Skip to main content
Top
Published in: Journal of Scientific Computing 1/2022

01-04-2022

Generalized Fractional Algebraic Linear System Solvers

Authors: X. Antoine, E. Lorin

Published in: Journal of Scientific Computing | Issue 1/2022

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This paper is devoted to the numerical computation of algebraic linear systems involving several matrix power functions; that is finding x solution to \(\sum _{\alpha \in \mathbb {R}}A^{\alpha }x=b\). These systems will be referred to as Generalized Fractional Algebraic Linear Systems (GFALS). In this paper, we derive several gradient methods for solving these very computationally complex problems, which themselves require the solution to intermiediate standard Fractional Algebraic Linear Systems (FALS) \(A^{\alpha }x=b\), with \(\alpha \in \mathbb {R_+}\). The latter usually require the solution to many classical linear systems \(Ax=b\). We also show that in some cases, the solution to a GFALS problem can be obtained as the solution to a first-order hyperbolic system of conservation laws. We also discuss the connections between this PDE-approach and gradient-type methods. The convergence analysis is addressed and some numerical experiments are proposed to illustrate and compare the methods which are proposed in this paper.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference Achar, B.N., Yale, B.T., Hanneken, J.W.: Time fractional Schrödinger equation revisited. Adv. Math. Phys. 2013, 290216 (2013)CrossRef Achar, B.N., Yale, B.T., Hanneken, J.W.: Time fractional Schrödinger equation revisited. Adv. Math. Phys. 2013, 290216 (2013)CrossRef
2.
go back to reference Antoine, X., Besse, C., Duboscq, R., Rispoli, V.: Acceleration of the imaginary time method for spectrally computing the stationary states of Gross–Pitaevskii equations. Comput. Phys. Commun. 219, 70–78 (2017)MathSciNetCrossRef Antoine, X., Besse, C., Duboscq, R., Rispoli, V.: Acceleration of the imaginary time method for spectrally computing the stationary states of Gross–Pitaevskii equations. Comput. Phys. Commun. 219, 70–78 (2017)MathSciNetCrossRef
3.
go back to reference Antoine, X., Lorin, E.: Double-preconditioning for fractional linear systems. Application to fractional Poisson equations, Submitted (2020) Antoine, X., Lorin, E.: Double-preconditioning for fractional linear systems. Application to fractional Poisson equations, Submitted (2020)
4.
go back to reference Antoine, X., Lorin, E.: ODE-based double-preconditioning for solving linear systems \({A}^{\alpha }x = b\) and \(f({A})x=b\). Numer. Lin. Alg. with App. 28,(6) (2021) Antoine, X., Lorin, E.: ODE-based double-preconditioning for solving linear systems \({A}^{\alpha }x = b\) and \(f({A})x=b\). Numer. Lin. Alg. with App. 28,(6) (2021)
5.
go back to reference Antoine, X., Lorin, E., Zhang, Y.: Derivation and analysis of computational methods for fractional laplacian equations with absorbing layers. Numerical Algorithms, 87, 2021 Antoine, X., Lorin, E., Zhang, Y.: Derivation and analysis of computational methods for fractional laplacian equations with absorbing layers. Numerical Algorithms, 87, 2021
6.
go back to reference Ashby, S.F., Manteuffel, T.A., Saylor, P.E.: A taxonomy for conjugate gradient methods. SIAM J. Numer. Anal. 27(6), 1542–1568 (1990)MathSciNetCrossRef Ashby, S.F., Manteuffel, T.A., Saylor, P.E.: A taxonomy for conjugate gradient methods. SIAM J. Numer. Anal. 27(6), 1542–1568 (1990)MathSciNetCrossRef
7.
go back to reference Bologna, M., West, B., Grigolini, P.: Physics of Fractal Operators. Springer, New York (2002) Bologna, M., West, B., Grigolini, P.: Physics of Fractal Operators. Springer, New York (2002)
