Skip to main content
Top
Published in: Glass and Ceramics 3-4/2019

01-08-2019

Formation of Zr–La–O Oxide Phases in the Thermochemical Transformation of Modified Zirconium Hydroxide

Authors: A. V. Obukhova, L. I. Kuznetsova, G. N. Bondarenko, O. Yu. Fetisova, E. V. Mazurova, P. N. Kuznetsov

Published in: Glass and Ceramics | Issue 3-4/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The particularities of the impact of the addition of lanthanum cations on the thermochemical behavior of modified zirconium hydroxide were investigated. It is shown that the composition and properties of the obtained materials are determined by the concentration of the modifier and the formation temperature of the oxide phase.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference S. Akbar, P. Dutta, and C. Lee, “High-temperature ceramic gas sensors: a review,” Int. J. Appl. Ceram. Tech., 3(4), 302 – 311 (2006).CrossRef S. Akbar, P. Dutta, and C. Lee, “High-temperature ceramic gas sensors: a review,” Int. J. Appl. Ceram. Tech., 3(4), 302 – 311 (2006).CrossRef
2.
go back to reference J. W. Fergus, “Perovskite oxides for semiconductor-based gas sensors,” Sensors and Actuators B: Chem., 121(2), 652 – 663 (2007).CrossRef J. W. Fergus, “Perovskite oxides for semiconductor-based gas sensors,” Sensors and Actuators B: Chem., 121(2), 652 – 663 (2007).CrossRef
3.
go back to reference R. K. Slotwinski, N. Bonanos, and E. P. Butler, “Electrical properties of MgO+Y2O3 and CaO+Y2O3 partially stabilized zirconia,” J. Mater. Sci. Lett., 4(5), 641 – 644 (1985).CrossRef R. K. Slotwinski, N. Bonanos, and E. P. Butler, “Electrical properties of MgO+Y2O3 and CaO+Y2O3 partially stabilized zirconia,” J. Mater. Sci. Lett., 4(5), 641 – 644 (1985).CrossRef
4.
go back to reference O. V. Karban, O. L. Khasanov, and O. M. Kanunnikova, “Microstructure of ZrO2 nanoceramics,” J. Struct. Chem., 45, S149 – S155 (2004).CrossRef O. V. Karban, O. L. Khasanov, and O. M. Kanunnikova, “Microstructure of ZrO2 nanoceramics,” J. Struct. Chem., 45, S149 – S155 (2004).CrossRef
5.
go back to reference T. Avalos-Rendon, J. Ortiz-Landeros, G. Fetter, et al., “Structure, thermal stability, and catalytic performance of MgO–ZrO2 composites,” J. Struct. Chem., 52, 340 – 349 (2011).CrossRef T. Avalos-Rendon, J. Ortiz-Landeros, G. Fetter, et al., “Structure, thermal stability, and catalytic performance of MgO–ZrO2 composites,” J. Struct. Chem., 52, 340 – 349 (2011).CrossRef
6.
go back to reference S. Boulfrad, E. Djurado, and J. Fouletier, “Electrochemical characterization of nanostructured zirconias,” Solid State Ionic, 180, 978 – 983 (2009).CrossRef S. Boulfrad, E. Djurado, and J. Fouletier, “Electrochemical characterization of nanostructured zirconias,” Solid State Ionic, 180, 978 – 983 (2009).CrossRef
7.
go back to reference M. Shimazu, K. Yamaji, H. Kishimoto, et al., “Stability of Sc2O3 and CeO2 co-doped ZrO2 electrolyte during the operation of solid oxide fuel cells: Pt III. Detailed mechanism of the decomposition,” Solid State Ionic, 224, 6 – 14 (2012).CrossRef M. Shimazu, K. Yamaji, H. Kishimoto, et al., “Stability of Sc2O3 and CeO2 co-doped ZrO2 electrolyte during the operation of solid oxide fuel cells: Pt III. Detailed mechanism of the decomposition,” Solid State Ionic, 224, 6 – 14 (2012).CrossRef
8.
