Skip to main content
Top
Published in: Journal of Materials Science 16/2016

18-05-2016 | Original Paper

Formation mechanisms and evolution of precipitate-free zones at grain boundaries in an Al–Cu–Mg–Mn alloy during homogenisation

Authors: Y. Q. Chen, S. P. Pan, S. W. Tang, W. H. Liu, C. P. Tang, F. Y. Xu

Published in: Journal of Materials Science | Issue 16/2016

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Solute and vacancy depletion have long been investigated to reveal the formation mechanism of grain boundary precipitate-free zones (GB-PFZ) during ageing, yet there is no conclusive explanation due to the simultaneous appearance of the two in GB-PFZ. In this study, the evolution of GB-PFZs and solute distributions in the vicinity of grain boundaries (GBs) were studied during the homogenisation of an Al–Cu–Mg–Mn alloy using transmission electron microscopy, high-angle annular dark field scanning transmission electron microscopy, and energy-dispersive X-ray spectroscopy. Results indicated that the evolution of GB-PFZ during homogenisation can be divided into the following three stages: Stage I, formation and recession of GB-PFZ; Stage II, absence of GB-PFZ, and Stage III, the reappearance and broadening of GB-PFZ. The results also revealed that the GB-PFZ in Stage I is totally devoid of solute depletion and its formation can be attributed to vacancy depletion alone. The GB-PFZ at Stage III solely caused by solute depletion and excludes vacancy depletion.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Chen JH, Costan E, Huis MA, Xu Q, Zandbergen HW (2006) Atomic-pillar-based nanoprecipitates strengthen AlMgSi alloys. Science 312:416–419CrossRef Chen JH, Costan E, Huis MA, Xu Q, Zandbergen HW (2006) Atomic-pillar-based nanoprecipitates strengthen AlMgSi alloys. Science 312:416–419CrossRef
2.
go back to reference Chrominski W, Lewandowska M (2016) Precipitation phenomena in ultrafine grained Al–Mg–Si alloy with heterogeneous microstructure. Acta Mater 103:547–557CrossRef Chrominski W, Lewandowska M (2016) Precipitation phenomena in ultrafine grained Al–Mg–Si alloy with heterogeneous microstructure. Acta Mater 103:547–557CrossRef
3.
go back to reference Lin YC, Zhang J, Liu G, Liang Y (2015) Effects of pre-treatments on aging precipitates and corrosion resistance of a creep-aged Al–Zn–Mg–Cu alloy. Mater Des 83:866–875 Lin YC, Zhang J, Liu G, Liang Y (2015) Effects of pre-treatments on aging precipitates and corrosion resistance of a creep-aged Al–Zn–Mg–Cu alloy. Mater Des 83:866–875
4.
go back to reference Liu SD, Chen B, Li CB, Dai Y, Deng YL, Zhang XM (2015) Mechanism of low exfoliation corrosion resistance due to slow quenching in high strength aluminium alloy. Corros Sci 91:203–212CrossRef Liu SD, Chen B, Li CB, Dai Y, Deng YL, Zhang XM (2015) Mechanism of low exfoliation corrosion resistance due to slow quenching in high strength aluminium alloy. Corros Sci 91:203–212CrossRef
5.
go back to reference Liu H, Qiao X, Chen Z, Jiang R, Li X (2011) Effect of ultrasonic vibration during casting on microstructures and properties of 7050 aluminum alloy. J Mater Sci 46:3923–3927CrossRef Liu H, Qiao X, Chen Z, Jiang R, Li X (2011) Effect of ultrasonic vibration during casting on microstructures and properties of 7050 aluminum alloy. J Mater Sci 46:3923–3927CrossRef
6.
go back to reference Lütjering G, Albrecht J, Sauer C, Krull T (2007) The influence of soft, precipitate-free zones at grain boundaries in Ti and Al alloys on their fatigue and fracture behavior. Mater Sci Eng, A 468–470:201–209CrossRef Lütjering G, Albrecht J, Sauer C, Krull T (2007) The influence of soft, precipitate-free zones at grain boundaries in Ti and Al alloys on their fatigue and fracture behavior. Mater Sci Eng, A 468–470:201–209CrossRef
7.