8.
go back to reference Bao, W., Dong, X.: Numerical methods for computing ground state and dynamics of nonlinear relativistic Hartree equation for boson stars. J. Comput. Phys. 230, 5449–5469 (2011)MathSciNetCrossRef Bao, W., Dong, X.: Numerical methods for computing ground state and dynamics of nonlinear relativistic Hartree equation for boson stars. J. Comput. Phys. 230, 5449–5469 (2011)MathSciNetCrossRef
9.
go back to reference Benzoni-Gavage, S., Serre, D.: Multidimensional Hyperbolic Partial Differential Equations. Oxford Mathematical Monographs. The Clarendon Press, Oxford University Press, Oxford, (2007). First-order systems and applications Benzoni-Gavage, S., Serre, D.: Multidimensional Hyperbolic Partial Differential Equations. Oxford Mathematical Monographs. The Clarendon Press, Oxford University Press, Oxford, (2007). First-order systems and applications
10.
go back to reference Bhatti, M.: Fractional Schrödinger wave equation and fractional uncertainty principle. Int. J. Contem. Math. Sci. 2, 943–950 (2007)CrossRef Bhatti, M.: Fractional Schrödinger wave equation and fractional uncertainty principle. Int. J. Contem. Math. Sci. 2, 943–950 (2007)CrossRef
11.
go back to reference Carusotto, I., Ciuti, C.: Quantum fluids of light. Rev. Mod. Phys. 85, 299–366 (2013)CrossRef Carusotto, I., Ciuti, C.: Quantum fluids of light. Rev. Mod. Phys. 85, 299–366 (2013)CrossRef
12.
13.
go back to reference Dafermos, C.M.: Hyperbolic Conservation Laws in Continuum Physics, volume 325 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 4th edn. Springer-Verlag, Berlin (2016) Dafermos, C.M.: Hyperbolic Conservation Laws in Continuum Physics, volume 325 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 4th edn. Springer-Verlag, Berlin (2016)
14.
go back to reference Davies, P.I., Higham, N.J.: Computing \(f({A})b\) for matrix functions \(f\). In: QCD and Numerical Analysis III, volume 47 of Lect. Notes Comput. Sci. Eng., pp. 15–24. Springer, Berlin (2005) Davies, P.I., Higham, N.J.: Computing \(f({A})b\) for matrix functions \(f\). In: QCD and Numerical Analysis III, volume 47 of Lect. Notes Comput. Sci. Eng., pp. 15–24. Springer, Berlin (2005)
15.
go back to reference Dong, J., Xu, M.: Space-time fractional Schrödinger equation with time-independent potentials. J. Math. Anal. Appl. 344(2), 1005–1017 (2008)MathSciNetCrossRef Dong, J., Xu, M.: Space-time fractional Schrödinger equation with time-independent potentials. J. Math. Anal. Appl. 344(2), 1005–1017 (2008)MathSciNetCrossRef
16.
17.
go back to reference Golub, G.H., Meurant, G.: Matrices, Moments and Quadrature with Applications. Princeton Series in Applied Mathematics. Princeton University Press, Princeton, NJ (2010)MATH Golub, G.H., Meurant, G.: Matrices, Moments and Quadrature with Applications. Princeton Series in Applied Mathematics. Princeton University Press, Princeton, NJ (2010)MATH
18.
go back to reference Guo, C.-H., Higham, N.J.: A Schur–Newton method for the matrix \(p\)th root and its inverse. SIAM J. Matrix Anal. Appl. 28(3), 788–804 (2006)MathSciNetCrossRef Guo, C.-H., Higham, N.J.: A Schur–Newton method for the matrix \(p\)th root and its inverse. SIAM J. Matrix Anal. Appl. 28(3), 788–804 (2006)MathSciNetCrossRef
19.
go back to reference Hale, N., Higham, N.J., Trefethen, L.N.: Computing \({A}^\alpha, \log ({A})\), and related matrix functions by contour integrals. SIAM J. Numer. Anal. 46(5), 2505–2523 (2008)MathSciNetCrossRef Hale, N., Higham, N.J., Trefethen, L.N.: Computing \({A}^\alpha, \log ({A})\), and related matrix functions by contour integrals. SIAM J. Numer. Anal. 46(5), 2505–2523 (2008)MathSciNetCrossRef