go back to reference V. A. Antonov, P. A. Arsenev, Kh. S. Bagdasarov, and A. D. Ryazantsev, High-Temperature Oxide Materials Based on Zirconium Dioxide [in Russian], Izd. MEI, Moscow (1982). V. A. Antonov, P. A. Arsenev, Kh. S. Bagdasarov, and A. D. Ryazantsev, High-Temperature Oxide Materials Based on Zirconium Dioxide [in Russian], Izd. MEI, Moscow (1982).
9.
go back to reference A. V. Obukhova, L. I. Kuznetsova, P. N. Kuznetsov, et al., “Study of the effect of promoters on thermochemical transformations of zirconium hydroxide,” Steklo Keram., No. 11, 18 – 23 (2017); A. V. Obukhova, L. I. Kuznetsova, P. N. Kuznetsov, et al., “Study of the effect of promoters on thermochemical transformations of zirconium hydroxide,” Glass Ceram., 76(11 – 12), 399 – 403 (2018). A. V. Obukhova, L. I. Kuznetsova, P. N. Kuznetsov, et al., “Study of the effect of promoters on thermochemical transformations of zirconium hydroxide,” Steklo Keram., No. 11, 18 – 23 (2017); A. V. Obukhova, L. I. Kuznetsova, P. N. Kuznetsov, et al., “Study of the effect of promoters on thermochemical transformations of zirconium hydroxide,” Glass Ceram., 76(11 – 12), 399 – 403 (2018).
10.
go back to reference W. B. Blumenthal, Zirconium Chemistry [Russian translation], Izd. Inostr. Lit., Moscow (1963). W. B. Blumenthal, Zirconium Chemistry [Russian translation], Izd. Inostr. Lit., Moscow (1963).
11.
go back to reference P. N. Kuznetsov, L. I. Kuznetsov, and A. M. Zhizhaev, “Investigation of solid-phase mechanochemical and thermal reactions forming nanostructured zirconium oxide,” in: Fundamentals of the Mechanochemical Activation, Mechanosynthesis, and Mechanochemical Technologies [in Russian], Izd. SO RAN, Novosibirsk (2009), pp. 68 – 86 (integration projects of SO RAN, No. 19). P. N. Kuznetsov, L. I. Kuznetsov, and A. M. Zhizhaev, “Investigation of solid-phase mechanochemical and thermal reactions forming nanostructured zirconium oxide,” in: Fundamentals of the Mechanochemical Activation, Mechanosynthesis, and Mechanochemical Technologies [in Russian], Izd. SO RAN, Novosibirsk (2009), pp. 68 – 86 (integration projects of SO RAN, No. 19).
12.
go back to reference P. N. Kuznetsov, A. V. Kazbanova, L. I. Kuznetsova, et al., “Bulk and surface characterization and isomerization activity of \( \mathrm{Pt}/{\mathrm{WO}}_4^{2-}/{\mathrm{ZrO}}_2 \) catalysts of different preparations,” React. Kinet. Mechan. Catal., 113, 69 – 84 (2014).CrossRef P. N. Kuznetsov, A. V. Kazbanova, L. I. Kuznetsova, et al., “Bulk and surface characterization and isomerization activity of \( \mathrm{Pt}/{\mathrm{WO}}_4^{2-}/{\mathrm{ZrO}}_2 \) catalysts of different preparations,” React. Kinet. Mechan. Catal., 113, 69 – 84 (2014).CrossRef
13.
go back to reference F. Davar, A. Hassankhani, and M. R. Loghman-Estarki, “Controllable synthesis of metastable tetragonal zirconia nanocrystals using citric acid assisted sol-gel method,” Ceram. Int., 39, 2933 – 2941 (2013).CrossRef F. Davar, A. Hassankhani, and M. R. Loghman-Estarki, “Controllable synthesis of metastable tetragonal zirconia nanocrystals using citric acid assisted sol-gel method,” Ceram. Int., 39, 2933 – 2941 (2013).CrossRef
14.
go back to reference N. N. Novik, V. G. Konakov, and I. Y. Archakov, “Zirconia and ceria based ceramics and nanoceramics—A review on electrochemical and mechanical properties,” Rev. Adv. Mater. Sci., 40, 188 – 207 (2015). N. N. Novik, V. G. Konakov, and I. Y. Archakov, “Zirconia and ceria based ceramics and nanoceramics—A review on electrochemical and mechanical properties,” Rev. Adv. Mater. Sci., 40, 188 – 207 (2015).
15.