go back to reference Xu DK, Rometsch PA, Li L, Shen LM, Birbilis N (2014) Critical conditions for the occurrence of quench cracking in an Al–Zn–Mg–Cu alloy. J Mater Sci 49:4687–4697CrossRef Xu DK, Rometsch PA, Li L, Shen LM, Birbilis N (2014) Critical conditions for the occurrence of quench cracking in an Al–Zn–Mg–Cu alloy. J Mater Sci 49:4687–4697CrossRef
8.
go back to reference Lin YC, Xia Y, Jiang Y, Zhou H, Li L (2013) Precipitation hardening of 2024-T3 aluminum alloy during creep aging. Mater Sci Eng, A 565:420–429CrossRef Lin YC, Xia Y, Jiang Y, Zhou H, Li L (2013) Precipitation hardening of 2024-T3 aluminum alloy during creep aging. Mater Sci Eng, A 565:420–429CrossRef
9.
go back to reference Morgeneyer TF, Starink MJ, Wang SC, Sinclair I (2008) Quench sensitivity of toughness in an Al alloy: direct observation and analysis of failure initiation at the precipitate-free zone. Acta Mater 56:2872–2884CrossRef Morgeneyer TF, Starink MJ, Wang SC, Sinclair I (2008) Quench sensitivity of toughness in an Al alloy: direct observation and analysis of failure initiation at the precipitate-free zone. Acta Mater 56:2872–2884CrossRef
10.
go back to reference Krol T, Baither D, Nembach E (2004) The formation of precipitate free zones along grain boundaries in a superalloy and the ensuing effects on its plastic deformation. Acta Mater 52:2095–2108CrossRef Krol T, Baither D, Nembach E (2004) The formation of precipitate free zones along grain boundaries in a superalloy and the ensuing effects on its plastic deformation. Acta Mater 52:2095–2108CrossRef
11.
go back to reference Okuda H, Ochiai S (2004) The effects of solute and vacancy depletion on the formation of precipitation-free zone in a model binary alloy examined by a Monte Carlo simulation. Mater Trans 45:1455–1460CrossRef Okuda H, Ochiai S (2004) The effects of solute and vacancy depletion on the formation of precipitation-free zone in a model binary alloy examined by a Monte Carlo simulation. Mater Trans 45:1455–1460CrossRef
12.
go back to reference Hirosawa S, Oguri Y, Sato T (2005) Experimental and computational investigation of formation of precipitate free zones in an Al–Cu alloy. Mater Trans 46:1230–1234CrossRef Hirosawa S, Oguri Y, Sato T (2005) Experimental and computational investigation of formation of precipitate free zones in an Al–Cu alloy. Mater Trans 46:1230–1234CrossRef
13.
go back to reference Raghavan M (1980) Microanalysis of precipitate free zones (PFZ) in Al–Zn–Mg and Cu–Ni–Nb alloys. Metall Trans A 11:993–999CrossRef Raghavan M (1980) Microanalysis of precipitate free zones (PFZ) in Al–Zn–Mg and Cu–Ni–Nb alloys. Metall Trans A 11:993–999CrossRef
14.
go back to reference Shastry CR, Judd G (1972) An electron microprobe analysis of solute segregation near grain boundaries in an Al–Zn–Mg alloy. Metall Trans 3:779–782CrossRef Shastry CR, Judd G (1972) An electron microprobe analysis of solute segregation near grain boundaries in an Al–Zn–Mg alloy. Metall Trans 3:779–782CrossRef
15.
go back to reference Ogura T, Hirosawa S, Sato T (2004) Quantitative characterization of precipitate free zones in Al–Zn–Mg(–Ag) alloys by microchemical analysis and nanoindentation measurement. Sci Technol Adv Mater 5:491–496CrossRef Ogura T, Hirosawa S, Sato T (2004) Quantitative characterization of precipitate free zones in Al–Zn–Mg(–Ag) alloys by microchemical analysis and nanoindentation measurement. Sci Technol Adv Mater 5:491–496CrossRef
16.