20.
go back to reference Higham, N.J.: Functions of matrices. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, (2008). Theory and computation Higham, N.J.: Functions of matrices. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, (2008). Theory and computation
21.
22.
go back to reference Jonsson, B.L.G., Fröhlich, J., Lenzmann, E.: Effective dynamics for boson stars. Nonlinearity 20, 1031–1075 (2007)MathSciNetCrossRef Jonsson, B.L.G., Fröhlich, J., Lenzmann, E.: Effective dynamics for boson stars. Nonlinearity 20, 1031–1075 (2007)MathSciNetCrossRef
23.
go back to reference Kenney, C., Laub, A.J.: Rational iterative methods for the matrix sign function. SIAM J. Matrix Anal. Appl. 12(2), 273–291 (1991)MathSciNetCrossRef Kenney, C., Laub, A.J.: Rational iterative methods for the matrix sign function. SIAM J. Matrix Anal. Appl. 12(2), 273–291 (1991)MathSciNetCrossRef
24.
go back to reference Kirkpatrick, K., Zhang, Y.: Fractional Schrödinger dynamics and decoherence. Phys. D Nonlinear Phenom. 332, 41–54 (2016)CrossRef Kirkpatrick, K., Zhang, Y.: Fractional Schrödinger dynamics and decoherence. Phys. D Nonlinear Phenom. 332, 41–54 (2016)CrossRef
25.
go back to reference Kusnezov, D., Bulgac, A., Dang, G.: Quantum Lévy processes and fractional kinetics. Phys. Rev. Lett. 82, 1136–1129 (1999)CrossRef Kusnezov, D., Bulgac, A., Dang, G.: Quantum Lévy processes and fractional kinetics. Phys. Rev. Lett. 82, 1136–1129 (1999)CrossRef
27.
go back to reference Laskin, N.: Fractional quantum mechanics. Phys. Rev. E 62, 3135–3145 (2000)CrossRef Laskin, N.: Fractional quantum mechanics. Phys. Rev. E 62, 3135–3145 (2000)CrossRef
29.
go back to reference Laszkiewicz, B., Zietak, K.: A Padé family of iterations for the matrix sector function and the matrix \(p\)th root. Numer. Linear Algebra Appl. 16(11–12), 951–970 (2009)MathSciNetCrossRef Laszkiewicz, B., Zietak, K.: A Padé family of iterations for the matrix sector function and the matrix \(p\)th root. Numer. Linear Algebra Appl. 16(11–12), 951–970 (2009)MathSciNetCrossRef
30.
go back to reference LeFloch, P.G.: Hyperbolic systems of conservation laws. Lectures in Mathematics ETH Zürich. Birkhäuser Verlag, Basel, 2002. The theory of classical and nonclassical shock waves LeFloch, P.G.: Hyperbolic systems of conservation laws. Lectures in Mathematics ETH Zürich. Birkhäuser Verlag, Basel, 2002. The theory of classical and nonclassical shock waves
31.
go back to reference Lischke, A., Pang, G., Gulian, M., Song, F., Glusa, C., Zheng, X., Mao, Z., Cai, W., Meerschaert, M.M., Ainsworth, M., Em Karniadakis, G.: What is the fractional Laplacian? a comparative review with new results. J. Comput. Phys. 404, 109009 (2020)MathSciNetCrossRef Lischke, A., Pang, G., Gulian, M., Song, F., Glusa, C., Zheng, X., Mao, Z., Cai, W., Meerschaert, M.M., Ainsworth, M., Em Karniadakis, G.: What is the fractional Laplacian? a comparative review with new results. J. Comput. Phys. 404, 109009 (2020)MathSciNetCrossRef
32.
go back to reference Lomin, A.: Fractional-time quantum dynamics. Phys. Rev. E 62, 3135–3145 (2000)CrossRef Lomin, A.: Fractional-time quantum dynamics. Phys. Rev. E 62, 3135–3145 (2000)CrossRef
33.
go back to reference Lorin, E., Tian, S.: A numerical study of fractional linear algebraic system solvers. Submitted., (2020) Lorin, E., Tian, S.: A numerical study of fractional linear algebraic system solvers. Submitted., (2020)
35.
go back to reference Ochs, P., Chen, Y., Brox, T., Pock, T.: iPiano: inertial proximal algorithm for nonconvex optimization. SIAM J. Imaging Sci. 7(2), 1388–1419 (2014)MathSciNetCrossRef Ochs, P., Chen, Y., Brox, T., Pock, T.: iPiano: inertial proximal algorithm for nonconvex optimization. SIAM J. Imaging Sci. 7(2), 1388–1419 (2014)MathSciNetCrossRef
