Skip to main content
Top
Published in: Computational Mechanics 2/2020

07-11-2019 | Original Paper

Free surface tension in incompressible smoothed particle hydrodynamcis (ISPH)

Authors: Jan-Philipp Fürstenau, Christian Weißenfels, Peter Wriggers

Published in: Computational Mechanics | Issue 2/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this work a Dirichlet pressure boundary condition for incompressible Smoothed Particle Hydrodynamics (SPH) is presented for free surfaces under surface tension. These free surfaces occur when the surrounding phase in simulations is neglected for computational reasons while the effects of the surface tension shall remain. We demonstrate capabilities of the boundary condition by comparing it to an approach from the literature. The simulations show that our approach provides a higher stability to the free surface, being capable of capturing static and transient processes as much as bubble coalescence. Furthermore a new approach is presented to compute the curvature more exactly for three-dimensional cases in order to stabilize the simulation, which is applicable for weakly compressible SPH and incompressible SPH simulations.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference Adami S, Hu X, Adams N (2010) A new surface-tension formulation for multi-phase SPH using a reproducing divergence approximation. J Comput Phys 229(13):5011–5021CrossRef Adami S, Hu X, Adams N (2010) A new surface-tension formulation for multi-phase SPH using a reproducing divergence approximation. J Comput Phys 229(13):5011–5021CrossRef
2.
go back to reference Aly AM, Asai M, Sonda Y (2013) Modelling of surface tension force for free surface flows in ISPH method. Int J Numer Methods Heat Fluid Flow 23(3):479–498MathSciNetCrossRef Aly AM, Asai M, Sonda Y (2013) Modelling of surface tension force for free surface flows in ISPH method. Int J Numer Methods Heat Fluid Flow 23(3):479–498MathSciNetCrossRef
3.
go back to reference Blank M, Nair P, Pöschel T (2019) Capillary viscous flow and melting dynamics: coupled simulations for additive manufacturing applications. Int J Heat Mass Transf 131:1232–1246CrossRef Blank M, Nair P, Pöschel T (2019) Capillary viscous flow and melting dynamics: coupled simulations for additive manufacturing applications. Int J Heat Mass Transf 131:1232–1246CrossRef
4.
5.
go back to reference Brackbill J, Kothe DB, Zemach C (1992) A continuum method for modeling surface tension. J Comput Phys 100(2):335–354MathSciNetCrossRef Brackbill J, Kothe DB, Zemach C (1992) A continuum method for modeling surface tension. J Comput Phys 100(2):335–354MathSciNetCrossRef
6.
go back to reference Cleary PW (1998) Modelling confined multi-material heat and mass flows using SPH. Appl Math Modell 22(12):981–993CrossRef Cleary PW (1998) Modelling confined multi-material heat and mass flows using SPH. Appl Math Modell 22(12):981–993CrossRef
7.
go back to reference Cleary PW, Monaghan JJ (1999) Conduction modelling using smoothed particle hydrodynamics. J Comput Phys 148(1):227–264MathSciNetCrossRef Cleary PW, Monaghan JJ (1999) Conduction modelling using smoothed particle hydrodynamics. J Comput Phys 148(1):227–264MathSciNetCrossRef
9.
go back to reference Colagrossi A, Landrini M (2003) Numerical simulation of interfacial flows by smoothed particle hydrodynamics. J Comput Phys 191(2):448–475CrossRef Colagrossi A, Landrini M (2003) Numerical simulation of interfacial flows by smoothed particle hydrodynamics. J Comput Phys 191(2):448–475CrossRef
10.
go back to reference Crespo AJ, Domínguez JM, Rogers BD, Gómez-Gesteira M, Longshaw S, Canelas R, Vacondio R, Barreiro A, García-Feal O (2015) Dualsphysics: open-source parallel cfd solver based on smoothed particle hydrodynamics (SPH). Comput Phys Commun 187:204–216CrossRef Crespo AJ, Domínguez JM, Rogers BD, Gómez-Gesteira M, Longshaw S, Canelas R, Vacondio R, Barreiro A, García-Feal O (2015) Dualsphysics: open-source parallel cfd solver based on smoothed particle hydrodynamics (SPH). Comput Phys Commun 187:204–216CrossRef
12.
