Skip to main content
Erschienen in: Journal of Materials Science 16/2016

18.05.2016 | Original Paper

Formation mechanisms and evolution of precipitate-free zones at grain boundaries in an Al–Cu–Mg–Mn alloy during homogenisation

verfasst von: Y. Q. Chen, S. P. Pan, S. W. Tang, W. H. Liu, C. P. Tang, F. Y. Xu

Erschienen in: Journal of Materials Science | Ausgabe 16/2016

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Solute and vacancy depletion have long been investigated to reveal the formation mechanism of grain boundary precipitate-free zones (GB-PFZ) during ageing, yet there is no conclusive explanation due to the simultaneous appearance of the two in GB-PFZ. In this study, the evolution of GB-PFZs and solute distributions in the vicinity of grain boundaries (GBs) were studied during the homogenisation of an Al–Cu–Mg–Mn alloy using transmission electron microscopy, high-angle annular dark field scanning transmission electron microscopy, and energy-dispersive X-ray spectroscopy. Results indicated that the evolution of GB-PFZ during homogenisation can be divided into the following three stages: Stage I, formation and recession of GB-PFZ; Stage II, absence of GB-PFZ, and Stage III, the reappearance and broadening of GB-PFZ. The results also revealed that the GB-PFZ in Stage I is totally devoid of solute depletion and its formation can be attributed to vacancy depletion alone. The GB-PFZ at Stage III solely caused by solute depletion and excludes vacancy depletion.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Chen JH, Costan E, Huis MA, Xu Q, Zandbergen HW (2006) Atomic-pillar-based nanoprecipitates strengthen AlMgSi alloys. Science 312:416–419CrossRef Chen JH, Costan E, Huis MA, Xu Q, Zandbergen HW (2006) Atomic-pillar-based nanoprecipitates strengthen AlMgSi alloys. Science 312:416–419CrossRef
2.
Zurück zum Zitat Chrominski W, Lewandowska M (2016) Precipitation phenomena in ultrafine grained Al–Mg–Si alloy with heterogeneous microstructure. Acta Mater 103:547–557CrossRef Chrominski W, Lewandowska M (2016) Precipitation phenomena in ultrafine grained Al–Mg–Si alloy with heterogeneous microstructure. Acta Mater 103:547–557CrossRef
3.
Zurück zum Zitat Lin YC, Zhang J, Liu G, Liang Y (2015) Effects of pre-treatments on aging precipitates and corrosion resistance of a creep-aged Al–Zn–Mg–Cu alloy. Mater Des 83:866–875 Lin YC, Zhang J, Liu G, Liang Y (2015) Effects of pre-treatments on aging precipitates and corrosion resistance of a creep-aged Al–Zn–Mg–Cu alloy. Mater Des 83:866–875
4.
Zurück zum Zitat Liu SD, Chen B, Li CB, Dai Y, Deng YL, Zhang XM (2015) Mechanism of low exfoliation corrosion resistance due to slow quenching in high strength aluminium alloy. Corros Sci 91:203–212CrossRef Liu SD, Chen B, Li CB, Dai Y, Deng YL, Zhang XM (2015) Mechanism of low exfoliation corrosion resistance due to slow quenching in high strength aluminium alloy. Corros Sci 91:203–212CrossRef
5.
Zurück zum Zitat Liu H, Qiao X, Chen Z, Jiang R, Li X (2011) Effect of ultrasonic vibration during casting on microstructures and properties of 7050 aluminum alloy. J Mater Sci 46:3923–3927CrossRef Liu H, Qiao X, Chen Z, Jiang R, Li X (2011) Effect of ultrasonic vibration during casting on microstructures and properties of 7050 aluminum alloy. J Mater Sci 46:3923–3927CrossRef
6.
Zurück zum Zitat Lütjering G, Albrecht J, Sauer C, Krull T (2007) The influence of soft, precipitate-free zones at grain boundaries in Ti and Al alloys on their fatigue and fracture behavior. Mater Sci Eng, A 468–470:201–209CrossRef Lütjering G, Albrecht J, Sauer C, Krull T (2007) The influence of soft, precipitate-free zones at grain boundaries in Ti and Al alloys on their fatigue and fracture behavior. Mater Sci Eng, A 468–470:201–209CrossRef
7.
