Skip to main content
Top
Published in: Arabian Journal for Science and Engineering 7/2020

24-06-2020 | Research Article-Mechanical Engineering

Further Discussion on the Significance of Quartic Autocatalysis on the Dynamics of Water Conveying 47 nm Alumina and 29 nm Cupric Nanoparticles

Authors: Hongping Liu, I. L. Animasaun, Nehad Ali Shah, O. K. Koriko, B. Mahanthesh

Published in: Arabian Journal for Science and Engineering | Issue 7/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Improvement of product performance, efficiency, and reliability is a major concern of experts, scientists, and technologists dealing with the dynamics of water conveying nanoparticles on objects with nonuniform thickness either coated or sprayed with the catalyst. However, little is known on the significance of quartic autocatalysis as it affects the dynamics of water conveying alumina and cupric nanoparticles. In this study, comparative analysis between the dynamics of water conveying 29 nm CuO and 47 nm \(\hbox {Al}_2\hbox {O}_3\) on an upper horizontal surface of a paraboloid of revolution is modeled and presented. In the transport phenomena, migration of nanoparticles due to temperature gradient, the haphazard motion of nanoparticles, and diffusion of motile microorganisms were incorporated into the mathematical models. Due to the inherent nature of the thermophysical properties of the two nanofluids, viscosity, density, thermal radiation, and heat capacity of the two nanofluids were incorporated in the mathematical model. The nonlinear partial differential equations that model the transport phenomenon were transformed, non-dimensionalized and parameterized. The corresponding boundary value problems were converted to an initial value problem using the method of superposition and solved numerically. The concentration of the catalyst increases significantly with buoyancy at a larger magnitude of space-dependent internal heat source in the flow of 29 nm CuO–water nanofluid. Negligible migration of nanoparticles due to temperature gradient decreases the concentration of the fluid throughout the domain.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Kenneth, C.: Chemical Kinetics. VCH Publishers, Weinheim (1991) Kenneth, C.: Chemical Kinetics. VCH Publishers, Weinheim (1991)
3.
go back to reference Atkins, P.; de Paula, J.: The rates of chemical reactions. In: Atkins’ Physical chemistry (8th edn, pp. 791–823). W.H. Freeman. ISBN 0-7167-8759-8 (2006) Atkins, P.; de Paula, J.: The rates of chemical reactions. In: Atkins’ Physical chemistry (8th edn, pp. 791–823). W.H. Freeman. ISBN 0-7167-8759-8 (2006)
4.
go back to reference Connors, K.A.: Chemical Kinetics: The Study of Reaction Rates in Solution. Wiley, Hoboken (1990) Connors, K.A.: Chemical Kinetics: The Study of Reaction Rates in Solution. Wiley, Hoboken (1990)
9.
go back to reference Lotka, A.J.: Contribution to the theory of periodic reaction. J. Phys. Chem. A 14(3), 271–274 (1910)CrossRef Lotka, A.J.: Contribution to the theory of periodic reaction. J. Phys. Chem. A 14(3), 271–274 (1910)CrossRef
10.
go back to reference Kim, Y.G.: Some properties of autocatalytic reactions. Chem. Eng. Sci. 23(7), 687–694 (1968)CrossRef Kim, Y.G.: Some properties of autocatalytic reactions. Chem. Eng. Sci. 23(7), 687–694 (1968)CrossRef
11.
go back to reference Sapre, A.V.: Diffusional enhancement of autocatalytic reactions in catalyst particles. Am. Inst. Chem. Eng. 35(4), 655–657 (1989)CrossRef Sapre, A.V.: Diffusional enhancement of autocatalytic reactions in catalyst particles. Am. Inst. Chem. Eng. 35(4), 655–657 (1989)CrossRef
12.
go back to reference Steinfield, J.I.; Francisco, J.S.; Hase, W.L.: Chemical Kinetics and Dynamics, 2nd edn, pp. 151–152. Prentice Hall, Upper Saddle River (1999). ISBN 0-13-737123-3 Steinfield, J.I.; Francisco, J.S.; Hase, W.L.: Chemical Kinetics and Dynamics, 2nd edn, pp. 151–152. Prentice Hall, Upper Saddle River (1999). ISBN 0-13-737123-3
13.