go back to reference Fürstenau JP, Avci B, Wriggers P (2016) A numerical review of multi-fluid SPH algorithms for high density ratios. In: Bazilevs Y, Takizawa K (eds) Advances in computational fluid-structure interaction and flow simulation. Modeling and simulation in science, engineering and technology. Birkhäuser, Cham, pp 139–150 Fürstenau JP, Avci B, Wriggers P (2016) A numerical review of multi-fluid SPH algorithms for high density ratios. In: Bazilevs Y, Takizawa K (eds) Advances in computational fluid-structure interaction and flow simulation. Modeling and simulation in science, engineering and technology. Birkhäuser, Cham, pp 139–150
13.
go back to reference Fürstenau JP, Avci B, Wriggers P (2017) A comparative numerical study of pressure-poisson-equation discretization strategies for SPH. In: 12th international SPHERIC workshop, Ourense, Spain, pp 1–8 Fürstenau JP, Avci B, Wriggers P (2017) A comparative numerical study of pressure-poisson-equation discretization strategies for SPH. In: 12th international SPHERIC workshop, Ourense, Spain, pp 1–8
14.
go back to reference Gingold RA, Monaghan JJ (1977) Smoothed particle hydrodynamics: theory and application to non-spherical stars. Mon Not R Astron Soc 181(3):375–389CrossRef Gingold RA, Monaghan JJ (1977) Smoothed particle hydrodynamics: theory and application to non-spherical stars. Mon Not R Astron Soc 181(3):375–389CrossRef
15.
go back to reference Grenier N, Antuono M, Colagrossi A, Le Touzé D, Alessandrini B (2009) An hamiltonian interface SPH formulation for multi-fluid and free surface flows. J Comput Phys 228(22):8380–8393MathSciNetCrossRef Grenier N, Antuono M, Colagrossi A, Le Touzé D, Alessandrini B (2009) An hamiltonian interface SPH formulation for multi-fluid and free surface flows. J Comput Phys 228(22):8380–8393MathSciNetCrossRef
16.
go back to reference Hirschler M, Kunz P, Huber M, Hahn F, Nieken U (2016) Open boundary conditions for ISPH and their application to micro-flow. J Comput Phys 307:614–633MathSciNetCrossRef Hirschler M, Kunz P, Huber M, Hahn F, Nieken U (2016) Open boundary conditions for ISPH and their application to micro-flow. J Comput Phys 307:614–633MathSciNetCrossRef
17.
go back to reference Hirschler M, Oger G, Nieken U, Le Touzé D (2017) Modeling of droplet collisions using smoothed particle hydrodynamics. Int J Multiph Flow 95:175–187MathSciNetCrossRef Hirschler M, Oger G, Nieken U, Le Touzé D (2017) Modeling of droplet collisions using smoothed particle hydrodynamics. Int J Multiph Flow 95:175–187MathSciNetCrossRef
19.
go back to reference Hu XY, Adams NA (2006) A multi-phase SPH method for macroscopic and mesoscopic flows. J Comput Phys 213(2):844–861MathSciNetCrossRef Hu XY, Adams NA (2006) A multi-phase SPH method for macroscopic and mesoscopic flows. J Comput Phys 213(2):844–861MathSciNetCrossRef
20.
go back to reference Ihmsen M, Cornelis J, Solenthaler B, Horvath C, Teschner M (2014) Implicit incompressible SPH. IEEE Trans Vis Comput Gr 20(3):426–435CrossRef Ihmsen M, Cornelis J, Solenthaler B, Horvath C, Teschner M (2014) Implicit incompressible SPH. IEEE Trans Vis Comput Gr 20(3):426–435CrossRef
21.
go back to reference Landau L, Lifshitz E (1959) Course of theoretical physics. Fluid mechanics, vol 6. Elsevier, London Landau L, Lifshitz E (1959) Course of theoretical physics. Fluid mechanics, vol 6. Elsevier, London
22.
go back to reference Lind S, Xu R, Stansby P, Rogers B (2012) Incompressible smoothed particle hydrodynamics for free-surface flows: a generalised diffusion-based algorithm for stability and validations for impulsive flows and propagating waves. J Comput Phys 231(4):1499–1523MathSciNetCrossRef Lind S, Xu R, Stansby P, Rogers B (2012) Incompressible smoothed particle hydrodynamics for free-surface flows: a generalised diffusion-based algorithm for stability and validations for impulsive flows and propagating waves. J Comput Phys 231(4):1499–1523MathSciNetCrossRef
23.
go back to reference Liu GR, Liu MB (2003) Smoothed particle hydrodynamics: a meshfree particle method. World Scientific, SingaporeCrossRef Liu GR, Liu MB (2003) Smoothed particle hydrodynamics: a meshfree particle method. World Scientific, SingaporeCrossRef
25.
go back to reference Monaghan J, Rafiee A (2013) A simple SPH algorithm for multi-fluid flow with high density ratios. Int J Numer Methods Fluids 71(5):537–561MathSciNetCrossRef Monaghan J, Rafiee A (2013) A simple SPH algorithm for multi-fluid flow with high density ratios. Int J Numer Methods Fluids 71(5):537–561MathSciNetCrossRef