Zurück zum Zitat Xu DK, Rometsch PA, Li L, Shen LM, Birbilis N (2014) Critical conditions for the occurrence of quench cracking in an Al–Zn–Mg–Cu alloy. J Mater Sci 49:4687–4697CrossRef Xu DK, Rometsch PA, Li L, Shen LM, Birbilis N (2014) Critical conditions for the occurrence of quench cracking in an Al–Zn–Mg–Cu alloy. J Mater Sci 49:4687–4697CrossRef
8.
Zurück zum Zitat Lin YC, Xia Y, Jiang Y, Zhou H, Li L (2013) Precipitation hardening of 2024-T3 aluminum alloy during creep aging. Mater Sci Eng, A 565:420–429CrossRef Lin YC, Xia Y, Jiang Y, Zhou H, Li L (2013) Precipitation hardening of 2024-T3 aluminum alloy during creep aging. Mater Sci Eng, A 565:420–429CrossRef
9.
Zurück zum Zitat Morgeneyer TF, Starink MJ, Wang SC, Sinclair I (2008) Quench sensitivity of toughness in an Al alloy: direct observation and analysis of failure initiation at the precipitate-free zone. Acta Mater 56:2872–2884CrossRef Morgeneyer TF, Starink MJ, Wang SC, Sinclair I (2008) Quench sensitivity of toughness in an Al alloy: direct observation and analysis of failure initiation at the precipitate-free zone. Acta Mater 56:2872–2884CrossRef
10.
Zurück zum Zitat Krol T, Baither D, Nembach E (2004) The formation of precipitate free zones along grain boundaries in a superalloy and the ensuing effects on its plastic deformation. Acta Mater 52:2095–2108CrossRef Krol T, Baither D, Nembach E (2004) The formation of precipitate free zones along grain boundaries in a superalloy and the ensuing effects on its plastic deformation. Acta Mater 52:2095–2108CrossRef
11.
Zurück zum Zitat Okuda H, Ochiai S (2004) The effects of solute and vacancy depletion on the formation of precipitation-free zone in a model binary alloy examined by a Monte Carlo simulation. Mater Trans 45:1455–1460CrossRef Okuda H, Ochiai S (2004) The effects of solute and vacancy depletion on the formation of precipitation-free zone in a model binary alloy examined by a Monte Carlo simulation. Mater Trans 45:1455–1460CrossRef
12.
Zurück zum Zitat Hirosawa S, Oguri Y, Sato T (2005) Experimental and computational investigation of formation of precipitate free zones in an Al–Cu alloy. Mater Trans 46:1230–1234CrossRef Hirosawa S, Oguri Y, Sato T (2005) Experimental and computational investigation of formation of precipitate free zones in an Al–Cu alloy. Mater Trans 46:1230–1234CrossRef
13.
Zurück zum Zitat Raghavan M (1980) Microanalysis of precipitate free zones (PFZ) in Al–Zn–Mg and Cu–Ni–Nb alloys. Metall Trans A 11:993–999CrossRef Raghavan M (1980) Microanalysis of precipitate free zones (PFZ) in Al–Zn–Mg and Cu–Ni–Nb alloys. Metall Trans A 11:993–999CrossRef
14.
Zurück zum Zitat Shastry CR, Judd G (1972) An electron microprobe analysis of solute segregation near grain boundaries in an Al–Zn–Mg alloy. Metall Trans 3:779–782CrossRef Shastry CR, Judd G (1972) An electron microprobe analysis of solute segregation near grain boundaries in an Al–Zn–Mg alloy. Metall Trans 3:779–782CrossRef
15.
Zurück zum Zitat Ogura T, Hirosawa S, Sato T (2004) Quantitative characterization of precipitate free zones in Al–Zn–Mg(–Ag) alloys by microchemical analysis and nanoindentation measurement. Sci Technol Adv Mater 5:491–496CrossRef Ogura T, Hirosawa S, Sato T (2004) Quantitative characterization of precipitate free zones in Al–Zn–Mg(–Ag) alloys by microchemical analysis and nanoindentation measurement. Sci Technol Adv Mater 5:491–496CrossRef
16.