go back to reference Hirosawa S, Sato T, Kamio A, Flower HM (2000) Classification of the role of microalloy elements in phase decomposition of Al based alloys. Acta Mater 48:1797–1806CrossRef Hirosawa S, Sato T, Kamio A, Flower HM (2000) Classification of the role of microalloy elements in phase decomposition of Al based alloys. Acta Mater 48:1797–1806CrossRef
17.
go back to reference Tolley A, Mitlin D, Radmilovic V, Dahmen U (2005) Transmission electron microscopy analysis of grain boundary precipitate-free-zones (PFZs) in an AlCuSiGe alloy. Mater Sci Eng, A 412:204–213CrossRef Tolley A, Mitlin D, Radmilovic V, Dahmen U (2005) Transmission electron microscopy analysis of grain boundary precipitate-free-zones (PFZs) in an AlCuSiGe alloy. Mater Sci Eng, A 412:204–213CrossRef
18.
go back to reference Okuda H, Ochiai S (2005) A Monte Carlo simulation on the PFZ microstructures in Al-based alloys during multistep annealing. Mater Sci Forum 475–479:937–940CrossRef Okuda H, Ochiai S (2005) A Monte Carlo simulation on the PFZ microstructures in Al-based alloys during multistep annealing. Mater Sci Forum 475–479:937–940CrossRef
19.
go back to reference Starink MJ, Gregson PJ (1996) S′ and δ′ phase precipitation in SiCp reinforced A1-1.2 wt%Cu -1 wt% Mg-x Li alloys. Mater Sci Eng, A 211:54–65CrossRef Starink MJ, Gregson PJ (1996) S′ and δ′ phase precipitation in SiCp reinforced A1-1.2 wt%Cu -1 wt% Mg-x Li alloys. Mater Sci Eng, A 211:54–65CrossRef
20.
go back to reference Starink MJ, Wang P, Sinclair I, Gregson PJ (1999) Microstrucure and strengthening of Al–Li–Cu–Mg alloys and MMCs: II. Modelling of yield strength. Acta Mater 47:3855–3868CrossRef Starink MJ, Wang P, Sinclair I, Gregson PJ (1999) Microstrucure and strengthening of Al–Li–Cu–Mg alloys and MMCs: II. Modelling of yield strength. Acta Mater 47:3855–3868CrossRef
21.
go back to reference Cai M, Robson JD, Lorimer GW (2007) Simulation and control of dispersoids and dispersoid-free zones during homogenizing an AlMgSi alloy. Scripta Mater 57:603–606CrossRef Cai M, Robson JD, Lorimer GW (2007) Simulation and control of dispersoids and dispersoid-free zones during homogenizing an AlMgSi alloy. Scripta Mater 57:603–606CrossRef
22.
go back to reference Gandin CA, Jacot A (2007) Modeling of precipitate-free zone formed upon homogenization in a multi-component alloy. Acta Mater 55:2539–2553CrossRef Gandin CA, Jacot A (2007) Modeling of precipitate-free zone formed upon homogenization in a multi-component alloy. Acta Mater 55:2539–2553CrossRef
23.
go back to reference Chen YQ, Yi DQ, Jiang Y, Wang B, Liu HQ (2013) Concurrent formation of two different type precipitation-free zones during the initial stage of homogenization. Philos Mag 93:2269–2278CrossRef Chen YQ, Yi DQ, Jiang Y, Wang B, Liu HQ (2013) Concurrent formation of two different type precipitation-free zones during the initial stage of homogenization. Philos Mag 93:2269–2278CrossRef
24.
go back to reference Park JK, Ardell AJ (1992) Solute-enriched surface layers and X-ray microanalysis of thin foils of a commercial aluminium alloy. J Microsc 165:301–309CrossRef Park JK, Ardell AJ (1992) Solute-enriched surface layers and X-ray microanalysis of thin foils of a commercial aluminium alloy. J Microsc 165:301–309CrossRef
25.