go back to reference S. M. Shugurov, O. Yu. Kurapova, S. I. Lopatin, et al., “Thermodynamic properties of the La2O3–ZrO2 system by Knudsen effusion mass spectrometry at high temperature,” Rapid Commun. Mass Spectrom., 31, 2021 – 2029 (2017).CrossRef S. M. Shugurov, O. Yu. Kurapova, S. I. Lopatin, et al., “Thermodynamic properties of the La2O3–ZrO2 system by Knudsen effusion mass spectrometry at high temperature,” Rapid Commun. Mass Spectrom., 31, 2021 – 2029 (2017).CrossRef
16.
go back to reference V. I. Barbashov and E. V. Nesova, “Ionic conductivity of the system ZrO2–Sc2O3–La2O3 ,” Ogneup. Tekh. Keram., Nos. 1 – 2, 3 – 7 (2011). V. I. Barbashov and E. V. Nesova, “Ionic conductivity of the system ZrO2–Sc2O3–La2O3 ,” Ogneup. Tekh. Keram., Nos. 1 – 2, 3 – 7 (2011).
17.
go back to reference C. Wang, O. Fabrichnaya, M. Zinkevich, et al., “Experimental study and thermodynamic modelling of the ZrO2–LaO1.5 system,” Comp. Coupl. Phase Diagrams and Thermochem., 32, 111 – 120 (2008).CrossRef C. Wang, O. Fabrichnaya, M. Zinkevich, et al., “Experimental study and thermodynamic modelling of the ZrO2–LaO1.5 system,” Comp. Coupl. Phase Diagrams and Thermochem., 32, 111 – 120 (2008).CrossRef
18.
go back to reference D. G. Barton, S. L. Soled, G. D. Meitzner, et al., “Structural and ñatalytic ñharacterization of solid acids based on zirconia modified by tungsten oxide original,” J. Ñatal., 181, 57 – 72 (1999). D. G. Barton, S. L. Soled, G. D. Meitzner, et al., “Structural and ñatalytic ñharacterization of solid acids based on zirconia modified by tungsten oxide original,” J. Ñatal., 181, 57 – 72 (1999).
19.
go back to reference A. Kaddouri, C. Mazzocchia, E. Tempesti, and R. Anouchinsky, “On the activity of ZrO2 prepared by different methods,” J. Thermal Anal., 53, 97 – 109 (1998).CrossRef A. Kaddouri, C. Mazzocchia, E. Tempesti, and R. Anouchinsky, “On the activity of ZrO2 prepared by different methods,” J. Thermal Anal., 53, 97 – 109 (1998).CrossRef
20.
go back to reference M. K. Naskar and D. Gangulo, “Range of metastability of tetragonal zirconia in some rare earth doped zirconia,” J. Mater. Sci. Lett., 17, 1971 – 1973 (1998).CrossRef M. K. Naskar and D. Gangulo, “Range of metastability of tetragonal zirconia in some rare earth doped zirconia,” J. Mater. Sci. Lett., 17, 1971 – 1973 (1998).CrossRef
21.
go back to reference P. Thangadurai, A. Chandra Bose, and S. Ramasamy, “Phase stabilization and structural studies of nanocrystalline La2O3–ZrO2,” J. Mater. Sci., 40, 3963 – 3968 (2005).CrossRef P. Thangadurai, A. Chandra Bose, and S. Ramasamy, “Phase stabilization and structural studies of nanocrystalline La2O3–ZrO2,” J. Mater. Sci., 40, 3963 – 3968 (2005).CrossRef
22.
go back to reference R. D. Shannon and C. N. Prewitt, “Effective ionic radii on oxides and fluorides,” Acta. Cryst. Sec. B, 25, 925 – 946 (1969).CrossRef R. D. Shannon and C. N. Prewitt, “Effective ionic radii on oxides and fluorides,” Acta. Cryst. Sec. B, 25, 925 – 946 (1969).CrossRef
Metadata
Title
Formation of Zr–La–O Oxide Phases in the Thermochemical Transformation of Modified Zirconium Hydroxide
Authors
A. V. Obukhova
L. I. Kuznetsova
G. N. Bondarenko
O. Yu. Fetisova
E. V. Mazurova
P. N. Kuznetsov
Publication date
01-08-2019
Publisher
Springer US
Published in
Glass and Ceramics / Issue 3-4/2019
Print ISSN: 0361-7610
Electronic ISSN: 1573-8515
DOI
https://doi.org/10.1007/s10717-019-00150-1

Other articles of this Issue 3-4/2019

Glass and Ceramics 3-4/2019 Go to the issue

Premium Partners