Zurück zum Zitat Hirosawa S, Sato T, Kamio A, Flower HM (2000) Classification of the role of microalloy elements in phase decomposition of Al based alloys. Acta Mater 48:1797–1806CrossRef Hirosawa S, Sato T, Kamio A, Flower HM (2000) Classification of the role of microalloy elements in phase decomposition of Al based alloys. Acta Mater 48:1797–1806CrossRef
17.
Zurück zum Zitat Tolley A, Mitlin D, Radmilovic V, Dahmen U (2005) Transmission electron microscopy analysis of grain boundary precipitate-free-zones (PFZs) in an AlCuSiGe alloy. Mater Sci Eng, A 412:204–213CrossRef Tolley A, Mitlin D, Radmilovic V, Dahmen U (2005) Transmission electron microscopy analysis of grain boundary precipitate-free-zones (PFZs) in an AlCuSiGe alloy. Mater Sci Eng, A 412:204–213CrossRef
18.
Zurück zum Zitat Okuda H, Ochiai S (2005) A Monte Carlo simulation on the PFZ microstructures in Al-based alloys during multistep annealing. Mater Sci Forum 475–479:937–940CrossRef Okuda H, Ochiai S (2005) A Monte Carlo simulation on the PFZ microstructures in Al-based alloys during multistep annealing. Mater Sci Forum 475–479:937–940CrossRef
19.
Zurück zum Zitat Starink MJ, Gregson PJ (1996) S′ and δ′ phase precipitation in SiCp reinforced A1-1.2 wt%Cu -1 wt% Mg-x Li alloys. Mater Sci Eng, A 211:54–65CrossRef Starink MJ, Gregson PJ (1996) S′ and δ′ phase precipitation in SiCp reinforced A1-1.2 wt%Cu -1 wt% Mg-x Li alloys. Mater Sci Eng, A 211:54–65CrossRef
20.
Zurück zum Zitat Starink MJ, Wang P, Sinclair I, Gregson PJ (1999) Microstrucure and strengthening of Al–Li–Cu–Mg alloys and MMCs: II. Modelling of yield strength. Acta Mater 47:3855–3868CrossRef Starink MJ, Wang P, Sinclair I, Gregson PJ (1999) Microstrucure and strengthening of Al–Li–Cu–Mg alloys and MMCs: II. Modelling of yield strength. Acta Mater 47:3855–3868CrossRef
21.
Zurück zum Zitat Cai M, Robson JD, Lorimer GW (2007) Simulation and control of dispersoids and dispersoid-free zones during homogenizing an AlMgSi alloy. Scripta Mater 57:603–606CrossRef Cai M, Robson JD, Lorimer GW (2007) Simulation and control of dispersoids and dispersoid-free zones during homogenizing an AlMgSi alloy. Scripta Mater 57:603–606CrossRef
22.
Zurück zum Zitat Gandin CA, Jacot A (2007) Modeling of precipitate-free zone formed upon homogenization in a multi-component alloy. Acta Mater 55:2539–2553CrossRef Gandin CA, Jacot A (2007) Modeling of precipitate-free zone formed upon homogenization in a multi-component alloy. Acta Mater 55:2539–2553CrossRef
23.
Zurück zum Zitat Chen YQ, Yi DQ, Jiang Y, Wang B, Liu HQ (2013) Concurrent formation of two different type precipitation-free zones during the initial stage of homogenization. Philos Mag 93:2269–2278CrossRef Chen YQ, Yi DQ, Jiang Y, Wang B, Liu HQ (2013) Concurrent formation of two different type precipitation-free zones during the initial stage of homogenization. Philos Mag 93:2269–2278CrossRef
24.
Zurück zum Zitat Park JK, Ardell AJ (1992) Solute-enriched surface layers and X-ray microanalysis of thin foils of a commercial aluminium alloy. J Microsc 165:301–309CrossRef Park JK, Ardell AJ (1992) Solute-enriched surface layers and X-ray microanalysis of thin foils of a commercial aluminium alloy. J Microsc 165:301–309CrossRef
25.