go back to reference Lorimer GW, Cliff G, Clark JN (1976) Developments in electron microscopy and analysis. Academic Press, London Lorimer GW, Cliff G, Clark JN (1976) Developments in electron microscopy and analysis. Academic Press, London
26.
go back to reference Xie FY, Kraft T, Zuo Y, Moon CH, Chang YA (1999) Microstructure and microsegregation in Al rich Al–Cu–Mg alloys. Acta Mater 47:489–500CrossRef Xie FY, Kraft T, Zuo Y, Moon CH, Chang YA (1999) Microstructure and microsegregation in Al rich Al–Cu–Mg alloys. Acta Mater 47:489–500CrossRef
27.
go back to reference Norman AF, Hyde K, Costello F, Thompson S, Birley S, Prangnell PB (2003) Examination of the effect of Sc on 2000 and 7000 series aluminium alloy castings: for improvements in fusion welding. Mater Sci Eng, A 354:188–198CrossRef Norman AF, Hyde K, Costello F, Thompson S, Birley S, Prangnell PB (2003) Examination of the effect of Sc on 2000 and 7000 series aluminium alloy castings: for improvements in fusion welding. Mater Sci Eng, A 354:188–198CrossRef
28.
go back to reference McPhee WAG, Schaffer GB, Drennan J (2003) The effect of iron on liquid film migration and sintering of an Al–Cu–Mg alloy. Acta Mater 51:3701–3712CrossRef McPhee WAG, Schaffer GB, Drennan J (2003) The effect of iron on liquid film migration and sintering of an Al–Cu–Mg alloy. Acta Mater 51:3701–3712CrossRef
29.
go back to reference Wang SB, Chen JH, Yin MJ, Liu ZR, Yuan DW, Liu JZ, Liu CH, Wu CL (2012) Double-atomic-wall-based dynamic precipitates of the early-stage S-phase in AlCuMg alloys. Acta Mater 60:6573–6580CrossRef Wang SB, Chen JH, Yin MJ, Liu ZR, Yuan DW, Liu JZ, Liu CH, Wu CL (2012) Double-atomic-wall-based dynamic precipitates of the early-stage S-phase in AlCuMg alloys. Acta Mater 60:6573–6580CrossRef
30.
go back to reference Liu ZR, Chen JH, Wang SB, Yuan DW, Yin MJ, Wu CL (2012) The structure and the properties of S-phase in AlCuMg alloys. Acta Mater 59:7396–7405CrossRef Liu ZR, Chen JH, Wang SB, Yuan DW, Yin MJ, Wu CL (2012) The structure and the properties of S-phase in AlCuMg alloys. Acta Mater 59:7396–7405CrossRef
31.
go back to reference Feng ZQ, Yang YQ, Huang B, Li MH, Chen YX, Ru JG (2014) Crystal substructures of the rotation-twinned T (Al20Cu2Mn3) phase in 2024 aluminum alloy. J Alloys Compd 583:445–451CrossRef Feng ZQ, Yang YQ, Huang B, Li MH, Chen YX, Ru JG (2014) Crystal substructures of the rotation-twinned T (Al20Cu2Mn3) phase in 2024 aluminum alloy. J Alloys Compd 583:445–451CrossRef
32.
go back to reference Wang J, Zhang B, Zhou YT, Ma XL (2015) Multiple twins of a decagonal approximant embedded in S-Al2CuMg phase resulting in pitting initiation of a 2024 Al alloy. Acta Mater 82:22–31CrossRef Wang J, Zhang B, Zhou YT, Ma XL (2015) Multiple twins of a decagonal approximant embedded in S-Al2CuMg phase resulting in pitting initiation of a 2024 Al alloy. Acta Mater 82:22–31CrossRef
33.
go back to reference Ogura T, Hirosawa S, Cerezo A, Sato T (2010) Atom probe tomography of nanoscale microstructures within precipitate free zones in Al–Zn–Mg(–Ag) alloys. Acta Mater 58:5714–5723CrossRef Ogura T, Hirosawa S, Cerezo A, Sato T (2010) Atom probe tomography of nanoscale microstructures within precipitate free zones in Al–Zn–Mg(–Ag) alloys. Acta Mater 58:5714–5723CrossRef
34.