27.
go back to reference Monaghan JJ (1992) Smoothed particle hydrodynamics. Annu Rev Astron Astrophys 30(1):543–574CrossRef Monaghan JJ (1992) Smoothed particle hydrodynamics. Annu Rev Astron Astrophys 30(1):543–574CrossRef
28.
go back to reference Morris JP (2000) Simulating surface tension with smoothed particle hydrodynamics. Int J Numer Methods Fluids 33(3):333–353CrossRef Morris JP (2000) Simulating surface tension with smoothed particle hydrodynamics. Int J Numer Methods Fluids 33(3):333–353CrossRef
29.
go back to reference Morris JP, Fox PJ, Zhu Y (1997) Modeling low reynolds number incompressible flows using SPH. J Comput Phys 136(1):214–226CrossRef Morris JP, Fox PJ, Zhu Y (1997) Modeling low reynolds number incompressible flows using SPH. J Comput Phys 136(1):214–226CrossRef
30.
31.
go back to reference Nair P, Tomar G (2019) Simulations of gas-liquid compressible-incompressible systems using SPH. Comput Fluids 179:301–308MathSciNetCrossRef Nair P, Tomar G (2019) Simulations of gas-liquid compressible-incompressible systems using SPH. Comput Fluids 179:301–308MathSciNetCrossRef
32.
go back to reference Oger G, Doring M, Alessandrini B, Ferrant P (2007) An improved SPH method: towards higher order convergence. J Comput Phys 225(2):1472–1492MathSciNetCrossRef Oger G, Doring M, Alessandrini B, Ferrant P (2007) An improved SPH method: towards higher order convergence. J Comput Phys 225(2):1472–1492MathSciNetCrossRef
33.
go back to reference Rider WJ (1995) Approximate projection methods for incompressible flow: implementation, variants and robustness. In: LANL UNCLASSIFIED REPORT LA-UR-94-2000, LOS ALAMOS NATIONAL LABORATORY. Citeseer Rider WJ (1995) Approximate projection methods for incompressible flow: implementation, variants and robustness. In: LANL UNCLASSIFIED REPORT LA-UR-94-2000, LOS ALAMOS NATIONAL LABORATORY. Citeseer
34.
go back to reference Russell M, Souto-Iglesias A, Zohdi T (2018) Numerical simulation of laser fusion additive manufacturing processes using the SPH method. Comput Methods Appl Mech Eng 341:163–187MathSciNetCrossRef Russell M, Souto-Iglesias A, Zohdi T (2018) Numerical simulation of laser fusion additive manufacturing processes using the SPH method. Comput Methods Appl Mech Eng 341:163–187MathSciNetCrossRef
35.
go back to reference Shao S, Lo EY (2003) Incompressible SPH method for simulating newtonian and non-newtonian flows with a free surface. Adv Water Resour 26(7):787–800CrossRef Shao S, Lo EY (2003) Incompressible SPH method for simulating newtonian and non-newtonian flows with a free surface. Adv Water Resour 26(7):787–800CrossRef
36.
go back to reference Shepard D (1968) A two-dimensional interpolation function for irregularly-spaced data. In: Proceedings of the 1968 23rd ACM national conference. ACM, pp 517–524 Shepard D (1968) A two-dimensional interpolation function for irregularly-spaced data. In: Proceedings of the 1968 23rd ACM national conference. ACM, pp 517–524
37.
go back to reference Szewc K, Tanière A, Pozorski J, Minier JP (2012) A study on application of smoothed particle hydrodynamics to multi-phase flows. Int J Nonlinear Sci Numer Simul 13(6):383–395MathSciNetCrossRef Szewc K, Tanière A, Pozorski J, Minier JP (2012) A study on application of smoothed particle hydrodynamics to multi-phase flows. Int J Nonlinear Sci Numer Simul 13(6):383–395MathSciNetCrossRef
39.
go back to reference Zhang M (2010) Simulation of surface tension in 2d and 3d with smoothed particle hydrodynamics method. J Comput Phys 229(19):7238–7259MathSciNetCrossRef Zhang M (2010) Simulation of surface tension in 2d and 3d with smoothed particle hydrodynamics method. J Comput Phys 229(19):7238–7259MathSciNetCrossRef
Metadata
Title
Free surface tension in incompressible smoothed particle hydrodynamcis (ISPH)
Authors
Jan-Philipp Fürstenau
Christian Weißenfels
Peter Wriggers
Publication date
07-11-2019
Publisher
Springer Berlin Heidelberg
Published in
Computational Mechanics / Issue 2/2020
Print ISSN: 0178-7675
Electronic ISSN: 1432-0924
DOI
https://doi.org/10.1007/s00466-019-01780-6

Other articles of this Issue 2/2020

Computational Mechanics 2/2020 Go to the issue