Skip to main content
Top
Published in: Arabian Journal for Science and Engineering 3/2021

23-01-2021 | Research Article-Mechanical Engineering

Fractional Modeling of Fin on non-Fourier Heat Conduction via Modern Fractional Differential Operators

Authors: Kashif Ali Abro, Jose Francisco Gomez-Aguilar

Published in: Arabian Journal for Science and Engineering | Issue 3/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The enhancement of heat transfer for electronic kits and automobiles has become highly dependent on the finned heat exchangers; this is because fin provides high heat transfer rate and superior performance with a significant temperature reduction. In this manuscript, a fractional modeling of non-Fourier heat conduction problem of a fin is proposed within the periodic temperature boundary condition. The mathematical modeling is performed via classical theory of heat conduction that is directly proportional to temperature gradient through which hyperbolic heat conduction equation for a fin is generated. The hyperbolic heat conduction equation for a fin is fractionalized via modern approaches of fractional differentiations, namely Atangana–Baleanu and Caputo–Fabrizio differential operators. In order to have analyticity of hyperbolic heat conduction equation for a fin, we invoked the mathematical techniques of Laplace transform. The exact solutions of temperature distribution have been obtained in terms of Fox-H and Mittag–Leffler functions with the product of convolution. The solutions of temperature distribution have been classified into integer verses non-integer theories by making fractional parameters \( \alpha = \beta = 1 \) and \( \alpha \ne \beta \ne 1 \), respectively. Our results suggest that due to variability of different rheological parameters on temperature distribution, the cooling process is faster via fractional models in comparison to non-fractional model. Additionally, it is also observed that thermal wave propagates at a specific time results the reciprocal trend in temperature distribution.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference Aziz, A.; Na, T.Y.: Periodic heat transfer in fins with variable thermal parameters. Int. J. Heat Mass Transf. 24, 1397–1404 (1981)CrossRef Aziz, A.; Na, T.Y.: Periodic heat transfer in fins with variable thermal parameters. Int. J. Heat Mass Transf. 24, 1397–1404 (1981)CrossRef
2.
go back to reference Aziz, A.; Na, T.Y.: Perturbation analysis for periodic heat transfer in radiating fins. Wrmeund stoffübertragung 15(3), 245–253 (1981)CrossRef Aziz, A.; Na, T.Y.: Perturbation analysis for periodic heat transfer in radiating fins. Wrmeund stoffübertragung 15(3), 245–253 (1981)CrossRef
3.
go back to reference Eslinger, R.G.; Chung, B.T.F.: Periodic heat transfer in radiating or convecting fins or fin arrays. Am. Inst. Aeronaut. Astronaut. J. 17(10), 1134–1140 (1979)CrossRef Eslinger, R.G.; Chung, B.T.F.: Periodic heat transfer in radiating or convecting fins or fin arrays. Am. Inst. Aeronaut. Astronaut. J. 17(10), 1134–1140 (1979)CrossRef
4.
go back to reference Houghton, J.M.; Ingham, D.B.; Heggs, P.J.: The one dimensional analysis of oscillating heat transfer in a finned assembly. J. Heat Transf. 114, 546–552 (1992)CrossRef Houghton, J.M.; Ingham, D.B.; Heggs, P.J.: The one dimensional analysis of oscillating heat transfer in a finned assembly. J. Heat Transf. 114, 546–552 (1992)CrossRef
5.
go back to reference Taler, D.: Transient inverse heat transfer problem in control of plate fin and tube heat exchangers. Arch. Thermodyn. 29(4), 185–194 (2008) Taler, D.: Transient inverse heat transfer problem in control of plate fin and tube heat exchangers. Arch. Thermodyn. 29(4), 185–194 (2008)
6.
go back to reference Ching-Yu, Y.: Estimation of the periodic thermal conditions on the non-Fourier fin problem. Int. J. Heat Mass Transf. 48, 3506–3515 (2005)CrossRef Ching-Yu, Y.: Estimation of the periodic thermal conditions on the non-Fourier fin problem. Int. J. Heat Mass Transf. 48, 3506–3515 (2005)CrossRef
7.
go back to reference Kundu, B.; Lee, K.S.: A non-Fourier analysis for transmitting heat in fins with internal heat generation. Int. J. Heat Mass Transf. 64, 1153–1162 (2013)CrossRef Kundu, B.; Lee, K.S.: A non-Fourier analysis for transmitting heat in fins with internal heat generation. Int. J. Heat Mass Transf. 64, 1153–1162 (2013)CrossRef
8.
go back to reference Das, R.; Prasad, K.D.: Prediction of porosity and thermal diffusivity in a porous fin using differential evolution algorithm. Swarm Evol. Comput. 23, 27–39 (2015)CrossRef Das, R.; Prasad, K.D.: Prediction of porosity and thermal diffusivity in a porous fin using differential evolution algorithm. Swarm Evol. Comput. 23, 27–39 (2015)CrossRef
9.
go back to reference Hatami, M.; Ganji, D.D.; Gorji-Bandpy, M.: Experimental and numerical analysis of the optimized finned tube heat exchanger for OM314 diesel exhaust recovery. Energy Conserv. Manag. 97, 26–41 (2015)CrossRef Hatami, M.; Ganji, D.D.; Gorji-Bandpy, M.: Experimental and numerical analysis of the optimized finned tube heat exchanger for OM314 diesel exhaust recovery. Energy Conserv. Manag. 97, 26–41 (2015)CrossRef