go back to reference Alharthi, M.R.; Marchant, T.R.; Nelson, M.I.: Mixed quadratic–cubic autocatalytic reaction–diffusion equations: semi-analytical solutions. Appl. Math. Model. 38(21–22), 5160–5173 (2014)MathSciNetCrossRef Alharthi, M.R.; Marchant, T.R.; Nelson, M.I.: Mixed quadratic–cubic autocatalytic reaction–diffusion equations: semi-analytical solutions. Appl. Math. Model. 38(21–22), 5160–5173 (2014)MathSciNetCrossRef
16.
go back to reference Merkin, J.H.: A model for isothermal homogeneous–heterogenous reactions in boundary layer flow. Math. Comput. Modell. 24(8), 125–136 (1996)MathSciNetCrossRef Merkin, J.H.: A model for isothermal homogeneous–heterogenous reactions in boundary layer flow. Math. Comput. Modell. 24(8), 125–136 (1996)MathSciNetCrossRef
17.
go back to reference Maxwell, J.C.: A Treatise on Electricity and Magnetism, 2nd edn. Clarendon Press, Oxford (1873)MATH Maxwell, J.C.: A Treatise on Electricity and Magnetism, 2nd edn. Clarendon Press, Oxford (1873)MATH
26.
go back to reference Mintsa, H. A.; Nguyen, C. T.; Roy, G.: New temperature dependent thermal conductivity data of water based nanofluids. In: Proceedings of the 5th IASME/WSEAS International Conference on Heat Transfer, Thermal Engineering and Environment, Athens, vol. 290, pp. 25–27 (2007) Mintsa, H. A.; Nguyen, C. T.; Roy, G.: New temperature dependent thermal conductivity data of water based nanofluids. In: Proceedings of the 5th IASME/WSEAS International Conference on Heat Transfer, Thermal Engineering and Environment, Athens, vol. 290, pp. 25–27 (2007)
27.
29.
go back to reference Kuznetsov, A.V.; Nield, D.A.: Natural convective boundary layer flow of a nanofluid past a vertical plate. Int. J. Therm. Sci. 49(2), 243–247 (2010)CrossRef Kuznetsov, A.V.; Nield, D.A.: Natural convective boundary layer flow of a nanofluid past a vertical plate. Int. J. Therm. Sci. 49(2), 243–247 (2010)CrossRef
32.
go back to reference Lynch, D.T.: Chaotic ehavior of reaction systems: mixed cubic and quadratic autocatalysis. Chem. Eng. Sci. 47(17/18), 4435–4444 (1992)CrossRef Lynch, D.T.: Chaotic ehavior of reaction systems: mixed cubic and quadratic autocatalysis. Chem. Eng. Sci. 47(17/18), 4435–4444 (1992)CrossRef
33.
go back to reference Pedley, T.J.; Kessler, J.O.: Hydrodynamic phenomena in suspensions of swimming microorganisms. Annu. Rev. Fluid Mech. 24, 313–358 (1992)MathSciNetCrossRef Pedley, T.J.; Kessler, J.O.: Hydrodynamic phenomena in suspensions of swimming microorganisms. Annu. Rev. Fluid Mech. 24, 313–358 (1992)MathSciNetCrossRef
34.
go back to reference Kuznetsov, A.V.: The onset of nanofluid bioconvection in a suspension containing both nanoparticles and gyrotactic microorganisms. Int. Commun. Heat Mass Transf. 37, 1421–1425 (2010)CrossRef Kuznetsov, A.V.: The onset of nanofluid bioconvection in a suspension containing both nanoparticles and gyrotactic microorganisms. Int. Commun. Heat Mass Transf. 37, 1421–1425 (2010)CrossRef
36.
go back to reference Oztop, H.; Abu-Nada, E.: Numerical study of natural convection in partially heated rectangular enclosures filled with nanofluids. Int. J. Heat Fluid Flow 29, 1326–1336 (2008)CrossRef Oztop, H.; Abu-Nada, E.: Numerical study of natural convection in partially heated rectangular enclosures filled with nanofluids. Int. J. Heat Fluid Flow 29, 1326–1336 (2008)CrossRef
37.
go back to reference Na, T.Y.: Computational Methods in Engineering Boundary Value Problems. Academic Press, New York (1979)MATH Na, T.Y.: Computational Methods in Engineering Boundary Value Problems. Academic Press, New York (1979)MATH
38.
go back to reference Animasaun, I.L.; Koriko, O.K.; Adegbie, K.S.; Babatunde, H.A.; Ibraheem, R.O.; Sandeep, N.; Mahanthesh, B.: Comparative analysis between 36 nm and 47 nm alumina–water nanofluid flows in the presence of Hall effect. J. Therm. Anal. Calorim. 135(2), 873–886 (2018). https://doi.org/10.1007/s10973-018-7379-4 CrossRef Animasaun, I.L.; Koriko, O.K.; Adegbie, K.S.; Babatunde, H.A.; Ibraheem, R.O.; Sandeep, N.; Mahanthesh, B.: Comparative analysis between 36 nm and 47 nm alumina–water nanofluid flows in the presence of Hall effect. J. Therm. Anal. Calorim. 135(2), 873–886 (2018). https://​doi.​org/​10.​1007/​s10973-018-7379-4 CrossRef