Zurück zum Zitat Lorimer GW, Cliff G, Clark JN (1976) Developments in electron microscopy and analysis. Academic Press, London Lorimer GW, Cliff G, Clark JN (1976) Developments in electron microscopy and analysis. Academic Press, London
26.
Zurück zum Zitat Xie FY, Kraft T, Zuo Y, Moon CH, Chang YA (1999) Microstructure and microsegregation in Al rich Al–Cu–Mg alloys. Acta Mater 47:489–500CrossRef Xie FY, Kraft T, Zuo Y, Moon CH, Chang YA (1999) Microstructure and microsegregation in Al rich Al–Cu–Mg alloys. Acta Mater 47:489–500CrossRef
27.
Zurück zum Zitat Norman AF, Hyde K, Costello F, Thompson S, Birley S, Prangnell PB (2003) Examination of the effect of Sc on 2000 and 7000 series aluminium alloy castings: for improvements in fusion welding. Mater Sci Eng, A 354:188–198CrossRef Norman AF, Hyde K, Costello F, Thompson S, Birley S, Prangnell PB (2003) Examination of the effect of Sc on 2000 and 7000 series aluminium alloy castings: for improvements in fusion welding. Mater Sci Eng, A 354:188–198CrossRef
28.
Zurück zum Zitat McPhee WAG, Schaffer GB, Drennan J (2003) The effect of iron on liquid film migration and sintering of an Al–Cu–Mg alloy. Acta Mater 51:3701–3712CrossRef McPhee WAG, Schaffer GB, Drennan J (2003) The effect of iron on liquid film migration and sintering of an Al–Cu–Mg alloy. Acta Mater 51:3701–3712CrossRef
29.
Zurück zum Zitat Wang SB, Chen JH, Yin MJ, Liu ZR, Yuan DW, Liu JZ, Liu CH, Wu CL (2012) Double-atomic-wall-based dynamic precipitates of the early-stage S-phase in AlCuMg alloys. Acta Mater 60:6573–6580CrossRef Wang SB, Chen JH, Yin MJ, Liu ZR, Yuan DW, Liu JZ, Liu CH, Wu CL (2012) Double-atomic-wall-based dynamic precipitates of the early-stage S-phase in AlCuMg alloys. Acta Mater 60:6573–6580CrossRef
30.
Zurück zum Zitat Liu ZR, Chen JH, Wang SB, Yuan DW, Yin MJ, Wu CL (2012) The structure and the properties of S-phase in AlCuMg alloys. Acta Mater 59:7396–7405CrossRef Liu ZR, Chen JH, Wang SB, Yuan DW, Yin MJ, Wu CL (2012) The structure and the properties of S-phase in AlCuMg alloys. Acta Mater 59:7396–7405CrossRef
31.
Zurück zum Zitat Feng ZQ, Yang YQ, Huang B, Li MH, Chen YX, Ru JG (2014) Crystal substructures of the rotation-twinned T (Al20Cu2Mn3) phase in 2024 aluminum alloy. J Alloys Compd 583:445–451CrossRef Feng ZQ, Yang YQ, Huang B, Li MH, Chen YX, Ru JG (2014) Crystal substructures of the rotation-twinned T (Al20Cu2Mn3) phase in 2024 aluminum alloy. J Alloys Compd 583:445–451CrossRef
32.
Zurück zum Zitat Wang J, Zhang B, Zhou YT, Ma XL (2015) Multiple twins of a decagonal approximant embedded in S-Al2CuMg phase resulting in pitting initiation of a 2024 Al alloy. Acta Mater 82:22–31CrossRef Wang J, Zhang B, Zhou YT, Ma XL (2015) Multiple twins of a decagonal approximant embedded in S-Al2CuMg phase resulting in pitting initiation of a 2024 Al alloy. Acta Mater 82:22–31CrossRef
33.