go back to reference Yukawa H, Urata Y, Morinaga M, Takahashi Y, Yoshida H (1995) Heterogeneous distributions of magnesium atoms near the precipitate in Al–Mg based alloys. Acta Metal Mater 43:681–688CrossRef Yukawa H, Urata Y, Morinaga M, Takahashi Y, Yoshida H (1995) Heterogeneous distributions of magnesium atoms near the precipitate in Al–Mg based alloys. Acta Metal Mater 43:681–688CrossRef
35.
go back to reference Hass M, Hosson JTM (2001) Grain boundary segregation and precipitation in aluminum alloys. Scripta Mater 44:281–286CrossRef Hass M, Hosson JTM (2001) Grain boundary segregation and precipitation in aluminum alloys. Scripta Mater 44:281–286CrossRef
36.
go back to reference Macchi CE, Somoza A, Dupasquier A, Polmear IJ (2003) Secondary precipitation in Al–Zn–Mg–(Ag) alloys. Acta Mater 51:5151–5158CrossRef Macchi CE, Somoza A, Dupasquier A, Polmear IJ (2003) Secondary precipitation in Al–Zn–Mg–(Ag) alloys. Acta Mater 51:5151–5158CrossRef
37.
go back to reference Dons AL (2001) The Alstruc homogenization model for industrial aluminum alloys. J Light Met 1:133–149CrossRef Dons AL (2001) The Alstruc homogenization model for industrial aluminum alloys. J Light Met 1:133–149CrossRef
38.
go back to reference Yan L, Zhang Y, Li X, Li Z, Wang F, Liu H, Xiong B (2014) Microstructural evolution of Al-0.66 Mg-0.85Si alloy during homogenization. Trans Nonferrous Met Soc China 24:939–945CrossRef Yan L, Zhang Y, Li X, Li Z, Wang F, Liu H, Xiong B (2014) Microstructural evolution of Al-0.66 Mg-0.85Si alloy during homogenization. Trans Nonferrous Met Soc China 24:939–945CrossRef
39.
go back to reference Chen YQ, Yi DQ, Jiang Y, Wang B, Xu DZ, Li SC (2013) Twinning and orientation relationships of T-phase precipitates in an Al matrix. J Mater Sci 48:3225–3231CrossRef Chen YQ, Yi DQ, Jiang Y, Wang B, Xu DZ, Li SC (2013) Twinning and orientation relationships of T-phase precipitates in an Al matrix. J Mater Sci 48:3225–3231CrossRef
40.
go back to reference Wang SC, Starink MJ (2005) Precipitates and intermetallic phases in precipitation hardening Al–Cu–Mg–(Li) based alloys. Int Mater Rev 50:193–215CrossRef Wang SC, Starink MJ (2005) Precipitates and intermetallic phases in precipitation hardening Al–Cu–Mg–(Li) based alloys. Int Mater Rev 50:193–215CrossRef
41.
go back to reference Chen YQ, Pan SP, Zhou MZ, Yi DQ, Xu DZ, Xu YF (2013) Effects of inclusions, grain boundaries and grain orientations on the fatigue crack initiation and propagation behavior of 2524-T3 Al alloy. Mater Sci Eng, A 580:150–158CrossRef Chen YQ, Pan SP, Zhou MZ, Yi DQ, Xu DZ, Xu YF (2013) Effects of inclusions, grain boundaries and grain orientations on the fatigue crack initiation and propagation behavior of 2524-T3 Al alloy. Mater Sci Eng, A 580:150–158CrossRef
42.
go back to reference Wu Y, Xiong J, Lai R, Zhang X, Guo Z (2009) The microstructure evolution of an Al–Mg–Si–Mn–Cu–Ce alloy during homogenization. J Alloys Compd 475:332–338CrossRef Wu Y, Xiong J, Lai R, Zhang X, Guo Z (2009) The microstructure evolution of an Al–Mg–Si–Mn–Cu–Ce alloy during homogenization. J Alloys Compd 475:332–338CrossRef
43.