36.
go back to reference Pinsker, F., Bao, W., Zhang, Y., Ohadi, H., Dreismann, A., Baumberg, J.J.: Fractional quantum mechanics in polariton condensates with velocity-dependent mass. Phys. Rev. B 92, 195310 (2015)CrossRef Pinsker, F., Bao, W., Zhang, Y., Ohadi, H., Dreismann, A., Baumberg, J.J.: Fractional quantum mechanics in polariton condensates with velocity-dependent mass. Phys. Rev. B 92, 195310 (2015)CrossRef
37.
go back to reference Quarteroni, A., Sacco, R., Saleri, F.: Numerical mathematics. Texts in Applied Mathematics, vol. 37. Springer-Verlag, New York (2000)MATH Quarteroni, A., Sacco, R., Saleri, F.: Numerical mathematics. Texts in Applied Mathematics, vol. 37. Springer-Verlag, New York (2000)MATH
38.
go back to reference Saad, Y., Schultz, M.H.: GMRES—a generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM J. Sci. Stat. Comput. 7(3), 856–869 (1986)MathSciNetCrossRef Saad, Y., Schultz, M.H.: GMRES—a generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM J. Sci. Stat. Comput. 7(3), 856–869 (1986)MathSciNetCrossRef
39.
go back to reference Smith, M.I.: A Schur algorithm for computing matrix \(p\)th roots. SIAM J. Matrix Anal. Appl. 24(4), 971–989 (2003)MathSciNetCrossRef Smith, M.I.: A Schur algorithm for computing matrix \(p\)th roots. SIAM J. Matrix Anal. Appl. 24(4), 971–989 (2003)MathSciNetCrossRef
40.
go back to reference Strikwerda, J.C.: Finite Difference Schemes and Partial Differential Equations. The Wadsworth & Brooks/Cole Mathematics Series. Wadsworth & Brooks/Cole Advanced Books & Software, Pacific Grove, CA, (1989) Strikwerda, J.C.: Finite Difference Schemes and Partial Differential Equations. The Wadsworth & Brooks/Cole Mathematics Series. Wadsworth & Brooks/Cole Advanced Books & Software, Pacific Grove, CA, (1989)
42.
go back to reference Toro, E.F.: Riemann Solvers and Numerical Methods for Fluid Dynamics. A practical introduction, 2nd edn. Springer-Verlag, Berlin (1999)CrossRef Toro, E.F.: Riemann Solvers and Numerical Methods for Fluid Dynamics. A practical introduction, 2nd edn. Springer-Verlag, Berlin (1999)CrossRef
43.
go back to reference Tsai, J.S.H., Shieh, L.S., Yates, R.E.: Fast and stable algorithms for computing the principal \(n\)th root of a complex matrix and the matrix sector function. Comput. Math. Appl. 15(11), 903–913 (1988)MathSciNetCrossRef Tsai, J.S.H., Shieh, L.S., Yates, R.E.: Fast and stable algorithms for computing the principal \(n\)th root of a complex matrix and the matrix sector function. Comput. Math. Appl. 15(11), 903–913 (1988)MathSciNetCrossRef
44.
go back to reference Wang, S., Xu, M.: Generalized fractional Schrödinger equation with space-time fractional derivatives. J. Math. Phys. 48(4), 043502 (2007)MathSciNetCrossRef Wang, S., Xu, M.: Generalized fractional Schrödinger equation with space-time fractional derivatives. J. Math. Phys. 48(4), 043502 (2007)MathSciNetCrossRef
45.
go back to reference West, B.: Quantum Lévy propagators. J. Phys. Chem. B 104, 3830–3832 (2000)CrossRef West, B.: Quantum Lévy propagators. J. Phys. Chem. B 104, 3830–3832 (2000)CrossRef
Metadata
Title
Generalized Fractional Algebraic Linear System Solvers
Authors
X. Antoine
E. Lorin
Publication date
01-04-2022
Publisher
Springer US
Published in
Journal of Scientific Computing / Issue 1/2022
Print ISSN: 0885-7474
Electronic ISSN: 1573-7691
DOI
https://doi.org/10.1007/s10915-022-01785-z

Other articles of this Issue 1/2022

Journal of Scientific Computing 1/2022 Go to the issue

Premium Partner