Zurück zum Zitat Ogura T, Hirosawa S, Cerezo A, Sato T (2010) Atom probe tomography of nanoscale microstructures within precipitate free zones in Al–Zn–Mg(–Ag) alloys. Acta Mater 58:5714–5723CrossRef Ogura T, Hirosawa S, Cerezo A, Sato T (2010) Atom probe tomography of nanoscale microstructures within precipitate free zones in Al–Zn–Mg(–Ag) alloys. Acta Mater 58:5714–5723CrossRef
34.
Zurück zum Zitat Yukawa H, Urata Y, Morinaga M, Takahashi Y, Yoshida H (1995) Heterogeneous distributions of magnesium atoms near the precipitate in Al–Mg based alloys. Acta Metal Mater 43:681–688CrossRef Yukawa H, Urata Y, Morinaga M, Takahashi Y, Yoshida H (1995) Heterogeneous distributions of magnesium atoms near the precipitate in Al–Mg based alloys. Acta Metal Mater 43:681–688CrossRef
35.
Zurück zum Zitat Hass M, Hosson JTM (2001) Grain boundary segregation and precipitation in aluminum alloys. Scripta Mater 44:281–286CrossRef Hass M, Hosson JTM (2001) Grain boundary segregation and precipitation in aluminum alloys. Scripta Mater 44:281–286CrossRef
36.
Zurück zum Zitat Macchi CE, Somoza A, Dupasquier A, Polmear IJ (2003) Secondary precipitation in Al–Zn–Mg–(Ag) alloys. Acta Mater 51:5151–5158CrossRef Macchi CE, Somoza A, Dupasquier A, Polmear IJ (2003) Secondary precipitation in Al–Zn–Mg–(Ag) alloys. Acta Mater 51:5151–5158CrossRef
37.
Zurück zum Zitat Dons AL (2001) The Alstruc homogenization model for industrial aluminum alloys. J Light Met 1:133–149CrossRef Dons AL (2001) The Alstruc homogenization model for industrial aluminum alloys. J Light Met 1:133–149CrossRef
38.
Zurück zum Zitat Yan L, Zhang Y, Li X, Li Z, Wang F, Liu H, Xiong B (2014) Microstructural evolution of Al-0.66 Mg-0.85Si alloy during homogenization. Trans Nonferrous Met Soc China 24:939–945CrossRef Yan L, Zhang Y, Li X, Li Z, Wang F, Liu H, Xiong B (2014) Microstructural evolution of Al-0.66 Mg-0.85Si alloy during homogenization. Trans Nonferrous Met Soc China 24:939–945CrossRef
39.
Zurück zum Zitat Chen YQ, Yi DQ, Jiang Y, Wang B, Xu DZ, Li SC (2013) Twinning and orientation relationships of T-phase precipitates in an Al matrix. J Mater Sci 48:3225–3231CrossRef Chen YQ, Yi DQ, Jiang Y, Wang B, Xu DZ, Li SC (2013) Twinning and orientation relationships of T-phase precipitates in an Al matrix. J Mater Sci 48:3225–3231CrossRef
40.
Zurück zum Zitat Wang SC, Starink MJ (2005) Precipitates and intermetallic phases in precipitation hardening Al–Cu–Mg–(Li) based alloys. Int Mater Rev 50:193–215CrossRef Wang SC, Starink MJ (2005) Precipitates and intermetallic phases in precipitation hardening Al–Cu–Mg–(Li) based alloys. Int Mater Rev 50:193–215CrossRef
41.
Zurück zum Zitat Chen YQ, Pan SP, Zhou MZ, Yi DQ, Xu DZ, Xu YF (2013) Effects of inclusions, grain boundaries and grain orientations on the fatigue crack initiation and propagation behavior of 2524-T3 Al alloy. Mater Sci Eng, A 580:150–158CrossRef Chen YQ, Pan SP, Zhou MZ, Yi DQ, Xu DZ, Xu YF (2013) Effects of inclusions, grain boundaries and grain orientations on the fatigue crack initiation and propagation behavior of 2524-T3 Al alloy. Mater Sci Eng, A 580:150–158CrossRef
42.
