005) Digital outcrop models: applications of terrestrial scanning lidar technology in stratigraphic modeling. J Sediment Res 75(2):166–176CrossRef Bellian JA, Kerans C, Jennette DC (2005) Digital outcrop models: applications of terrestrial scanning lidar technology in stratigraphic modeling. J Sediment Res 75(2):166–176CrossRef
go back to reference Bemis SP, Micklethwaite S, Turner D et al (2014) Ground-based and UAV-based photogrammetry: a multi-scale, high-resolution mapping tool for structural geology and paleoseismology. J Struct Geol 69(2014):163–178CrossRef Bemis SP, Micklethwaite S, Turner D et al (2014) Ground-based and UAV-based photogrammetry: a multi-scale, high-resolution mapping tool for structural geology and paleoseismology. J Struct Geol 69(2014):163–178CrossRef
go back to reference Buyer A, Schubert W (2017) Calculation the spacing of discontinuities from 3D point clouds. Procedia Eng 191:270–278CrossRef Buyer A, Schubert W (2017) Calculation the spacing of discontinuities from 3D point clouds. Procedia Eng 191:270–278CrossRef
go back to reference Fekete S, Diederichs M (2013) Integration of three-dimensional laser scanning with discontinuum modelling for stability analysis of tunnels in blocky rockmasses. Int J Rock Mech Min Sci 57(1):11–23CrossRef Fekete S, Diederichs M (2013) Integration of three-dimensional laser scanning with discontinuum modelling for stability analysis of tunnels in blocky rockmasses. Int J Rock Mech Min Sci 57(1):11–23CrossRef
go back to reference Fekete S, Diederichs M, Lato M (2010) Geotechnical and operational applications for 3-dimensional laser scanning in drill and blast tunnels. Tunn Undergr Space Technol 25(5):614–628CrossRef Fekete S, Diederichs M, Lato M (2010) Geotechnical and operational applications for 3-dimensional laser scanning in drill and blast tunnels. Tunn Undergr Space Technol 25(5):614–628CrossRef
go back to reference Giani GP (1992) Rock slope stability analysis. A. A. Balkema, Rotterdam, p 361 Giani GP (1992) Rock slope stability analysis. A. A. Balkema, Rotterdam, p 361
go back to reference Gomes RK, de Oliveira LP, Gonzaga L Jr et al (2016) An algorithm for automatic detection and orientation estimation of planar structures in LiDAR-scanned outcrops. Comput Geosci 90(2016):170–178CrossRef Gomes RK, de Oliveira LP, Gonzaga L Jr et al (2016) An algorithm for automatic detection and orientation estimation of planar structures in LiDAR-scanned outcrops. Comput Geosci 90(2016):170–178CrossRef
go back to reference Guo J, Liu S, Zhang P et al (2017) Towards semi-automatic rock mass discontinuity orientation and set analysis from 3D point clouds[J]. Comput Geosci 103(2017):164–172CrossRef Guo J, Liu S, Zhang P et al (2017) Towards semi-automatic rock mass discontinuity orientation and set analysis from 3D point clouds[J]. Comput Geosci 103(2017):164–172CrossRef
go back to reference Itasca C (1999) PFC 3D-User manual. Itasca Consulting Group, Minneapolis Itasca C (1999) PFC 3D-User manual. Itasca Consulting Group, Minneapolis
go back to reference Lu CY, Tang CL, Chan YC et al (2014) Forecasting landslide hazard by the 3D discrete element method: a case study of the unstable slope in the Lushan hot spring district, central Taiwan. Eng Geol 183(31):14–30CrossRef Lu CY, Tang CL, Chan YC et al (2014) Forecasting landslide hazard by the 3D discrete element method: a case study of the unstable slope in the Lushan hot spring district, central Taiwan. Eng Geol 183(31):14–30CrossRef
go back to reference Menegoni N, Giordan D, Perotti C et al (2019) Detection and geometric characterization of rock mass discontinuities using a 3D high-resolution digital outcrop model generated from RPAS imagery–Ormea rock slope, Italy. Eng Geol 252(2019):145–163CrossRef Menegoni N, Giordan D, Perotti C et al (2019) Detection and geometric characterization of rock mass discontinuities using a 3D high-resolution digital outcrop model generated from RPAS imagery–Ormea rock slope, Italy. Eng Geol 252(2019):145–163CrossRef
go back to reference Poisel R, Preh A (2008) 3D landslide run out modelling using the particle flow code PFC3D. In: International Conference on landslide and Engineering Slope Poisel R, Preh A (2008) 3D landslide run out modelling using the particle flow code PFC3D. In: International Conference on landslide and Engineering Slope