39.
go back to reference Makinde, O.D.; Animasaun, I.L.: Bioconvection in MHD nanofluidflow with nonlinear thermal radiation and quartic autocatalysis chemical reaction past an upper surface of a paraboloid of revolution. Int. J. Therm. Sci. 109, 159–171 (2016)CrossRef Makinde, O.D.; Animasaun, I.L.: Bioconvection in MHD nanofluidflow with nonlinear thermal radiation and quartic autocatalysis chemical reaction past an upper surface of a paraboloid of revolution. Int. J. Therm. Sci. 109, 159–171 (2016)CrossRef
40.
go back to reference Animasaun, I.L.; Sandeep, N.: Buoyancy induced model for the flow of 36 nm aluminawater nanofluid along upper horizontal surface of a paraboloid of revolution with variable thermal conductivity and viscosity. Powder Technol. 301, 858–867 (2016)CrossRef Animasaun, I.L.; Sandeep, N.: Buoyancy induced model for the flow of 36 nm aluminawater nanofluid along upper horizontal surface of a paraboloid of revolution with variable thermal conductivity and viscosity. Powder Technol. 301, 858–867 (2016)CrossRef
41.
go back to reference Makinde, O.D.; Animasaun, I.L.: Thermophoresis and Brownian motion effects on MHD bioconvection of nanofluid with nonlinear thermal radiation and quartic chemical reaction past an upper horizontal surface of a paraboloid of revolution. J. Mol. Liq. 221, 733–743 (2016)CrossRef Makinde, O.D.; Animasaun, I.L.: Thermophoresis and Brownian motion effects on MHD bioconvection of nanofluid with nonlinear thermal radiation and quartic chemical reaction past an upper horizontal surface of a paraboloid of revolution. J. Mol. Liq. 221, 733–743 (2016)CrossRef
45.
go back to reference Abdollahi, A.; Darvanjooghi, M.H.K.; Karimipour, A.; Safaei, M.R.: Experimental study to obtain the viscosity of CuO-loaded nanofluid: effects of nanoparticles’ mass fraction, temperature and basefluid’s types to develop a correlation. Meccanica 53(15), 3739–3757 (2018). https://doi.org/10.1007/s11012-018-0916-1 CrossRef Abdollahi, A.; Darvanjooghi, M.H.K.; Karimipour, A.; Safaei, M.R.: Experimental study to obtain the viscosity of CuO-loaded nanofluid: effects of nanoparticles’ mass fraction, temperature and basefluid’s types to develop a correlation. Meccanica 53(15), 3739–3757 (2018). https://​doi.​org/​10.​1007/​s11012-018-0916-1 CrossRef
46.
go back to reference Seth, G.S.; Sarkar, S.; Hussain, S.M.; Mahato, G.K.: Effects of Hall current and rotation on hydromagnetic natural convection flow with heat and mass transfer of a heat absorbing fluid past an impulsively moving vertical plate with ramped temperature. J. Appl. Fluid Mech. 8(1), 159–171 (2015) Seth, G.S.; Sarkar, S.; Hussain, S.M.; Mahato, G.K.: Effects of Hall current and rotation on hydromagnetic natural convection flow with heat and mass transfer of a heat absorbing fluid past an impulsively moving vertical plate with ramped temperature. J. Appl. Fluid Mech. 8(1), 159–171 (2015)
47.
go back to reference Platt, J.R.: Bioconvection patterns in cultures of free-swimming organisms. Science 133(3466), 1766–1767 (1961)CrossRef Platt, J.R.: Bioconvection patterns in cultures of free-swimming organisms. Science 133(3466), 1766–1767 (1961)CrossRef
Metadata
Title
Further Discussion on the Significance of Quartic Autocatalysis on the Dynamics of Water Conveying 47 nm Alumina and 29 nm Cupric Nanoparticles
Authors
Hongping Liu
I. L. Animasaun
Nehad Ali Shah
O. K. Koriko
B. Mahanthesh
Publication date
24-06-2020
Publisher
Springer Berlin Heidelberg
Published in
Arabian Journal for Science and Engineering / Issue 7/2020
Print ISSN: 2193-567X
Electronic ISSN: 2191-4281
DOI
https://doi.org/10.1007/s13369-020-04610-7

Other articles of this Issue 7/2020

Arabian Journal for Science and Engineering 7/2020 Go to the issue

Premium Partners