Zurück zum Zitat Wu Y, Xiong J, Lai R, Zhang X, Guo Z (2009) The microstructure evolution of an Al–Mg–Si–Mn–Cu–Ce alloy during homogenization. J Alloys Compd 475:332–338CrossRef Wu Y, Xiong J, Lai R, Zhang X, Guo Z (2009) The microstructure evolution of an Al–Mg–Si–Mn–Cu–Ce alloy during homogenization. J Alloys Compd 475:332–338CrossRef
43.
Zurück zum Zitat Lodgaard L, Ryum N (2000) Precipitation of dispersoids containing Mn and/or Cr in Al–Mg–Si alloys. Mater Sci Eng, A 283:144–152CrossRef Lodgaard L, Ryum N (2000) Precipitation of dispersoids containing Mn and/or Cr in Al–Mg–Si alloys. Mater Sci Eng, A 283:144–152CrossRef
44.
Zurück zum Zitat Hirasawa H (1975) Precipitation process of Al-Mn and Al-Cr supersaturated solid solution in presence of age hardening phases. Scripta Metall 9:955–958CrossRef Hirasawa H (1975) Precipitation process of Al-Mn and Al-Cr supersaturated solid solution in presence of age hardening phases. Scripta Metall 9:955–958CrossRef
45.
Zurück zum Zitat Liu Y, Jiang D, Xie W, Hu J, Ma B (2014) Solidification phases and their evolution during homogenization of a DC cast Al–8.35Zn–2.5 Mg–2.25Cu alloy. Mater Charact 93:173–183CrossRef Liu Y, Jiang D, Xie W, Hu J, Ma B (2014) Solidification phases and their evolution during homogenization of a DC cast Al–8.35Zn–2.5 Mg–2.25Cu alloy. Mater Charact 93:173–183CrossRef
46.
Zurück zum Zitat Jia M, Zheng Z, Gong Z (2014) Microstructure evolution of the 1469 Al–Cu–Li–Sc alloy during homogenization. J Alloys Compd 614:131–139CrossRef Jia M, Zheng Z, Gong Z (2014) Microstructure evolution of the 1469 Al–Cu–Li–Sc alloy during homogenization. J Alloys Compd 614:131–139CrossRef
47.
Zurück zum Zitat Shen F, Yi D, Jiang Y, Wang B, Liu H, Tang C, Shou W (2016) Semi-quantitative evaluation of texture components and fatigue properties in 2524 T3 aluminum alloy sheets. Mater Sci Eng, A 657:15–25CrossRef Shen F, Yi D, Jiang Y, Wang B, Liu H, Tang C, Shou W (2016) Semi-quantitative evaluation of texture components and fatigue properties in 2524 T3 aluminum alloy sheets. Mater Sci Eng, A 657:15–25CrossRef
48.
Zurück zum Zitat Alil A, Popović M, Radetić T, Zrilić M, Romhanji E (2015) Influence of annealing temperature on the baking response and corrosion properties of an Al–4.6 wt% Mg alloy with 0.54 wt% Cu. J Alloys Compd 625:76–84CrossRef Alil A, Popović M, Radetić T, Zrilić M, Romhanji E (2015) Influence of annealing temperature on the baking response and corrosion properties of an Al–4.6 wt% Mg alloy with 0.54 wt% Cu. J Alloys Compd 625:76–84CrossRef
49.
Zurück zum Zitat Humphreys FJ, Hatherly M (2004) Recrystallization and related annealing phenomena. Elsevier Ltd, Amsterdam Humphreys FJ, Hatherly M (2004) Recrystallization and related annealing phenomena. Elsevier Ltd, Amsterdam
50.
Zurück zum Zitat Michalcová A, Vojtĕch D, Čížek J, Procházka I, Drahokoupil J, Novák P (2011) Microstructure characterization of rapidly solidified Al–Fe–Cr–Ce alloy by positron annihilation spectroscopy. J Alloys Compd 509:3211–3218CrossRef Michalcová A, Vojtĕch D, Čížek J, Procházka I, Drahokoupil J, Novák P (2011) Microstructure characterization of rapidly solidified Al–Fe–Cr–Ce alloy by positron annihilation spectroscopy. J Alloys Compd 509:3211–3218CrossRef
51.