go back to reference Riquelme AJ, Abellán A, Tomás R (2015) Discontinuity spacing analysis in rock masses using 3D point clouds. Eng Geol 195:185–195CrossRef Riquelme AJ, Abellán A, Tomás R (2015) Discontinuity spacing analysis in rock masses using 3D point clouds. Eng Geol 195:185–195CrossRef
go back to reference Slob S, Hack R, van Knapen B et al (2004) Automated identification and characterization of discontinuity sets in outcropping rock masses using 3D terrestrial laser scan survey techniques. In: Proceedings of the ISRM regional symposium Eurock, 2004. pp 439–443 Slob S, Hack R, van Knapen B et al (2004) Automated identification and characterization of discontinuity sets in outcropping rock masses using 3D terrestrial laser scan survey techniques. In: Proceedings of the ISRM regional symposium Eurock, 2004. pp 439–443
go back to reference Spreafico MC, Francioni M, Cervi F et al (2016) Back analysis of the 2014 San Leo landslide using combined terrestrial laser scanning and 3D distinct element modelling. Rock Mech Rock Eng 49(6):2235–2251CrossRef Spreafico MC, Francioni M, Cervi F et al (2016) Back analysis of the 2014 San Leo landslide using combined terrestrial laser scanning and 3D distinct element modelling. Rock Mech Rock Eng 49(6):2235–2251CrossRef
go back to reference Sturzenegger M, Stead D (2009) Close-range terrestrial digital photogrammetry and terrestrial laser scanning for discontinuity characterization on rock cuts. Eng Geol 106:163–182CrossRef Sturzenegger M, Stead D (2009) Close-range terrestrial digital photogrammetry and terrestrial laser scanning for discontinuity characterization on rock cuts. Eng Geol 106:163–182CrossRef
go back to reference Su O, Akcin NA (2011) Numerical simulation of rock cutting using the discrete element method. Int J Rock Mech Min Sci 48(3):434–442CrossRef Su O, Akcin NA (2011) Numerical simulation of rock cutting using the discrete element method. Int J Rock Mech Min Sci 48(3):434–442CrossRef
go back to reference Tang CL, Hu JC, Lin ML et al (2009) The Tsaoling landslide triggered by the Chi-Chi earthquake, Taiwan: insights from a discrete element simulation. Eng Geol 106(2009):1–19CrossRef Tang CL, Hu JC, Lin ML et al (2009) The Tsaoling landslide triggered by the Chi-Chi earthquake, Taiwan: insights from a discrete element simulation. Eng Geol 106(2009):1–19CrossRef
go back to reference Tannant D, Giordan D, Morgenroth J (2017) Characterization and analysis of a translational rockslide on a stepped-planar slip surface. Eng Geol 220:144–151CrossRef Tannant D, Giordan D, Morgenroth J (2017) Characterization and analysis of a translational rockslide on a stepped-planar slip surface. Eng Geol 220:144–151CrossRef
go back to reference Turner D, Lucieer A, Wallace L (2014) Direct georeferencing of ultrahigh-resolution UAV imagery. IEEE Trans Geosci Remote Sens 52(5):2738–2745CrossRef Turner D, Lucieer A, Wallace L (2014) Direct georeferencing of ultrahigh-resolution UAV imagery. IEEE Trans Geosci Remote Sens 52(5):2738–2745CrossRef
go back to reference Xiu-jun Dong (2007) Application of 3D laser scanning technology to obtain high precision DTM [J]. Journal of Engineering Geology 03:428-432 Xiu-jun Dong (2007) Application of 3D laser scanning technology to obtain high precision DTM [J]. Journal of Engineering Geology 03:428-432
go back to reference Zhang P, Du K, Tannant DD et al (2018) Automated method for extracting and analysing the rock discontinuities from point clouds based on digital surface model of rock mass. Eng Geol 239(2018):109–118CrossRef Zhang P, Du K, Tannant DD et al (2018) Automated method for extracting and analysing the rock discontinuities from point clouds based on digital surface model of rock mass. Eng Geol 239(2018):109–118CrossRef
Metadata
Title
Formation mechanism and risk assessment of unstable rock mass at the Yumenkou tunnel entrance, Shanxi province, China
Authors
Zhong Fu Wang
Si Ming He
Han Dong Liu
Dong Dong Li
Publication date
19-08-2020
Publisher
Springer Berlin Heidelberg
Published in
Bulletin of Engineering Geology and the Environment / Issue 2/2021
Print ISSN: 1435-9529
Electronic ISSN: 1435-9537
DOI
https://doi.org/10.1007/s10064-020-01953-1

Other articles of this Issue 2/2021

Bulletin of Engineering Geology and the Environment 2/2021 Go to the issue