10.
go back to reference Singh, S.; Kumar, D.; Rai, K.N.: Wavelet collocation solution of non-linear Fin problem with temperature dependent thermal conductivity and heat transfer coefficient. Int. J. Nonlinear Anal. Appl. 6(1), 105–118 (2015)MATH Singh, S.; Kumar, D.; Rai, K.N.: Wavelet collocation solution of non-linear Fin problem with temperature dependent thermal conductivity and heat transfer coefficient. Int. J. Nonlinear Anal. Appl. 6(1), 105–118 (2015)MATH
11.
go back to reference Singh, K.; Das, R.: Approximate analytical method for porous stepped fins with temperature-dependent heat transfer parameters. J. Thermophys. Heat Transf. 30(3), 661–672 (2016)MathSciNetCrossRef Singh, K.; Das, R.: Approximate analytical method for porous stepped fins with temperature-dependent heat transfer parameters. J. Thermophys. Heat Transf. 30(3), 661–672 (2016)MathSciNetCrossRef
12.
go back to reference Jing, M.; Sun, Y.; Li, B.: Simulation of combined conductive, convective and radiative heat transfer in moving irregular porous fins by spectral element method. Int. J. Therm. Sci. 118, 475–487 (2017)CrossRef Jing, M.; Sun, Y.; Li, B.: Simulation of combined conductive, convective and radiative heat transfer in moving irregular porous fins by spectral element method. Int. J. Therm. Sci. 118, 475–487 (2017)CrossRef
14.
go back to reference Khader, M.M.; Saad, K.M.: On the numerical evaluation for studying the fractional KdV, KdV–Burgers and Burgers equations. Eur. Phys. J. Plus 133(8), 3335 (2018)CrossRef Khader, M.M.; Saad, K.M.: On the numerical evaluation for studying the fractional KdV, KdV–Burgers and Burgers equations. Eur. Phys. J. Plus 133(8), 3335 (2018)CrossRef
20.
go back to reference Sheikh, N.A.; Ali, F.; Khan, I.; Gohar, M.; Saqib, M.: On the applications of nanofluids to enhance the performance of solar collectors: a comparative analysis of Atangana–Baleanu and Caputo–Fabrizio fractional models. Eur. Phys. J. Plus 132(12), 540 (2017)CrossRef Sheikh, N.A.; Ali, F.; Khan, I.; Gohar, M.; Saqib, M.: On the applications of nanofluids to enhance the performance of solar collectors: a comparative analysis of Atangana–Baleanu and Caputo–Fabrizio fractional models. Eur. Phys. J. Plus 132(12), 540 (2017)CrossRef
22.
go back to reference Owolabi, K.M.; Atangana, A.: Robustness of fractional difference schemes via the Caputo subdiffusion-reaction equations. Chaos Solitons Fractals 111, 119–127 (2018)MathSciNetCrossRef Owolabi, K.M.; Atangana, A.: Robustness of fractional difference schemes via the Caputo subdiffusion-reaction equations. Chaos Solitons Fractals 111, 119–127 (2018)MathSciNetCrossRef
25.
go back to reference Gómez-Aguilar, J.F.; Atangana, A.; Morales-Delgado, V.F.: Electrical circuits RC, LC, and RL described by Atangana–Baleanu fractional derivatives. Int. J. Circ. Theory Appl. 45(11), 1514–1533 (2017)CrossRef Gómez-Aguilar, J.F.; Atangana, A.; Morales-Delgado, V.F.: Electrical circuits RC, LC, and RL described by Atangana–Baleanu fractional derivatives. Int. J. Circ. Theory Appl. 45(11), 1514–1533 (2017)CrossRef
38.
go back to reference Singh, J.; Kumar, D.; Baleanu, D.: On the analysis of fractional diabetes model with exponential law. Adv. Differ. Equ. 2018(1), 1–13 (2018)MathSciNetCrossRef Singh, J.; Kumar, D.; Baleanu, D.: On the analysis of fractional diabetes model with exponential law. Adv. Differ. Equ. 2018(1), 1–13 (2018)MathSciNetCrossRef
39.
go back to reference Kumar, D.; Singh, J.; Baleanu, D.: A new analysis of the Fornberg–Whitham equation pertaining to a fractional derivative with Mittag–Leffler-type kernel. Eur. Phys. J. Plus 133(2), 1–17 (2018)CrossRef Kumar, D.; Singh, J.; Baleanu, D.: A new analysis of the Fornberg–Whitham equation pertaining to a fractional derivative with Mittag–Leffler-type kernel. Eur. Phys. J. Plus 133(2), 1–17 (2018)CrossRef
40.
go back to reference Caputo, M.; Fabrizio, M.A.: New definition of fractional derivative without singular kernel. Prog. Fract. Differ. Appl. 1, 73–85 (2015) Caputo, M.; Fabrizio, M.A.: New definition of fractional derivative without singular kernel. Prog. Fract. Differ. Appl. 1, 73–85 (2015)
43.
go back to reference Atangana, A.; Baleanu, D.: New fractional derivative with non local and non-singular kernel: theory and application to heat transfer model. Therm. Sci. 20, 763–769 (2016)CrossRef Atangana, A.; Baleanu, D.: New fractional derivative with non local and non-singular kernel: theory and application to heat transfer model. Therm. Sci. 20, 763–769 (2016)CrossRef
Metadata
Title
Fractional Modeling of Fin on non-Fourier Heat Conduction via Modern Fractional Differential Operators
Authors
Kashif Ali Abro
Jose Francisco Gomez-Aguilar
Publication date
23-01-2021
Publisher
Springer Berlin Heidelberg
Published in
Arabian Journal for Science and Engineering / Issue 3/2021
Print ISSN: 2193-567X
Electronic ISSN: 2191-4281
DOI
https://doi.org/10.1007/s13369-020-05243-6

Other articles of this Issue 3/2021

Arabian Journal for Science and Engineering 3/2021 Go to the issue

Premium Partners