Zurück zum Zitat Zeng Q, Wen X, Zhai T (2009) Effect of precipitates on the development of P orientation 011 < 566 > in a recrystallized continuous cast AA 3004 aluminum alloy after cold rolling. Metall Mater Trans A 40:2488–2497CrossRef Zeng Q, Wen X, Zhai T (2009) Effect of precipitates on the development of P orientation 011 < 566 > in a recrystallized continuous cast AA 3004 aluminum alloy after cold rolling. Metall Mater Trans A 40:2488–2497CrossRef
52.
Zurück zum Zitat Lucadamo G, Yang NYC, Marchi CS, Lavernia EJ (2006) Microstructure characterization in cryomilled Al 5083. Mater Sci Eng, A 430:230–241CrossRef Lucadamo G, Yang NYC, Marchi CS, Lavernia EJ (2006) Microstructure characterization in cryomilled Al 5083. Mater Sci Eng, A 430:230–241CrossRef
53.
Zurück zum Zitat Tsivoulas D, Robson JD (2015) Heterogeneous Zr solute segregation and Al3Zr dispersoid distributions in Al–Cu–Li alloys. Acta Mater 93:73–86CrossRef Tsivoulas D, Robson JD (2015) Heterogeneous Zr solute segregation and Al3Zr dispersoid distributions in Al–Cu–Li alloys. Acta Mater 93:73–86CrossRef
54.
Zurück zum Zitat Marquis EA, Seidman DN (2001) Nanoscale structural evolution of Al3Sc precipitates in Al(Sc) alloys. Acta Mater 49:1909–1919CrossRef Marquis EA, Seidman DN (2001) Nanoscale structural evolution of Al3Sc precipitates in Al(Sc) alloys. Acta Mater 49:1909–1919CrossRef
55.
Zurück zum Zitat Robson JD, Jones MJ, Prangnell PB (2003) Extension of the N-model to predict competing homogeneous and heterogeneous precipitation in Al–Sc alloys. Acta Mater 51:1453–1468CrossRef Robson JD, Jones MJ, Prangnell PB (2003) Extension of the N-model to predict competing homogeneous and heterogeneous precipitation in Al–Sc alloys. Acta Mater 51:1453–1468CrossRef
56.
Zurück zum Zitat Matsuda K, Ikeno S, Sato T, Uetani Y (2006) New quaternary grain boundary precipitate in Al–Mg–Si alloy containing silver. Scripta Mater 55:127–129CrossRef Matsuda K, Ikeno S, Sato T, Uetani Y (2006) New quaternary grain boundary precipitate in Al–Mg–Si alloy containing silver. Scripta Mater 55:127–129CrossRef
57.
Zurück zum Zitat Huang YJ, Chen ZG, Zheng ZQ (2011) A conventional thermo-mechanical process of Al–Cu–Mg alloy for increasing ductility while maintaining high strength. Scripta Mater 64:382–385CrossRef Huang YJ, Chen ZG, Zheng ZQ (2011) A conventional thermo-mechanical process of Al–Cu–Mg alloy for increasing ductility while maintaining high strength. Scripta Mater 64:382–385CrossRef
58.
Zurück zum Zitat Yin D, Xiao Q, Chen Y, Liu H, Yi D, Wang B, Pan S (2016) Effect of natural ageing and pre-straining on the hardening behaviour and microstructural response during artificial ageing of an Al–Mg–Si–Cu alloy. Mater Des 95:329–339 Yin D, Xiao Q, Chen Y, Liu H, Yi D, Wang B, Pan S (2016) Effect of natural ageing and pre-straining on the hardening behaviour and microstructural response during artificial ageing of an Al–Mg–Si–Cu alloy. Mater Des 95:329–339
Metadaten
Titel
Formation mechanisms and evolution of precipitate-free zones at grain boundaries in an Al–Cu–Mg–Mn alloy during homogenisation
verfasst von
Y. Q. Chen
S. P. Pan
S. W. Tang
W. H. Liu
C. P. Tang
F. Y. Xu
Publikationsdatum
18.05.2016
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 16/2016
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-016-0062-x

Weitere Artikel der Ausgabe 16/2016

Journal of Materials Science 16/2016 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.