go back to reference Lodgaard L, Ryum N (2000) Precipitation of dispersoids containing Mn and/or Cr in Al–Mg–Si alloys. Mater Sci Eng, A 283:144–152CrossRef Lodgaard L, Ryum N (2000) Precipitation of dispersoids containing Mn and/or Cr in Al–Mg–Si alloys. Mater Sci Eng, A 283:144–152CrossRef
44.
go back to reference Hirasawa H (1975) Precipitation process of Al-Mn and Al-Cr supersaturated solid solution in presence of age hardening phases. Scripta Metall 9:955–958CrossRef Hirasawa H (1975) Precipitation process of Al-Mn and Al-Cr supersaturated solid solution in presence of age hardening phases. Scripta Metall 9:955–958CrossRef
45.
go back to reference Liu Y, Jiang D, Xie W, Hu J, Ma B (2014) Solidification phases and their evolution during homogenization of a DC cast Al–8.35Zn–2.5 Mg–2.25Cu alloy. Mater Charact 93:173–183CrossRef Liu Y, Jiang D, Xie W, Hu J, Ma B (2014) Solidification phases and their evolution during homogenization of a DC cast Al–8.35Zn–2.5 Mg–2.25Cu alloy. Mater Charact 93:173–183CrossRef
46.
go back to reference Jia M, Zheng Z, Gong Z (2014) Microstructure evolution of the 1469 Al–Cu–Li–Sc alloy during homogenization. J Alloys Compd 614:131–139CrossRef Jia M, Zheng Z, Gong Z (2014) Microstructure evolution of the 1469 Al–Cu–Li–Sc alloy during homogenization. J Alloys Compd 614:131–139CrossRef
47.
go back to reference Shen F, Yi D, Jiang Y, Wang B, Liu H, Tang C, Shou W (2016) Semi-quantitative evaluation of texture components and fatigue properties in 2524 T3 aluminum alloy sheets. Mater Sci Eng, A 657:15–25CrossRef Shen F, Yi D, Jiang Y, Wang B, Liu H, Tang C, Shou W (2016) Semi-quantitative evaluation of texture components and fatigue properties in 2524 T3 aluminum alloy sheets. Mater Sci Eng, A 657:15–25CrossRef
48.
go back to reference Alil A, Popović M, Radetić T, Zrilić M, Romhanji E (2015) Influence of annealing temperature on the baking response and corrosion properties of an Al–4.6 wt% Mg alloy with 0.54 wt% Cu. J Alloys Compd 625:76–84CrossRef Alil A, Popović M, Radetić T, Zrilić M, Romhanji E (2015) Influence of annealing temperature on the baking response and corrosion properties of an Al–4.6 wt% Mg alloy with 0.54 wt% Cu. J Alloys Compd 625:76–84CrossRef
49.
go back to reference Humphreys FJ, Hatherly M (2004) Recrystallization and related annealing phenomena. Elsevier Ltd, Amsterdam Humphreys FJ, Hatherly M (2004) Recrystallization and related annealing phenomena. Elsevier Ltd, Amsterdam
50.
go back to reference Michalcová A, Vojtĕch D, Čížek J, Procházka I, Drahokoupil J, Novák P (2011) Microstructure characterization of rapidly solidified Al–Fe–Cr–Ce alloy by positron annihilation spectroscopy. J Alloys Compd 509:3211–3218CrossRef Michalcová A, Vojtĕch D, Čížek J, Procházka I, Drahokoupil J, Novák P (2011) Microstructure characterization of rapidly solidified Al–Fe–Cr–Ce alloy by positron annihilation spectroscopy. J Alloys Compd 509:3211–3218CrossRef
51.
go back to reference Zeng Q, Wen X, Zhai T (2009) Effect of precipitates on the development of P orientation 011 < 566 > in a recrystallized continuous cast AA 3004 aluminum alloy after cold rolling. Metall Mater Trans A 40:2488–2497CrossRef Zeng Q, Wen X, Zhai T (2009) Effect of precipitates on the development of P orientation 011 < 566 > in a recrystallized continuous cast AA 3004 aluminum alloy after cold rolling. Metall Mater Trans A 40:2488–2497CrossRef
52.
go back to reference Lucadamo G, Yang NYC, Marchi CS, Lavernia EJ (2006) Microstructure characterization in cryomilled Al 5083. Mater Sci Eng, A 430:230–241CrossRef Lucadamo G, Yang NYC, Marchi CS, Lavernia EJ (2006) Microstructure characterization in cryomilled Al 5083. Mater Sci Eng, A 430:230–241CrossRef
53.
go back to reference Tsivoulas D, Robson JD (2015) Heterogeneous Zr solute segregation and Al3Zr dispersoid distributions in Al–Cu–Li alloys. Acta Mater 93:73–86CrossRef Tsivoulas D, Robson JD (2015) Heterogeneous Zr solute segregation and Al3Zr dispersoid distributions in Al–Cu–Li alloys. Acta Mater 93:73–86CrossRef
54.
go back to reference Marquis EA, Seidman DN (2001) Nanoscale structural evolution of Al3Sc precipitates in Al(Sc) alloys. Acta Mater 49:1909–1919CrossRef Marquis EA, Seidman DN (2001) Nanoscale structural evolution of Al3Sc precipitates in Al(Sc) alloys. Acta Mater 49:1909–1919CrossRef
55.
go back to reference Robson JD, Jones MJ, Prangnell PB (2003) Extension of the N-model to predict competing homogeneous and heterogeneous precipitation in Al–Sc alloys. Acta Mater 51:1453–1468CrossRef Robson JD, Jones MJ, Prangnell PB (2003) Extension of the N-model to predict competing homogeneous and heterogeneous precipitation in Al–Sc alloys. Acta Mater 51:1453–1468CrossRef
56.
go back to reference Matsuda K, Ikeno S, Sato T, Uetani Y (2006) New quaternary grain boundary precipitate in Al–Mg–Si alloy containing silver. Scripta Mater 55:127–129CrossRef Matsuda K, Ikeno S, Sato T, Uetani Y (2006) New quaternary grain boundary precipitate in Al–Mg–Si alloy containing silver. Scripta Mater 55:127–129CrossRef
57.
go back to reference Huang YJ, Chen ZG, Zheng ZQ (2011) A conventional thermo-mechanical process of Al–Cu–Mg alloy for increasing ductility while maintaining high strength. Scripta Mater 64:382–385CrossRef Huang YJ, Chen ZG, Zheng ZQ (2011) A conventional thermo-mechanical process of Al–Cu–Mg alloy for increasing ductility while maintaining high strength. Scripta Mater 64:382–385CrossRef
58.
go back to reference Yin D, Xiao Q, Chen Y, Liu H, Yi D, Wang B, Pan S (2016) Effect of natural ageing and pre-straining on the hardening behaviour and microstructural response during artificial ageing of an Al–Mg–Si–Cu alloy. Mater Des 95:329–339 Yin D, Xiao Q, Chen Y, Liu H, Yi D, Wang B, Pan S (2016) Effect of natural ageing and pre-straining on the hardening behaviour and microstructural response during artificial ageing of an Al–Mg–Si–Cu alloy. Mater Des 95:329–339
Metadata
Title
Formation mechanisms and evolution of precipitate-free zones at grain boundaries in an Al–Cu–Mg–Mn alloy during homogenisation
Authors
Y. Q. Chen
S. P. Pan
S. W. Tang
W. H. Liu
C. P. Tang
F. Y. Xu
Publication date
18-05-2016
Publisher
Springer US
Published in
Journal of Materials Science / Issue 16/2016
Print ISSN: 0022-2461
Electronic ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-016-0062-x

Other articles of this Issue 16/2016

Journal of Materials Science 16/2016 Go to the issue

Premium Partners